Skip to main content
Log in

Acclimation and adaptive responses of woody plants to environmental stresses

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The predominant emphasis on harmful effects of environmental stresses on growth of woody plants has obscured some very beneficial effects of such stresses. Slowly increasing stresses may induce physiological adjustment that protects plants from the growth inhibition and/or injury that follow when environmental stresses are abruptly imposed. In addition, short exposures of woody plants to extreme environmental conditions at critical times in their development often improve growth. Furthermore, maintaining harvested seedlings and plant products at very low temperatures extends their longevity.

Drought tolerance: Seedlings previously exposed to water stress often undergo less inhibition of growth and other processes following transplanting than do seedlings not previously exposed to such stress. Controlled wetting and drying cycles often promote early budset, dormancy, and drought tolerance. In many species increased drought tolerance following such cycles is associated with osmotic adjustment that involves accumulation of osmotically active substances. Maintenance of leaf turgor often is linked to osmotic adjustment. A reduction in osmotic volume at full turgor also results in reduced osmotic potential, even in the absence of solute accumulation. Changes in tissue elasticity may be important for turgor maintenance and drought tolerance of plants that do not adjust osmotically.

Water deficits and nutrient deficiencies promote greater relative allocation of photosynthate to root growth, ultimately resulting in plants that have higher root:shoot ratios and greater capacity to absorb water and minerals relative to the shoots that must be supported.

At the molecular level, plants respond to water stress by synthesis of certain new proteins and increased levels of synthesis of some proteins produced under well-watered conditions. Evidence has been obtained for enhanced synthesis under water stress of water-channel proteins and other proteins that may protect membranes and other important macromolecules from damage and denaturation as cells dehydrate.

Flood tolerance: Both artificial and natural flooding sometimes benefit woody plants. Flooding of orchard soils has been an essential management practice for centuries to increase fruit yields and improve fruit quality. Also, annual advances and recessions of floods are crucial for maintaining valuable riparian forests. Intermittent flooding protects bottomland forests by increasing groundwater supplies, transporting sediments necessary for creating favorable seedbeds, and regulating decomposition of organic matter. Major adaptations for flood tolerance of some woody plants include high capacity for producing adventitious roots that compensate physiologically for decay of original roots under soil anaerobiosis, facilitation of oxygen uptake through stomata and newly formed lenticels, and metabolic adjustments. Halophytes can adapt to saline water by salt tolerance, salt avoidance, or both.

Cold hardiness: Environmental stresses that inhibit plant growth, including low temperature, drought, short days, and combinations of these, induce cold hardening and hardiness in many species. Cold hardiness develops in two stages: at temperatures between 10° and 20°C in the autumn, when carbohydrates and lipids accumulate; and at subsequent freezing temperatures. The sum of many biochemical processes determines the degree of cold tolerance. Some of these processes are hormone dependent and induced by short days; others that are linked to activity of enzyme systems are temperature dependent. Short days are important for development of cold hardiness in species that set buds or respond strongly to photoperiod. Nursery managers often expose tree seedlings to moderate water stress at or near the end of the growing season. This accelerates budset, induces early dormancy, and increases cold hardiness.

Pollution tolerance: Absorption of gaseous air pollutants varies with resistance to flow along the pollutant’s diffusion path. Hence, the amount of pollutant absorbed by leaves depends on stomatal aperture, stomatal size, and stomatal frequency. Pollution tolerance is increased when drought, dry air, or flooding of soil close stomatal pores.

Heat tolerance: Exposure to sublethal high temperature can increase the thermotolerance of plants. Potential mechanisms of response include synthesis of heat-shock proteins and isoprene and antioxidant production to protect the photosynthetic apparatus and cellular metabolism.

Breaking of dormancy: Seed dormancy can be broken by cold or heat. Embryo dormancy is broken by prolonged exposure of most seeds to temperatures of 1° to 15°C. The efficiency of treatment depends on interactions between temperature and seed moisture content. Germination can be postponed by partially dehydrating seeds or altering the temperature during seed stratification. Seed-coat dormancy can be broken by fires that rupture seed coats or melt seedcoat waxes, hence promoting water uptake. Seeds with both embryo dormancy and seed-coat dormancy may require exposure to both high and low temperatures to break dormancy. Exposure to smoke itself can also serve as a germination cue in breaking seed dormancy in some species.

Bud dormancy of temperate-zone trees is broken by winter cold. The specific chilling requirement varies widely with species and genotype, type of bud (e.g., vegetative or floral bud), depth of dormancy, temperature, duration of chilling, stage of plant development, and daylength. Interruption of a cold regime by high temperature may negate the effect of sustained chilling or breaking of bud dormancy. Near-lethal heat stress may release buds from both endodormancy and ecodormancy.

Pollen shedding: Dehiscence of anthers and release of pollen result from dehydration of walls of anther sacs. Both seasonal and diurnal pollen shedding are commonly associated with shrinkage and rupture of anther walls by low relative humidity. Pollen shedding typically is maximal near midday (low relative humidity) and low at night (high relative humidity). Pollen shedding is low or negligible during rainy periods.

Seed dispersal: Gymnosperm cones typically dehydrate before opening. The cones open and shed seeds because of differential shrinkage between the adaxial and abaxial tissues of cone scales. Once opened, cones may close and reopen with changes in relative humidity. Both dehydration and heat are necessary for seed dispersal from serotinous (late-to-open) cones. Seeds are stored in serotinous cones because resinous bonds of scales prevent cone opening. After fire melts the resinous material, the cone scales can open on drying. Fires also stimulate germination of seeds of some species. Some heath plants require fire to open their serotinous follicles and shed seeds. Fire destroys the resin at the valves of follicles, and the valves then reflex to release the seeds. Following fire the follicles of some species require alternate wetting and drying for efficient seed dispersal.

Stimulation of reproductive growth: Vegetative and reproductive growth of woody plants are negatively correlated. A heavy crop of fruits, cones, and seeds is associated with reduced vegetative growth in the same or following year (or even years). Subjecting trees to drought during early stages of fruit development to inhibit vegetative growth, followed by normal irrigation, sometimes favors reproductive growth. Short periods of drought at critical times not only induce formation of flower buds but also break dormancy of flower buds in some species. Water deficits may induce flowering directly or by inhibiting shoot flushing, thereby limiting the capacity of young leaves to inhibit floral induction. Postharvest water stress often results in abundant return bloom over that in well-irrigated plants. Fruit yields of some species are not reduced or are increased by withholding irrigation during the period of shoot elongation. In several species, osmotic adjustment occurs during deficit irrigation. In other species, increased fruit growth by imposed drought is not associated largely with osmotic adjustment and maintenance of leaf turgor.

Seedling storage: Tree seedlings typically are stored at temperatures just above or below freezing. Growth and survival of cold-stored seedlings depend on such factors as: date of lifting from the nursery; species and genotype; storage temperature, humidity, and illumination; duration of storage; and handling of planting stock after storage. Seedlings to be stored over winter should be lifted from the nursery as late as possible. Dehydration of seedlings before, during, and after storage adversely affects growth of outplanted seedlings. Long-term storage of seedlings may result in depletion of stored carbohydrates by respiration and decrease of root growth potential. Although many seedlings are stored in darkness, a daily photoperiod during cold storage may stimulate subsequent growth and increase survival of outplanted seedlings. For some species, rapid thawing may decrease respiratory consumption of carbohydrates (over slowly thawed seedlings) and decrease development of molds.

Pollen storage: Preservation of pollen is necessary for insurance against poor flowering years, for gene conservation, and for physiological and biochemical studies. Storage temperature and pollen moisture content largely determine longevity of stored pollen. Pollen can be stored successfully for many years in deep freezers at temperatures near −15°C or in liquid nitrogen (−196°C). Cryopreservation of pollen with a high moisture content is difficult because ice crystals may destroy the cells. Pollens of many species do not survive at temperatures below −40°C if their moisture contents exceed 20–30%. Pollen generally is air dried, vacuum dried, or freeze dried before it is stored. To preserve the germination capacity of stored pollen, rehydration at high humidity often is necessary.

