TREES AND WIND: A BIBLIOGRAPHY FOR TREE CARE PROFESSIONALS
by Scott Cullen

Abstract. Arborists and urban foresters frequently refer to “wind loads,” “sail areas,” and so forth but may have limited knowledge of the forces and underlying concepts involved. While there is extensive tree–wind literature, very little has appeared in tree care publications. This article presents a collected tree–wind bibliography and some comments on its use.

Key Words. Aerodynamics; biomechanics; trees and wind; wind;

NEED AND PURPOSE
Arborists and urban foresters are increasingly concerned with “hazard” trees, tree risk assessment, and tree biomechanics. They often refer to “wind loads,” “sail areas,” and so forth but may have limited knowledge of underlying concepts, the magnitude of forces involved, or the responses of trees. While there is extensive tree–wind literature, relatively little has appeared in tree care publications. An informal survey of tree care practitioners and academics found a limited awareness of published material. Yet tree care professionals, particularly those involved in forensics and risk management, are frequently asked to provide definitive opinions. Engineering professionals are frequently reluctant to offer supporting opinions on trees in an apparent absence of protocols or standard methods. The purpose of this article is to introduce tree care professionals to a wide range of tree–wind literature. Some explanation of sources and their interpretation and use is also provided.

SOURCES
The work on trees and wind is scattered across a number of disciplines, each with its own literature. This is significant for at least two reasons. First, the information is not in any single literature that is either familiar to or readily accessible by tree care professionals. Second, each discipline has its own focus, and the tree care reader must interpret its literature accordingly to extract particular material that may be applicable to arboriculture and urban forestry. These literatures include the following.

Arboriculture and Urban Forestry. Relatively few works have appeared in this literature, and many of these have been generally descriptive or have merely surveyed damage after wind events. The more specific sources tend to be European and may be unfamiliar to non-European readers. Some have not been translated into English.

Boundary-Layer Meteorology, which is concerned with the movement of air over the earth’s surface and around surface obstacles.

Civil Engineering, which attempts to describe or model tree–wind phenomena using accepted engineering principles.

Computer Modeling, which is concerned with theoretical mathematics or the development of computer graphics tools but provides useful insight into the analytical complexity of describing the behavior of trees in wind.

Disaster and Emergency Management, which is concerned with predicting and preventing natural hazard damage.

Forestry, with particular emphasis on windthrow (much of the work comes from the British Isles, Canada, New Zealand, and Scandinavia) and forest fire.

Hydrology, which is concerned with fluid drag on submerged and unsubmerged vegetation.

Shelterbelts and Windbreaks, with much of the work coming from the plains states of the United States, the prairie provinces of Canada, and mainland China.

Slope Stabilization and Erosion Control, which is concerned with the stabilizing effects of tree roots, which may be compromised by windthrow, and the wind-sheltering effects of tree crowns.

Theoretical Biology and Botany, which is very academically and analytically focused.

There is some contribution from one literature to another, but in many instances there is no crossover. While this may be limiting in terms of an informed, overall body of knowledge, it has allowed certain consistent findings to emerge from entirely separate lines of inquiry.
ACCESS
Most of the subject material is found in a wide range of scholarly journals and a few books, including edited collections of articles or conference proceedings. These are most accessible at major university libraries, particularly at schools of forestry. The libraries of botanical gardens and arboreta are also good sources. Some work finds its way into trade journals in simplified form.

The Internet provides a convenient alternative to search for sources and often to access them as well. Many journals are now online, with indices and article abstracts available at no cost. Full text of articles can often be downloaded, sometimes at no cost but often for a fee. Libraries and institutions often subscribe for full-text access at no cost to the end user. A significant limitation is that few online journal materials pre-date the mid-1990s. Earlier works must still be found in printed form. Increasingly, some material is available only online and not in print. URLs addresses, if known, are provided in the bibliography for sources not widely available in printed form.

BIBLIOGRAPHY
The sources have been selected principally for their relevance to tree biomechanics and structure. Selection has tended to be inclusive rather than exclusive, allowing the reader to assess the usefulness of listings. A particular effort has been made to identify recent and advanced works. There has been significant contribution since the somewhat singular sources of the early 1990s (Niklas 1992; Vogel 1994; Coutts and Grace 1995). The older works (e.g., Sauer et al. 1951; Lai 1955; Mayhead 1973; Coutts 1983; Deans and Ford 1983; Putz et al. 1983; Grant 1985) refer to even earlier material.

The bibliography is certainly not complete. There are additional sources including many cited by the works listed here. There are, no doubt, many non-English-language sources that were not found.

USE

The informed reader may be able to select useful entries simply by scanning the titles and may look to the more narrowly focused or even seemingly off-point sources to find analytical or quantitative methods or experimental data applicable to particular problems.

