Urban stormwater runoff: a new class of environmental flow problem

PLoS One. 2012;7(9):e45814. doi: 10.1371/journal.pone.0045814. Epub 2012 Sep 19.

Abstract

Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5-10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cities
  • Conservation of Natural Resources*
  • Humans
  • Rain*
  • Rivers
  • Sanitary Engineering
  • Victoria
  • Water Movements

Grants and funding

This work was supported by Melbourne Water (www.melbournewater.com.au) and the Australian Research Council's (www.arc.gov.au) Linkage Projects scheme (project number LP0883610) and TDF is supported by the Council's Future Fellowship scheme. The views expressed herein are those of the authors and not necessarily those of the funding bodies. The funders had no role in study design, data analysis, decision to publish, or preparation of the manuscript. Other than the acknowledged hydrographic data used in the paper that were collected by Melbourne Water, the funders had no role in data collection.