Seed storage: Seeds are routinely stored to provide a seed supply during years of poor seed production, to maintain genetic diversity, and to breed plants. For a long time, seeds were classified as either orthodox (relatively long-lived, with capacity for dehydration to very low moisture contents without losing viability) or recalcitrant (short-lived and requiring a high moisture content for retention of viability). More recently, some seeds have been reclassified as suborthodox or intermediate because they retain viability when carefully dried. True orthodox seeds are preserved much more easily than are nonorthodox seeds. Orthodox seeds can be stored for a long time at temperatures between 2° and −20°C, with temperatures below −5°C preferable. Some orthodox seeds have been stored at superlow temperatures, although temperatures of −40°, −70°, or −196°C have not been appreciably better than −20°C for storage of seeds of a number of species. Only relatively short-term storage protocols have been developed for nonorthodox seeds. These treatments typically extend seed viability to as much as a year. The methods often require cryopreservation of excised embryos. Responses to cryopreservation of nonorthodox seeds or embryos vary with species and genotype, rate of drying, use of cryoprotectants, rates of freezing and thawing, and rate of rehydration.

Fruit storage: Storing fruits at low temperatures above freezing, increasing the CO2 concentration, and lowering the O2 concentration of fruit storage delays senescence of fruits and prolongs their life. Fruits continue to senesce and decay while in storage and become increasingly susceptible to diseases. Both temperate-zone and tropical fruits may develop chilling injury characterized by lesions, internal discoloration, greater susceptibility to decay, and shortened storage life. Chilling injury can be controlled by chemicals, temperature conditioning, and intermittent warming during storage. Stored fruits may become increasingly susceptible to disease organisms. Fruit diseases can be controlled by cold, which inhibits growth of microorganisms and maintains host resistance. Exposure of fruits to high CO2 and low O2 during storage directly suppresses disease-causing fungi. Pathogens also can be controlled by exposing fruits to heat before, during, and after storage. Scald that often develops during low-temperature storage can be controlled by chemicals and by heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Abdul-Baki, A. A. &J. D. Anderson. 1972. Physiological and biochemical deterioration of seeds. Pp. 283–315in T. T. Kozlowski (ed.), Seed biology. Vol. 2. Germination control, metabolism, and pathology. Academic Press, New York.

    Google Scholar 

  • Abrams, M. D. 1988a. Genetic variation in leaf morphology and plant and tissue water relations during drought inCercis canadensis L. Forest Sci. 34: 200–207.

    Google Scholar 

  • —. 1988b. Comparative plant and tissue water relations of three successional hardwood species in central Wisconsin. Tree Physiol. 4: 263–273.

    PubMed  Google Scholar 

  • — 1988c. Sources of variation in osmotic potentials with special reference to North American tree species. Forest Sci. 34: 1030–1046.

    Google Scholar 

  • — &A. K. Knapp. 1986. Seasonal water relations of three gallery forest hardwood species in northeast Kansas. Forest Sci. 32: 687–696.

    Google Scholar 

  • Adriansz, T. D., J. M. Rummey &I. J. Bennett. 2000. Solid phase extraction and subsequent identification by gas-chromatography-mass spectrometry of a germination cue present in smoky water. Analytical Lett. 33: 2793–2804.

    CAS  Google Scholar 

  • Agashe, S. N. &A. G. Alfadil. 1989. Atmospheric biopollutant monitoring in relation to meteorological parameters. Grana 28: 97–104.

    Google Scholar 

  • Ahuja, M. R. 1986. Storage of forest tree germplasm in liquid nitrogen (-196°C). Silvae Genet. 35: 249–251.

    Google Scholar 

  • Akihama, T. &M. Omura. 1986. Preservation of fruit tree pollen. Pp. 101–112in Y. P. S. Bajaj (ed.), Biotechnology in agriculture and forestry. Vol. 1. Trees. Springer-Verlag, Berlin.

    Google Scholar 

  • ——. &I. Kozaki. 1979. Long-term storage of fruit tree pollen and its application in breeding. Jap. Agric. Res. Quart. 13: 238–241.

    Google Scholar 

  • Al-Ani, A., F. Bruzau, P. Raymond, V. Saint-Ges, J. M. LeBlanc &A. Pradet. 1985. Germination, respiration and adenylate energy charge of seeds at various oxygen partial pressures. Pl. Physiol. (Lancaster) 79: 885–890.

    CAS  Google Scholar 

  • Alam, M. T. &W. F. Grant. 1971. Pollen longevity in birch (Betula). Canad. J. Bot. 49: 797–798.

    Google Scholar 

  • Aldhous, J. R. 1964. Cold storage of forest nursery plants: An account of experimental trials, 1958–63. Forestry (Oxford) 37: 47–63.

    Google Scholar 

  • Allen, J. A., J. L. Chambers &M. Stine. 1994. Prospects for increasing the salt tolerance of forest trees: A review. Tree Physiol. 14: 843–853.

    PubMed  Google Scholar 

  • Allen, R. &A. B. Wardrop. 1964. The opening and shedding mechanism of the female cones ofPinus radiata. Austral. J. Bot. 12: 125–134.

    Google Scholar 

  • Altman, P. L. & D. S. Dittmer (comps. &eds.). 1972. Life spans: Pollen. P. 1: 242in Biology data book. Ed. 2. Fed. of Amer. Societies for Exp. Biol., Bethesda, MD.

  • Alvira, P.de T. &R. Alvim. 1978. Relation of climate to growth periodicity in tropical trees. Pp. 445–464in P. B. Tomlinson & M. H. Zimmermann (eds.), Tropical trees as living systems. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Anderson, J. L., E. A. Richardson &C. D. Kesner. 1986. Validation of chill unit and flower bud phenology models for Montmorency sour cherry. Acta Hort. 184: 71–77.

    Google Scholar 

  • Anderson, R. E. 1979. The influence of storage temperature and warming during storage on peach and nectarine fruit quality. J. Amer. Soc. Hort. Sci. 104: 459–461.

    Google Scholar 

  • —. 1982. Long-term storage of peaches and nectarines intermittently warmed during controlledatmosphere storage. J. Amer. Soc. Hort. Sci. 107: 214–216.

    CAS  Google Scholar 

  • Angeles, G. 1992. The periderm of flooded and non-floodedLudwigea octovalvis (Onagraceae). IAWA Bull. 13: 195–200.

    Google Scholar 

  • —,R. F. Evert &T. T. Kozlowski. 1986. Development of lenticels and adventitious roots in floodedUlmus americana seedlings. Canad. J. Forest Res. 16: 585–590.

    Google Scholar 

  • Angelov, M. N., S. S. Sung, R. L. Doong, W. R. Harms, P. P. Kormanik &C. C. Black Jr. 1996. Long and short-term flooding effects on survival and sink-source relationships of swamp adapted tree species. Tree Physiol. 16: 477–484.

    PubMed  Google Scholar 

  • Aphalo, P. J. &P. G. Jarvis. 1991. Do stomata respond to relative humidity? Pl. Cell Environ.14: 127–132.

    Google Scholar 

  • Armstrong, W., R. Brandie &M. B. Jackson. 1994. Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 43: 307–358.

    CAS  Google Scholar 

  • Aronsson, A. 1975. Influence of photo- and thermoperiod on the initial stages of frost hardening and dehardening of phytotron-grown seedlings of Scots pine (Pinus silvestris L.) and Norway spruce (Picea abies (L.) Karst.) Stud. Forest Suec. 128: 1–20.

    Google Scholar 

  • — &L. Eliasson. 1970. Frost hardiness in Scotch pine, I. Conditions for test on hardy plant tissues and for evaluation of injuries by conductivity measurements. Stud. Forest Suec. 36: 127–132.

    Google Scholar 

  • Arora, R. &M. E. Wisniewski. 1994. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica (L.) Batsch.), II. A 60-kilodalton bark protein in cold-acclimated tissues of peach. Pl. Physiol. (Lancaster)105: 95–101.

    CAS  Google Scholar 

  • Ashby, W. C. 1962. Budbreak and growth of basswood as influenced by daylength, chilling, and gibberellic acid. Bot. Gaz. 123: 162–170.

    CAS  Google Scholar 

  • —,D. F. Bresnan, C. A. Huetteman, J. E. Preece &P. L. Roth. 1991. Chilling and bud break in silver maple. J. Environm. Hort. 9: 1–4.

    Google Scholar 

  • Atkinson, C. J. J., W. E. Winner &H. A. Mooney. 1988. Gas exchange and SO2 fumigation studies with irrigated and unirrigated field grownDiplacus aurianticus andHeteromeles arbutifolia. Oecologia 75: 386–393.

    Google Scholar 

  • Augé, R. M. &J. W. Stodola. 1990. An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of draughtedRosa plants. New Phytol. 115: 285–296.