It is conventional in the scholarly literature to use SI (Systeme International) units. These units are often unaccompanied by English equivalents. In day-to-day practice, wind velocity is customarily reported in miles or kilometers per hour, knots, Beaufort force numbers or Simpson-Saffir numbers rather than the SI convention, meters per second. The reader should have access to appropriate conversion factors.

The reader should remember that wind is only one factor in the structural behavior of trees. Useful understanding of that behavior also requires knowledge of climatology, root anchorage and soils, tree biomechanics (e.g., Coder 2000d, and Niklas 1992), wood and root properties and strength, and other fields. Practical application may also require a knowledge of risk management or applicable codes and standards. These other fields are generally beyond the scope of this collection.

BIBLIOGRAPHY


Gaye}v, Y., and E. Savory. 1999. Wind tunnel investigations of the
flow associated with a complex canopy. In Larsen, A., G.L.
Gaffrey, Dieter. 2000. Stress distribution in a stem of a 64-year
Biomechanics 2000, Proceedings of the 3rd Plant
Biomechanics Conference Freiburg-Badenweiler, Germany,
27 August–2 September 2000. Georg Thieme-Verlag, Stuttgart,
Germany. Text at http://www.uni-forst.gwdg.de/~dgaffre/
slide show at http://www.uni-forst.gwdg.de/~dgaffre/
publikation/gaffrey_elastomechanics_douglas_talk_2000.pdf
(accessed 06/26/01).
Spruce Plantations. Research Information Note 150. 
Forestry Commission, Edinburgh, Scotland.
Gardiner, Barry. 1992. Wind and wind forces acting in a
Gardiner, Barry A. 1994. Wind and wind forces in a plantation
Comparison of two models for predicting the critical wind
speeds required to damage coniferous trees. Ecological Modelling 129:1–23.
Gardiner, Barry A., and C.P. Quine. 1994. Wind damage to
forests to reduce the risk of abiotic damage—A review with
Geyw,Y., and E. Savory. 1999. Wind tunnel investigations of the
flow associated with a complex canopy. In Larsen, A., G.L.
Larose, and F.M. Livesey (Eds.). Wind Engineering into the
21st Century—Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark,
Netherlands. 2062 pp.
of the Sixth Caribbean Urban Forestry Conference, San Juan
Service (University of Puerto Rico Mayaguez Campus, 
College of Agriculture-Extension Service), Mayaguez, PR.
Grant, P.F., and W.G. Nickling. 1998. Direct field measurement
of wind drag on vegetation for application to windbreak
Grant, Richard H. 1983. The scaling of flow in vegetative
Grant, Richard H. 1984. The mutual interference of spruce canopy
Grant, R.H. 1985. The influences of the physical attributes of a
spruce shoot on momentum transfer. Agricultural and Forest Meteorology 36:7–18.
Gross, Günter. 1993. Air flow around and through individual
trees, pp 34–91 (Chapter 3). In Numerical Simulation of 
Gratkowski, H.J. 1956. Windthrow around staggered settings in
Guo, De-xin, and Ting-yao Zhu. 1998. Theoretical analysis of
the wind-resisting ability of windbreak related to the structure.
experiment on canopy structural parameters of isolated tree
and wind velocity field characters nearby. Chinese Journal of 
experiment of drag of isolated tree models in surface boundary
Hagen, E. J. 1971. Windbreak drag as influenced by porosity, pp
464–465. In Transactions of the American Society of 
Arboriculture 16(9):244–252.
Harrington, Constance A., and Dean S. DeBell. 1996. A bove-
and below-ground characteristics associated with wind toppling
Haritos, N., and K. James. 1996. Tree cable loads during high
Session Proceedings, Australian Wind Engineering Society, 
Fifth Workshop on Wind Engineering, 22–23 February 1996, Tanuda, South Australia.


Résumé. Les arboriculteurs et les forestiers urbains réfèrent fréquemment à des termes tels que «force des vents» et «corridors de vents», mais ils peuvent avoir une connaissance limitée des forces et des concepts sous-jacents qui sont impliqués. Même s’il y a une littérature exhaustive sur le thème «des arbres et du vent», peu d’informations apparaissent dans les publications sur l’entretien des arbres. Cet article présente une bibliographie sur le thème des arbres et du vent ainsi que certains commentaires quant à son utilisation.


Resumen. Cuando se habla de la relación árbol-viento, los arboristas y los dañinos urbanos frecuentemente se refieren a "cargas de viento", "golpe de vela" y así sucesivamente, pero pueden haber un conocimiento limitado de las fuerzas y conceptos implicados. Mientras existe una extensa literatura, muy poca ha aparecido en publicaciones relacionadas con el cuidado de los árboles. Este artículo presenta la bibliografía colectada sobre la relación árbol-viento y da algunos comentarios sobre su uso.