    Google Scholar 

  • —,K. A. Schekel &R. L. Wample. 1986. Osmotic adjustment in leaves of VA mycorrhizal and nonmycorrhizal rose plants in response to drought stress. Pl. Physiol. (Lancaster) 82: 765–770.

    Google Scholar 

  • Austin, M. E., B. G. Mullinix &J. S. Mason. 1982. Influence of chilling on growth and flowering of rabbiteye blueberries. HortScience 17: 768–769.

    Google Scholar 

  • Bahari, Z. A., S. G. Pallardy &W. C. Parker. 1985. Photosynthesis, water relations, and drought adaptation in six woody species of oak-hickory forests in central Missouri. Forest Sci. 31: 557–569.

    Google Scholar 

  • Barbera, G., G. Fatta del Bosco &B. LoCascio. 1985. Effects of water stress on lemon summer bloom. The “Forzatura” technique in the Sicilian citrus industry. Acta Hort. 171: 391–397.

    Google Scholar 

  • Barbosa, W., F. A. Campo-Dallorto, M. Ojiima, F. P. Martins &Y. M. S. Boaventura. 1991. Pollen storage and germination, pollination and fruit set in subtropical peaches and nectarines. Bragantia 50: 17–28.

    Google Scholar 

  • Barden, L. S. 1979. Serotiny and seed viability ofPinus pungens in the southern Appalachians. Castanea 44: 44–47.

    Google Scholar 

  • Bartels, D., K. Schneider, G. Terstappen, D. Piatkowski &F. Salamini. 1990. Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plantCraterostigma plantagineum. Planta 181: 27–34.

    CAS  Google Scholar 

  • Bates, R. M., A. X. Niemiera &J. R. Seiler. 1994. Cold storage method affects root and shoot water potential of bare-root hawthorn and maple trees. J. Environm. Hort. 12: 219–222.

    Google Scholar 

  • Bayley, P. B. 1995. Understanding large river-floodplain ecosystems. BioScience 45: 153–158.

    Google Scholar 

  • Beaufait, W. R. 1960. Some effects of high temperatures on the cones and seeds of jack pine. Forest Sci. 6: 194–199.

    Google Scholar 

  • Beckman, C, R. L. Perry &J. A. Flore. 1992. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. HortScience 27: 1297–1301.

    Google Scholar 

  • Bedinger, M. S. 1981. Hydrology of the bottomland forests of the Mississippi embayment. Pp. 161–176in J. R. Clark & J. Benforado (eds.), Wetlands of bottomland hardwood forests. Elsevier, New York.

    Google Scholar 

  • Bell, D. T., J. A. Plummer &S. K. Taylor. 1993. Seed germination ecology in western Australia. Bot. Rev. (Lancaster) 59: 24–54.

    Google Scholar 

  • Bellani, L. M. &P. R. Bell. 1986. Cytoplasmic differences between the pollen grains of two cultivars ofMalus domestica Borkh. correlated with viability and germination. Ann. Bot. (London), n.s., 58: 563–568.

    Google Scholar 

  • Bengston, G. W. 1965. Effects of intensive culture on nutrition, growth and flower production of young slash pine. U.S. Forest Serv., Prog. Rep. FS-l-f9. Southeastern Forest Exp. Sta., Asheville, NC.

  • Berjak, P., J. M. Farrant, D. J. Maycock &N. W. Pammenter. 1990. Recalcitrant (homoiohydrous) seeds: The enigma of their desiccation-sensitivity. Seed Sci. & Technol. 18: 279–310.

    Google Scholar 

  • —,N. W. Pammenter &C. Vertucci. 1992. Homoiohydrous (recalcitrant) seeds: Development status, desiccation sensitivity and the state of water in axes ofLandolphia kirkii Dyer. Planta 186: 249–261.

    CAS  Google Scholar 

  • Berninger, F., A. Makela &P. Hari. 1996. Optimal control of gas exchange during drought: Empirical evidence. Ann. Bot. (London), n.s., 77: 469–476.

    Google Scholar 

  • Berry, J. A. &O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Rev. Pl. Physiol. 31: 491–543.

    Google Scholar 

  • Bewley, J. D. &M. Black. 1982. Physiology and biochemistry of seeds in relation to germination. Vol. 2. Viability, dormancy, and environmental control. Springer-Verlag, New York.

    Google Scholar 

  • —,K. M. Larsen &J. E. Papp. 1983. Water-stress-induced changes in the pattern of protein synthesis in maize seedling mesocotyls: A comparison with the effects of heat shock. J. Exp. Bot. 34: 1126–1133.

    Google Scholar 

  • Bigras, F. J. &A. L. D’Aoust. 1993. Influence of photoperiod on shoot and root frost tolerance and bud phenology of white spruce seedlings (Picea glauca). Canad. J. Forest Res. 23: 219–228.

    Google Scholar 

  • Biswell, H. H. 1974. Effects of fire on chaparral. Pp. 321–364in T. T. Kozlowski & C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.

    Google Scholar 

  • —. 1989. Prescribed burning in California wildlands vegetation management. Univ. of California Press, Berkeley.

    Google Scholar 

  • Blake, J., J. B. Zaerr &S. Hee. 1979. Controlled moisture stress to improve cold hardiness and morphology of Douglas-fir seedlings. Forest Sci. 25: 576–582.

    Google Scholar 

  • Blake, T. J. &T. J. Tschaplinski. 1992. Water relations. Pp. 66–94in C. P. Mitchell, J. B. FordRobertson, T. M. Hinckley & L. Sennerby-Forsse (eds.), Ecophysiology of short rotation forest crops. Elsevier, Amsterdam.

    Google Scholar 

  • Blazich, F. A. &L. E. Hinesley. 1984. Low temperature germination of Fraser fir seed. Canad. J. Forest Res. 14: 948–949.

    Google Scholar 

  • Boland, A.-M., P. D. Mitchell, P. H. Jerie &I. Goodwin. 1993. The effect of regulated deficit irrigation on tree water use and growth of peach. J. Hort. Sci. 68: 261–274.

    Google Scholar 

  • Bonner, F. 1986. Technologies to maintain tree germplasm diversity. Pp. 2: 630–672in Technologies to maintain biological diversity. Office of Technology Assessment, Washington, DC.

    Google Scholar 

  • —. 1990. Storage of seeds: Potential and limitations for germplasm conservation. Forest Ecol. & Managern. 35: 35–43.

    Google Scholar 

  • Botkin, D. B. 1993. Forest dynamics: An ecological model. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Bradstock, R. A. 1991. The role of fire in establishment of seedlings of serotinous species from the Sydney region. Austral. J. Bot. 39: 347–356.

    Google Scholar 

  • —,A. M. Gill, S. M. Hastings &P. H. Moore. 1994. Survival of serotinous seedbanks during bushfires: Comparative studies ofHakea species from southeastern Australia. Austral. J. Ecol. 19: 276–282.

    Google Scholar 

  • Bramlage, W. J. &S. Meir. 1990. Chilling injury of crops of temperate origin. Pp. 37–49in C.-Y. Wang (ed.), Chilling injury of horticultural crops. CRC Press, Boca Raton, FL.

    Google Scholar 

  • — &C. D. Watkins. 1993. Warming apples during cold storage: Its potential as a non-chemical procedure to reduce losses from superficial scald. HortScience 28: 235.

    Google Scholar 

  • Bramlett, D. L. &F. R. Matthews. 1991. Storing loblolly pine pollen. Southern J. Appl. Forest. 15: 153–157.

    Google Scholar 

  • Bray, E., J. Bailey-Serres &E. Weretilynk. 2000. Response to abiotic stresses. Pp. 1158–1203in B. B. Buchanan, W. Gruissem & R. L. Jones (eds.), Biochemistry and molecular biology of plants. Amer. Soc. Pl. Physiol., Rockville, MD.

    Google Scholar 

  • Brown, N. A. &J. Van Staden. 1997. Smoke as a germination cue: A review. Pl. Growth Regulation 22: 115–124.

    CAS  Google Scholar 

  • Brown, R. M. 1971. Cold storage of forest plants. Quart. J. Forest. 65: 305–315.

    Google Scholar 

  • Buckley, G. P. &P. H. Lovell. 1974. The effect of cold storage on subsequent growth of one-year-old seedlings ofPicea sitchensis. Ann. Bot. (London), n.s., 38: 657–660.

    Google Scholar 

  • Bullock, S. 1982. Reproductive ecology ofCeanothus cordulatus. M.A. thesis, California State Univ., Fresno.

    Google Scholar 

  • Burke, J. J., P. J. O’Mahony, &M. J. Oliver. 2000. Isolation ofArabidopsis mutants lacking components of acquired thermotolerance. Pl. Physiol.(Lancaster) 123: 575–587.

    CAS  Google Scholar 

  • Buxton, G. F., D. R. Cyr &E. B. Dumbroff. 1985. Physiological responses of three northern conifers to rapid and slow induction of moisture stress. Canad. J. Bot. 63: 1171–1176.

    Google Scholar 

  • Camm, E. L., D. C. Goetze, S. N. Silim &D. P. Lavender. 1994. Cold storage of conifer seedlings: An update from the British Columbia perspective. Forest Chron. 70: 311–316.

    Google Scholar 

  • —,R. D. Guy, D. S. Kubien, D. C. Goetze, S. N. Silim &P. J. Burton. 1995. Physiological recovery of freezer-stored white and Engelmann spruce seedlings planted following different thawing regimes. New Forests 10: 55–77.

    Google Scholar 

  • Campbell, R. K. &F. C. Sorenson. 1973. Cold-acclimation in seedling Douglas-fir related to phenology and provenance. Ecology 54: 1148–1151.

    Google Scholar 

  • Campbell, S. A. &T. J. Close. 1997. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 137: 61–74.

    CAS  Google Scholar 

  • Cannell, M. G. 1989. Chilling, thermal time and the date of flowering of trees. Pp. 99–113in C. J. Wright (ed.), Manipulation of fruiting. Butterworths, London.

    Google Scholar 

  • — &L. J. Sheppard. 1982. Seasonal changes in the frost hardiness of provenances ofPicea sitchensis in Scotland. Forestry (Oxford) 55: 137–153.

    Google Scholar 

  • ——.R. I. Smith &M. B. Murray. 1985. Autumn frost damage on youngPicea sitchensis, 2. Shoot frost hardening, and the probability of frost damage in Scotland. Forestry (Oxford) 58: 145–166.

    Google Scholar 

  • —,P. B. Tabbush, J. D. Deans, M. K. Hollingsworth, L. J. Sheppard, J. J. Philipson &M. B. Murray. 1990. Sitka spruce and Douglas-fir seedlings in the nursery and in cold storage: Root growth potential, carbohydrate content, dormancy, frost hardiness, and mitotic index. Forestry (Oxford) 63: 9–27.

    Google Scholar 

  • Caspari, H. W., M. H. Behboudian &D. J. Chalmers. 1994. Water use, growth, and fruit yield of Hosui Asian pears under deficit irrigation. J. Amer. Soc. Hort. Sci. 119: 383–388.

    Google Scholar 

  • Cayford, J. H. &D. J. McRae. 1983. The ecological role of fire risk in jack pine forests. Pp. 183–199in R. W. Wein & D. A. MacLean (eds.), The role of fire in northern circumpolar ecosystems. Wiley, New York.

    Google Scholar 

  • Cellier, F., G. Conejero, J. C. Breitler &F. Casse. 1998. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower: Accumulation of dehydrin transcripts correlates with tolerance. Pl. Physiol. (Lancaster) 116: 319–328.

    CAS  Google Scholar 

  • Chalmers, D. J., K. A. Olsson &T. R. Jones. 1983. Water relations of peach trees and orchards. Pp. 197–232in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 3. Plant responses and control of water balance. Academic Press, New York.

    Google Scholar 

  • —,P. D. Mitchell &P. H. Jerie. 1984. The physiology of growth of peach and pear trees using reduced irrigation. Acta Hort. 146: 143–149.

    Google Scholar 

  • Chalutz, E., J. Waks &M. Schiffmann-Nade. 1985. Reducing the susceptibility of grapefruit to chilling injury during cold treatment. HortScience 20: 226–228.

    Google Scholar 

  • Chen, P. M., P. H. Li &M. J. Burke. 1977. Induction of frost hardiness in stem cortical tissues and water status in plants and soil. Pl. Physiol. (Lancaster) 59: 236–239.

    CAS  Google Scholar 

  • Chen, T. H., P. Murakami, P. Lombard &L. H. Fuchigami. 1991. Desiccation tolerance in barerooted apple trees prior to transplanting. J. Environm. Hort. 9: 13–17.

    Google Scholar 

  • Cherry, J. H. (ed.). 1989. Environmental stress in plants: Biochemical and physiological mechanisms. Springer-Verlag, Berlin.

    Google Scholar 

  • Ching, T. M. &K. K. Ching. 1962. Physical and physiological changes in maturing Douglas-fir cones and seeds. For. Sci. 8: 21–31.

    Google Scholar 

  • Chirkova, T. V. &T. S. Gutman. 1972. Physiological role of branch lenticels in willow and poplar under conditions of root anaerobiosis. Soviet Pl. Physiol. 19: 289–295.

    Google Scholar 

  • Choi, H. S. 1992. Variation in water potential components among half sib families of shortleaf pine (Pinus echinata) in response to soil drought. Canad. J. Forest Res. 22: 111–116.

    Google Scholar 

  • Christensen, N. L. 1995. Fire ecology. Pp. 2: 21–32in W. A. Nierenberg (ed.), Encyclopedia of environmental biology. Academic Press, San Diego, CA.

    Google Scholar 

  • Christersson, L. 1978. The influence of photoperiod and temperature on the development of frost hardiness in seedlings ofPinus sylvestris andPicea abies. Physiol. Pl. 44: 288–294.

    Google Scholar 

  • Clausen, J. J. &T. T. Kozlowski. 1965. Seasonal changes in moisture contents of gymnosperm cones. Nature 206: 112–113.

    Google Scholar 

  • Clemens, J. &P. G. Jones. 1978. Modification of drought resistance by water stress conditioning inAcacia andEucalyptus. J. Exp. Bot. 29: 895–904.

    Google Scholar 

  • Cline, R. G. &G. S. Campbell. 1976. Seasonal and diurnal water relations of selected forest species. Ecology 57: 367–373.

    Google Scholar 

  • Close, T. J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Pl. 97: 795–803.

    CAS  Google Scholar 

  • —. 1997. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Pl. 100: 291–296.

    CAS  Google Scholar 

  • Cohen, E., M. Shueli &Y. Shalom. 1983. The effect of intermittent warming on the reduction of chilling injury of Villa Franca lemon fruit stored at cold temperature. J. Hort. Sci. 58: 593–598.

    Google Scholar 

  • Collier, D. E. &M. G. Boyer. 1989. The water relations ofThuja occidentalis L. from two sites of contrasting moisture availability. Bot. Gaz. 150: 445–448.

    Google Scholar 

  • Colombo, S. J. 1990. Bud dormancy status, frost hardiness, shoot moisture content and readiness of black spruce container seedlings for frozen storage. J. Amer. Soc. Hort. Sci. 115: 302–307.

    Google Scholar 

  • — &E. M. Raitanen. 1991. Frost hardening in white cedar container seedlings exposed to intermittent short days and cold temperatures. Forest Chron. 67: 542–544.

    Google Scholar 

  • Connor, K. F. &L. E. Towill. 1993. Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 68: 77–84.

    Google Scholar 

  • Conway, W. S., C. E. Sams, C. Y. Wang &J. A. Abbott. 1994. Additive effects of postharvest calcium and heat treatment on reducing decay and maintaining quality in apples. J. Amer. Soc. Hort. Sci. 119: 49–53.

    CAS  Google Scholar 

  • Copes, D. L. 1985. Fertility of Douglas-fir pollen after one year of storage in liquid nitrogen. Forest Sci. 31: 569–574.

    Google Scholar 

  • —. 1987. Long-term storage of Douglas-fir pollens. Forest Sci. 33: 244–246.

    Google Scholar 

  • Courts, M. P. 1981. Effects of root or shoot exposure before planting on the water relations, growth and survival of Sitka spruce. Canad. J. Forest Res. 11: 703–709.

    Google Scholar 

  • — &J. J. Philipson. 1978. Tolerance of tree roots to waterlogging, II. Adaptation of Sitka spruce and lodgepole pine to waterlogged soil. New Phytol. 80: 71–77.

    Google Scholar 

  • Couvillon, G. A. &A. Erez. 1985. Effect of level and duration of high temperatures on rest in the peach. J. Amer. Soc. Hort. Sci. 110: 579–581.

    Google Scholar 

  • Cowling, R. M. &B. B. Lamont. 1985. Seed release inBanksia: The role of wet-dry cycles. Austral. J. Ecol. 10: 169–171.

    Google Scholar 

  • Cram, W. H. &C. H. Lundquist. 1981. Overwintering and spring storage of pine and spruce seedlings. Forest Chron. 57: 162–164.

    Google Scholar 

  • Crane, J. H. &F. S. Davies. 1988. Periodic and seasonal flooding effects on survival, growth, and stomatal conductance of young rabbiteye blueberry plants. J. Amer. Soc. Hort. Sci.113: 488–493.

    Google Scholar 

  • —. 1989. Flooding responses ofVaccinium species. HortScience 24: 203–210.

    Google Scholar 

  • Crawford, R. M. M. 1989. Studies in plant survival: Ecological case histories of plant adaptation to adversity. Blackwell Scientific, Oxford.

    Google Scholar 

  • —. 1993. Plant survival without oxygen. Biologist 40: 110–114.

    Google Scholar 

  • — &R. Braendle. 1996. Oxygen deprivation stress in a changing environment. J. Exp. Bot. 47: 145–159.

    CAS  Google Scholar 

  • Cripps, J. E. L. 1981. Biennial patterns in apple tree growth and cropping as related to irrigation and thinning. J. Hort. Sci. 56: 161–168.

    Google Scholar 

  • Crisosto, C. H., R. S. Johnson, J. G. Luza &G. M. Crisosto. 1994. Irrigation regimes affect fruit soluble solids concentration and rate of water loss of O’Henry peaches. HortScience 29: 1169–1171.

    Google Scholar 

  • Crivelli, A. J., P. Grilles &B. Lacaze. 1995. Responses of vegetation to a rise in water level at Kerkini Reservoir (1982–1991), a Ramsar site in northern Greece. Environm. Managern. 19: 417–430.

    Google Scholar 

  • Cromer, R. N. &P. G. Jarvis. 1990. Growth and biomass partitioning inEucalyptus grandis seedlings in response to nitrogen supply. Austral. J. P1. Physiol. 17: 503–516.

    CAS  Google Scholar 

  • D’Aoust, A. L. & S. E. Cameron. 1982. The effect of dormancy induction, low temperatures and moisture stress on cold hardening of containerized black spruce seedlings. Pp. 153–156in J. B. Scaratt, C. Glerum & C. A. Plexman (eds.), Proceedings of the Canadian Containerized Tree Seedling Symposium. Dept. of the Environm., Canad. Forest. Serv., Great Lakes Forest Res. Centre. COJFRC Symp. O-P-10.

  • Dat, J. F., C. H. Foyer &I. M. Scott. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Pl. Physiol. (Lancaster) 118: 1455–1461.

    CAS  Google Scholar 

  • Davenport, T. L. 1990. Citrus flowering. Hort. Rev. 12: 349–408.

    Google Scholar 

  • — 1994. Beneficial effects of water stress. Pp. 16–20in T. L. Davenport & H. M. Harrington (eds.), Plant stress in the tropical environment. U.S. Dept. Agric, Washington, DC.

    Google Scholar 

  • Davies, D. D. 1980. Anaerobic metabolism and the production of organic acids. Pp. 511–611in D. D. Davies (ed.), The biochemistry of plants. Vol. 2. Metabolism and respiration. Academic Press, New York.

    Google Scholar 

  • Davies, F. S. &L. G. Albrigo. 1983. Water relations of small fruits. Pp. 89–136in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 7. Additional woody crop plants. Academic Press, New York.

    Google Scholar 

  • — &J. A. Flore. 1986a. Flooding, gas exchange and hydraulic conductivity of highbush blueberry. Physiol. Pl. 67: 545–551.

    Google Scholar 

  • —. 1986b. Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Pl. Physiol. (Lancaster) 81: 289–292.

    Google Scholar 

  • — &A. N. Lakso. 1979. Diurnal and seasonal changes in leaf water potential components and elastic properties in response to water stress in apple trees. Physiol. Pl. 46: 109–114.

    Google Scholar 

  • Davies, H. V. &N. J. Pinfield. 1979. RNA and protein synthesis during after-ripening of seedsof Acer platanoides L. Z. Pflanzenphysiol. 92: 85–90.

    CAS  Google Scholar 

  • Davies, W. J. &T. T. Kozlowski. 1974. Stomatal responses of five woody angiosperms to light intensity and humidity. Canad. J. Bot. 52: 1525–1534.

    Google Scholar 

  • —. 1975a. Effects of applied abscisic acid and plant water stress on transpiration of woody angiosperms. Forest Sci. 22: 191–195.

    Google Scholar 

  • —. 1975b. Effect of applied abscisic acid and silicone on water relations and photosynthesis of woody plants. Canad. J. Forest Res. 5: 90–96.

    CAS  Google Scholar 

  • Davis, J. T. &D. Sparks. 1974. Assimilation and translocation patterns of carbon-14 in the shoots of fruiting pecan treesCarya illinoensis Koch. J. Amer. Soc. Hort. Sci. 99: 468–480.

    Google Scholar 

  • Deans, J. D., C. Lundberg, P. M. Tabbush, M. G. R. Cannell, L. J. Sheppard &M. B. Murray. 1990. The influence of desiccation, rough handling and cold storage on the quality and establishment of Sitka spruce planting stock. Forestry (Oxford) 63: 129–141.

    Google Scholar 

  • DeCastro, M. F.-G. &C. J. Martinez-Honduvilla. 1982. Biochemical changes inPinus pinea seeds during storing. Revista Española de Fisiología (Pamplona) 38: 13–20.

    Google Scholar 

  • — 1984. Ultrastructural changes in naturally agedPinus pinea seeds. Physiol. Pl. 62: 581–588.

    Google Scholar 

  • Deffenbacher, F. W. &E. Wright. 1954. Refrigerated storage of conifer seedlings in the Pacific Northwest. J. Forest. 52: 936.

    Google Scholar 

  • Dennis, C. (ed.). 1983. Post-harvest pathology of fruits and vegetables. Academic Press, New York.

    Google Scholar 

  • Dennis, F. G., Jr. 1996. A physiological comparison of seed and bud dormancy. Pp. 47–56in G. A. Lang (ed.), Plant dormancy: Physiology, biochemistry and molecular biology. CAB International, Oxford.

    Google Scholar 

  • Despain, D. G., D. L. Clark &J. J. Reardon. 1996. Simulation of crown fire effects on canopy seed bank in lodgepole pine. Int. J. Wildland Fire 6: 45–49.

    Google Scholar 

  • Dewers, R. S. &D. M. Moehring. 1970. Effects of soil water stress on initiation of ovulate primordia in loblolly pine. Forest Sci. 16: 219–221.

    Google Scholar 

  • Dewey, D. H. (ed.). 1977. Controlled atmospheres for the storage and transport of perishable agricultural commodities. Dept. of Hort., Rep. No. 28. Michigan State Univ., East Lansing.

    Google Scholar 

  • Dick, J. McP., P. G. Jarvis &R. R. B. Leakey. 1990. Influence of male cones on early season vegetative growth ofPinus contorta trees. Tree Physiol. 6: 105–117.

    PubMed  Google Scholar 

  • Dickmann, D. I. &T. T. Kozlowski. 1970. Mobilization and incorporation of photoassimilated14C by growing vegetative and reproductive tissues of adultPinus resinosa Ait. trees. Pl. Physiol. (Lancaster) 45: 284–288.

    CAS  Google Scholar 

  • ——. 1973. Water, nutrient, and carbohydrate relations in growth ofPinus resinosa ovulate strobili. Pp. 195–209in Proceedings of the First All Union Symposium on Sexual Reproduction in Conifers. Novosibirsk, USSR.

    Google Scholar 

  • Di-Giovanni, F. &P. Kevan. 1991. Factors affecting pollen dynamics and its importance to pollen contamination: A review. Canad. J. Forest Res. 21: 1155–1170.

    Google Scholar 

  • Drake, S. R., F. E. Larsen &S. S. Higgins. 1991. Quality and storage of Granny Smith and Greenspur apples on seedling M.26 and MM.111 rootstocks. J. Amer. Soc. Hort. Sci. 116: 261–264.

    Google Scholar 

  • Dreyer, E., F. Bosquet &M. Ducrey. 1990. Use of pressure-volume curves in water relations analysis in woody shoots: Influence of rehydration and comparison of four European oak species. Ann. Sci. Forest. 47: 285–297.

    Google Scholar 

  • Dry, P. R. &B. R. Loveys. 1999. Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38: 151–156.

    Google Scholar 

  • Duffield, J. W. &R. Z. Callaham. 1959. Deep-freezing pine pollen. Silvae Genet. 8: 22–24.

    Google Scholar 

  • Duncan, R. P. 1993. Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland, New Zealand. J. Ecol. 81: 403–416.

    Google Scholar 

  • Durand, G. 1990. Effects of RDI on apple tree (cv.Royal Gala) growth, yield, and fruit quality in a humid environment. Ph.D. diss., Massey Univ., Palmerston North, New Zealand.

    Google Scholar 

  • During, H. 1985. Osmotic adjustment in grapevines. Acta Hort. 171: 315–322.

    Google Scholar 

  • Duryea, M. L. & T. D. Landis (eds.). 1984. Forest nursery manual. M. Nijhoff / Dr. W. Junk, The Hague.

  • — &K. M. McClain. 1984. Altering seedling physiology to improve reforestation success. Pp. 77–114in M. L. Duryea & G. N. Brown (eds.), Seedling physiology and reforestation success. M. Nijhoff/ Dr. W. Junk, Dordrecht, Netherlands.

    Google Scholar 

  • Ebel, R. C., E. L. Proebsting &M. E. Patterson. 1993. Regulated deficit irrigation may alter apple maturity, quality, and storage life. HortScience 28: 141–143.

    Google Scholar 

  • Edwards, D. G. W. 1986. Special prechilling techniques for tree seed. J. Seed Technol. 10: 151–171.

    Google Scholar 

  • Eis, S., E. H. Garman &L. F. Ebell. 1965. Relation between cone production and diameter increment of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl.) Lindl.) and western white pine (Pinus monticola Dougl.). Canad. J. Bot. 43: 1553–1559.

    Google Scholar 

  • El-Goorani, M. A. &N. F. Sommer. 1981. Effects of modified atmospheres on postharvest pathogens of fruits and vegetables. Hort. Rev. 3: 412–461.

    Google Scholar 

  • Ellis, R. H., T. D. Hong & E. H. Roberts. 1985. Handbook of seed technology for genebanks. 2 vols. Int. Board for Pl. Genet. Resources, Rome.

  • Enright, N. J. &B. B. Lamont. 1989. Fire temperatures and follicle-opening requirements in 10Banksia species. Austral. J. Ecol. 14: 107–114.

    Google Scholar 

  • Epron, D. 1997. Effects of drought on photosynthesis and on the thermotolerance of photosystem II in seedlings of cedar (Cedrus atlantica andC. libani). J. Exp. Bot. 48: 1835.

    CAS  Google Scholar 

  • Erez, A. &G. A. Couvillon. 1987. Characterization of the moderate temperature effect on peach bud rest. J. Amer. Soc. Hort. Sci. 112: 677–680.

    Google Scholar 

  • —— &C. H. Hendershott. 1979. The effect of cycle length on chilling negation by high temperatures in dormant peach buds. J. Amer. Soc. Hort. Sci. 104: 573–576.

    Google Scholar 

  • Fahn, A. &E. Werker. 1972. Anatomical mechanisms of seed dispersal. Pp. 155–121in T. T. Kozlowski (ed.), Seed biology. Vol. 1. Importance, development, and germination. Academic Press, New York.

    Google Scholar 

  • Fallik, E., S. Grinberg, M. Gambourg, J. D. Klein &S. Lurie. 1996. Prestorage heat treatment reduces pathogenicityof Penicillium expansum in apple fruits. Pl. Pathol. (Oxford) 45: 92–97.

    Google Scholar 

  • Fan, S., T. J. Blake &E. Blumwald. 1994. The relative contribution of elastic and osmotic adjustments to turgor maintenance of woody species. Physiol. Pl. 90: 408–413.

    Google Scholar 

  • Fanjul, L. &H. G. Jones. 1982. Rapid stomatal responses to humidity. Planta 154: 135–138.

    Google Scholar 

  • — &P. H. Rosher. 1984. Effect of water stress on internal water relations of apple leaves. Physiol. Pl. 62: 321–328.

    Google Scholar 

  • Farmer, R. E., Jr. &P. E. Barnett. 1974. Low temperature storage of black walnut pollen. Cryobiology 11: 366–367.

    PubMed  Google Scholar 

  • — &M. Cunningham. 1981. Seed dormancy of red maple in east Tennessee. Forest Sci. 27: 446–448.

    Google Scholar 

  • — &J. C. Goelz. 1984. Germination characteristics of red maple in northwestern Ontario. Forest Sci. 30: 670–672.

    Google Scholar 

  • Fenner, P., W. W. Brady &D. R. Patten. 1985. Effects of regulated water flows on regeneration of Fremont cottonwood. J. Range Managern. 38: 135–138.

    Google Scholar 

  • Fereres, E., G. Cruz-Romero, G. J. Hoffman &S. L. Rawlins. 1979. Recovery of orange trees following severe water stress. J. Appl. Ecol. 16: 833–842.

    Google Scholar 

  • Fernandez, R. T., R. L. Perry &J. A. Flore. 1997. Drought response of young apple trees on three rootstocks, 2. Gas exchange, chlorophyll fluorescence, water relations, and leaf abscisic acid. J. Amer. Soc. Hort. Sci. 122: 841–848.

    CAS  Google Scholar 

  • Fidler, J. C. 1973. The biology of apple and pear storage. Commonw. Bur. Hort. & Plantation Crops, Res. Rev. No. 3. Commonw. Agric. Bur., Farnham Royal, UK.

    Google Scholar 

  • — &G. Mann. 1972. Refrigerated storage of apples and pears: A practical guide. Commonw. Bur. Hort. & Plantation Crops, Res. Rev. No. 2. Commonw. Agric. Bur., Farnham Royal, UK.

    Google Scholar 

  • Fielding, J. M. 1947. The seeding and natural regeneration of Monterey pine in South Australia. Austral. Forest. & Timber Bur. Bull. 29: 1–60.

    Google Scholar 

  • —. 1957. Notes on the dispersal of pollen by Monterey pine. Austral. Forest. 21: 17–22.

    Google Scholar 

  • Fimbel, R. A., C. C. Fimbel &J. E. Kuser. 1995. Selection and processing of serotinous pitch pine cones. Northern J. Appl. Forest. 12: 64–68.

    Google Scholar 

  • Fishman, S., A. Erez &G. A. Couvillon. 1987a. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124: 473–483.

    Google Scholar 

  • —. 1987b. The temperature dependence of dormancy breaking in plants: Computer simulation of processes studied under controlled temperatures. J. Theor. Biol. 126: 309–321.

    Google Scholar 

  • Fitter, A. H. &R. K. M. Hay. 1987. Environmental physiology of plants. Ed. 2. Academic Press, London.

    Google Scholar 

  • Flint, H. L. &J. J. McGuire. 1962. Response of rooted cuttings of several woody ornamental species to overwinter storage. Proc. Amer. Soc. Hort. Sci. 80: 625–629.

    Google Scholar 

  • Fraser, B., S. Haywood-Farmer &C. Kooistra. 1990. Thawing guidelines for frozen stock. Pp. 61–64in R. Scagel & R. Evans (eds.), Consumers guide to tree seedlings: A workbook on production, testing and handling. Canada-British Columbia Forest Resource Development Agreement. Victoria, BC.

    Google Scholar 

  • Fraver, S. 1992. The insulating value of serotinous cones in protecting pitch pine (Pinus rigida) seeds from high temperatures. J. Pennsylvania Acad. Sci. 65: 112–116.

    Google Scholar 

  • Fray, R. G., A. Wallace, D. Grierson &G. W. Lycett. 1994. Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Pl. Molec. Biol. 24: 539–543.

    CAS  Google Scholar 

  • Fuchigami, L. H. &C. C. Nee. 1987. Degree of growth stage model and rest breaking mechanisms in temperate woody perennials. HortScience 22: 836–845.

    Google Scholar 

  • —,D. R. Evert &C. J. Weiser. 1971. A translocatable cold hardiness promoter. Pl. Physiol. (Lancaster) 47: 164–167.

    Google Scholar 

  • Ganeshan, S. 1986. Cryogenic preservation of papaya pollen. Sci. Hort. 28: 65–70.

    Google Scholar 

  • Garber, M. P. &J. G. Mexal. 1980. Lift and storage practices: Their impact on successful establishment of Southern pine plantations. New Zealand J. Forest Sci. 10: 72–82.

    Google Scholar 

  • Gauthier, S., Y. Bergeron &J.-P. Simon. 1993. Cone serotiny in jack pine ontogenetic position and environmental effects. Canad. J. Forest Res. 23: 394–401.

    Google Scholar 

  • ———. 1996. Effects of fire regime on the serotiny level of jack pine. J. Ecol. 84: 539–548.

    Google Scholar 

  • Gebre, G. M. &M. R. Kuhns. 1991. Seasonal and clonal variations in drought tolerance ofPopulus deltoides. Canad. J. Forest Res. 21: 910–916.

    Google Scholar 

  • — &J. R. Brandie. 1994. Organic solute accumulation and dehydration tolerance in three water stressedPopulus deltoides clones. Tree Physiol.14: 575–587.

    PubMed  CAS  Google Scholar 

  • Geiger, D. R., K. E. Koch &W. J. Shieh. 1996. Effect of environmental factors on whole plant assimilate partitioning and associated gene expression. J. Exp. Bot. 47: 1229–1238.

    CAS  Google Scholar 

  • George, A. S. 1981. The genusBanksia L.f. (Proteaceae). Nuytsia 3: 239–474.

    Google Scholar 

  • Gill, A. M. 1976. Fire and the opening ofBanksia ornata F. Muell. follicles. Austral. J. Bot. 24: 329–335.

    Google Scholar 

  • —. 1981. Adaptive responses of Australian vascular plant species to fires. Pp. 243–272in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Austral. Acad. Sci., Canberra.

    Google Scholar 

  • — &R. H. Groves. 1980. Fire regimes in heathlands and their plant-ecological effects. Pp. 61–84in R. L. Specht (ed.), Heathlands and related shrublands. Ecosystems of the world, 9B. Elsevier, Amsterdam.

    Google Scholar 

  • Girona, J., M. Mata, D. A. Goldhamer, R. S. Johnson &T. J. DeJong. 1993. Patterns of soil and tree water status and leaf functioning during regulated deficit irrigation scheduling in peach. J. Amer. Soc. Hort. Sci. 118: 580–586.

    Google Scholar 

  • Givnish, T. J. 1981. Serotiny, geography and fire in the pine barrens of New Jersey. Evolution 35: 101–123.

    Google Scholar 

  • Gongolly, S. R., R. Singh, S. L. Katyal &D. Singh. 1957. The mango. ICAR, New Delhi.

    Google Scholar 

  • Gonzalez-Benito, M. E. &C. Perez-Ruiz. 1992. Cryopreservation ofQuercus faginea embryonic axes. Cryobiology 29: 685–690.

    Google Scholar 

  • Goode, J. E. 1975. Water storage, water stress and crop responses to irrigation. Pp. 51–62in H. C. Pereira (ed.), Climate and the orchard. Commonw. Bur. Hort. & Plantation Crops, Res. Rev. No. 3. Commonw. Agric. Bur., Farnham Royal, UK

    Google Scholar 

  • — &K. H. Higgs. 1973. Water, osmotic and pressure potential relationships in apple leaves. J. Hort. Sci. 48: 203–215.

    Google Scholar 

  • — &K. J. Hyrycz. 1964. The response of Laxton’s Superb apple trees to different soil moisture conditions. J. Hort. Sci. 39: 254–276.

    Google Scholar 

  • — &J. Ingram. 1971. The effect of irrigation on the growth, cropping, and nutrition of Cox’s Orange Pippin apple trees. J. Hort. Sci. 46: 195–208.

    Google Scholar 

  • Gosling, P. G. 1991. Beechnut storage: A review and practical interpretation of the scientific literature. Forestry (Oxford) 64: 51–59.

    Google Scholar 

  • — &P. Rigg. 1990. The effect of moisture content and prechill duration on the efficiency of dormancy breakage in Sitka spruce (Picea sitchensis) seed. Seed Sci. & Technol. 18: 337–343.

    Google Scholar 

  • Grace, J. 1987. Climatic tolerance and distribution of plants. New Phytol. 106 (Suppl.): 113–130.

    Google Scholar 

  • —. 1988. Temperature as a determinant of plant productivity. Pp. 91–107in S. P. Long & F. I. Woodward (eds.), Plants and temperature. Dept. of Zoology, Univ. of Cambridge, Cambridge.

    Google Scholar 

  • Grace, J. D., C. Malcolm &I. K. Bradbury. 1975. The effect of wind and humidity on leaf diffusive resistance in Sitka spruce seedlings. J. Appl. Ecol. 12: 931–940.

    Google Scholar 

  • Grant, B. W. W., K. Shelton &H. W. Pritchard. 1983. Orthodox behaviour of oil palm seed and cryopreservation of the excised embryo for genetic conservation. Ann. Bot. (London), n.s., 52: 381–384.

    Google Scholar 

  • Gratkowski, H. 1974. Origin of mountain whitethorn brush fields on burns and cuttings in Pacific Northwest forests. Proc. Western Soc. Weed Sci. 27: 5–8.

    Google Scholar 

  • Greer, D. H. 1983. Temperature regulation of the development of frost hardiness inPinus radiata. Austral. J. Pl. Physiol. 10: 539–547.

    Google Scholar 

  • — &C. J. Stanley. 1985. Regulation of the loss of frost hardiness inPinus radiata by photoperiod and temperature. Pl. Cell Environ. 8: 111–116.

    Google Scholar 

  • — &I. J. Warrington. 1982. Effect of photoperiod, night temperature, and frost incidence on development of frost hardiness inPinus radiata. Austral. J. Pl. Physiol. 9: 333–342.

    Google Scholar 

  • —,C. J. Stanley &I. J. Warrington. 1989. Photoperiod control of the initial phase of frost hardiness development inPinus radiata. Pl. Cell Environ. 12: 661–665.

    Google Scholar 

  • Grierson, W., J. Soule &K. Kawada. 1982. Beneficial aspects of physiological stress. Hort. Rev. 4: 247–271.

    Google Scholar 

  • Griffin, A. R., P. Whiteman, T. Rudge, I. P. Burgess &M. Moncur. 1993. Effect of paclobutrazol on flower-bud production and vegetative growth in two species ofEucalyptus. Canad. J. Forest Res. 23: 640–647.

    CAS  Google Scholar 

  • Grochowska, M. J. 1973. Comparative studies on physiological and morphological features of bearing and non-bearing spurs of the apple tree, I. Changes in starch content during growth. J. Hort. Sci. 48: 347–356.

    Google Scholar 

  • Gucci, R., L. Lombardini &M. Tattini. 1997. Analysis of leaf water relations of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol. 17: 13–21.

    PubMed  Google Scholar 

  • Guerrero, F. D. &J. E. Mullet. 1988. Reduction of turgor induces rapid changes in leaf translatable RNA. Pl. Physiol. (Lancaster) 88: 401–408.

    CAS  Google Scholar 

  • Guicherd, P., J. P. Peltier, E. Gout, R. Bligny &G. Marigo. 1997. Osmotic adjustment inFraxinus excelsior L.: Malate and mannitol accumulation in leaves under drought conditions. Trees 11: 155–161.

    Google Scholar 

  • Gusta, L. V. &C. J. Weiser. 1972. Nucleic acid and protein changes in relation to cold acclimation and freezing injury of Korean boxwood leaves. Pl. Physiol. (Lancaster) 49: 91–96.

    CAS  Google Scholar 

  • Gutsell, S. L. &E. A. Johnson. 1993. A heat budget model for opening of serotinous cones inPinus banksiana andPinus contorta var.latifolia. Bull. Ecol. Soc. Amer. 74(Suppl.): 261.

    Google Scholar 

  • Gutteridge, C. G. &I. G. Montgomerie. 1971. Survival of strawberry plants during and after cold storage. Hort. Res. (Edinburgh) 11: 52–59.

    Google Scholar 

  • Hahn, G. G., C. Hartley &A. S. Rhoads. 1920. Hypertrophied lenticels on roots of conifers and their relation to moisture and aeration. J. Agric. Res. 20: 253–265.

    Google Scholar 

  • Hale, C. R. &R. J. Weaver. 1962. The effect of developmental stage on direction of translocation of photosynthate inVitis vinifera. Hilgardia 33: 89–131.

    Google Scholar 

  • Hall, A. E., S. E. Camacho-B. &M. R. Kaufmann. 1975. Regulation of water loss by Citrus leaves. Physiol. Pl. 33: 62–65.

    Google Scholar 

  • Hall, G. C. &R. E. Farmer Jr. 1971.In vitro germination of black walnut pollen. Canad. J. Bot. 49: 799–802.

    CAS  Google Scholar 

  • Hance, B. A. &J. M. Bevington. 1992. Changes in protein synthesis during stratification and dormancy release in embryos of sugar maple (Acer saccharum). Physiol. Pl. 86: 365–371.

    CAS  Google Scholar 

  • Hänninen, H. &R. Backman. 1994. Rest break in Norway spruce seedlings: Test of a dynamic temperature response hypothesis. Canad. J. Forest Res. 24: 558–563.

    Google Scholar 

  • Harlow, W. M., W. A. Coté Jr. &A. C. Day. 1964. The opening mechanism of pine cone scales. J. Forest. 62: 538–540.

    Google Scholar 

  • Harrington, J. F. 1970. Seed and pollen storage for conservation of plant gene resources. Pp. 501–521in O. H. Frankel & E. Bennett (eds.), Genetic resources in plants: Their exploration and conservation. Blackwell, Oxford.

    Google Scholar 

  • —. 1972. Seed storage and longevity. Pp. 145–240in T. T. Kozlowski (ed.), Seed biology. Vol. 3. Insects, and seed collection, storage, testing, and certification. Academic Press, New York.

    Google Scholar 

  • Hart, M. L., J. E. Wentworth &J. P. Bailey. 1994. The effects of tree height and weather variables on recorded pollen concentration at Leicester. Grana 33: 100–103.

    Google Scholar 

  • Hatton, T. T., P. L. Davis, R. H. Cubbedge &K. A. Munroe. 1981. Temperature management and carbon dioxide treatments that reduce chilling injury in grapefruit stored at low temperatures, Proc. Int. Soc. Citric. 1: 728–731.

    Google Scholar 

  • Havaux, M. 1993. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Pl. Sci. (Elsevier)94: 19–33.

    CAS  Google Scholar 

  • Heckathorn, S. A.,C. A. Downs, T. D. Sharkey &J. S. Coleman. 1998. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Pl. Physiol. (Lancaster) 116: 439–444.

    CAS  Google Scholar 

  • Heide, O. M. 1993a. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol. Pl. 88: 531–540.

    Google Scholar 

  • — 1993b. Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol. Pl. 89: 187–191.

    Google Scholar 

  • Hellmers, H. 1962. Physiological changes in stored pine seedlings. Tree Planter’s Notes 53: 9–10.

    Google Scholar 

  • Hennessey, T. C., P. Dougherty, S. Kossuth &J. Johnson (eds.). 1986. Stress physiology and forest productivity. M. Nijhoff, Dordrecht, Netherlands.

    Google Scholar 

  • Hewett, E. W. &C. J. Thompson. 1988. Modified atmosphere storage for reduction of bitter pit in some New Zealand apple cultivars. New Zealand J. Exp. Agric. 16: 271–278.

    Google Scholar 

  • Hilgeman, R. H. &W. Reuther. 1967. Evergreen tree fruits. Amer. Soc. Agron. Monogr. 11: 704–718.

    Google Scholar 

  • Hinckley, T. M., F. Duhme, A. R. Hinckley &H. Richter. 1980. Water relations of drought hardy shrubs: Osmotic potential and stomatal reactivity. Pl. Cell Environ. 3: 131–140.

    Google Scholar 

  • Hocking, D. 1972. Nursery practices in cold storage of conifer seedlings in Canada and the United States: A survey. Tree Planter’s Notes 73(2): 26–29.

    Google Scholar 

  • — &R. D. Nyland. 1971. Cold storage of coniferous seedlings: A review. AFRI Res. Rept. No. 6. Appl. Forest. Res. Inst., Coll. of Forestry at Syracuse, NY.

    Google Scholar 

  • Hook, D. D. 1984. Adaptations to flooding with fresh water. Pp. 265–294in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • — &C. L. Brown. 1973. Root adaptations and relative flood tolerance of five hardwood species. Forest Sci. 19: 225–229.

    Google Scholar 

  • Hosner, J. F. 1962. The southern bottomland region. Pp. 296–333in J. W. Barrett (ed.), Regional silviculture of the United States. Ronald Press, New York.

    Google Scholar 

  • Houck, L. G., J. F. Jenner &J. Bianchi. 1990. Holding lemon fruit at 5°C or 15°C before cold treatment reduces chilling injury. HortScience 25: 1174.

    Google Scholar 

  • Howell, G. S. &C. J. Weiser. 1970. The environmental control of cold acclimation in apple. Pl. Physiol. (Lancaster) 45: 390–394.

    Google Scholar 

  • Hulbert, C., E. A. Funkhouser, E. J. Soltes &R. J. Newton. 1988. Inhibition of protein synthesis in loblolly pine hypocotyls by mannitol-induced water stress. Tree Physiol. 4: 19–26.

    PubMed  CAS  Google Scholar 

  • Ibrahim, L. M., F. Proe &A. D. Cameron. 1997. Main effects of nitrogen supply, and drought stress upon whole plant carbon allocation in poplar. Canad. J. Forest Res. 27: 1413–1419.

    Google Scholar 

  • Ichikawa, S., K. Kaji &Y. Kubota. 1970. Studies on the storage of larch (Larix leptolepis) pollen at superlow temperatures. Bull. Hokkaido For. Exp. Sta. 8: 11.

    Google Scholar 

  • Ingle, M. &M. C. D’Souza. 1989. Physiology and control of superficial scald of apples: A review. HortScience 24: 28–31.

    Google Scholar 

  • Insley, H. &G. P. Buckley. 1985. The influence of desiccation and root pruning on the survival and growth of broadleaved seedlings. J. Hort. Sci. 60: 377–387.

    Google Scholar 

  • Irving, D. E. &J. H. Drost. 1987. Effects of water deficits on vegetative growth, fruit growth, and fruit quality in Cox’s Orange Pippin apple. J. Hort. Sci. 62: 427–432.

    Google Scholar 

  • Iwasaki, T., A. Awada &Y. Tiya. 1959. Studies on the differentiation and development of the flower bud in citrus. Bull. Tokai-Kinki Agric. Exp. Hort. Sta. 5: 1–76.

    Google Scholar 

  • Jackson, M. B. &W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Pl. Biol. 1: 274–287.

    CAS  Google Scholar 

  • — &M. C. Drew. 1984. Effects of flooding on growth and metabolism of herbaceous plants. Pp. 47–128in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • Jager, A., K. A. Strydom &J. Van Staden. 1996. The effect of ethylene, octanoic acid and a plant derived smoke extract on the germination of light sensitive lettuce seeds. Pl. Growth Regulation 19: 197–201.

    Google Scholar 

  • Jensen, K. F. &T. T. Kozlowski. 1975. Absorption and translocation of sulfur dioxide by seedlings of four forest tree species. J. Environ. Qual. 4: 379–381.

    CAS  Google Scholar 

  • Jett, J. B. &L. J. Frampton Jr. 1990. Effect of rehydration onin vitro germination of loblolly pine pollen. Southern J. Appl. Forest.14: 48–51.

    Google Scholar 

  • Johansson, I., C. Larsson, B. Ek &P. Kjellbom. 1996. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Pl. Cell 8: 1181–1191.

    CAS  Google Scholar 

  • —,M. Karlsson, V. K. Shukla, M. J. Chrispeels, C. Larsson &P. Kjellbom. 1998. Water transport activity of the plasma membrane aquaporin pm28a is regulated by phosphorylation. Pl. Cell 10: 451–459.

    CAS  Google Scholar 

  • Johnson, E. A. &S. L. Outsell. 1993. Heat budget and pine behaviour associated with the opening of serotinous cones in twoPinus species. J. Veg. Sci. 4: 745–750.

    Google Scholar 

  • Johnson, J. D. 1982. The effects of photoperiod during cold storage on the survival and growth of loblolly pine seedlings. Pp. 401–408in Proceedings of the 2d Biennial Southern Silvicultural Research Conference. U.S. Forest Serv., Gen. Tech. Rept. SE-24. Southeastern Forest Exp. Sta., Asheville, NC.

    Google Scholar 

  • — &W. K. Ferrell. 1983. Stomatal response to vapour pressure deficit and the effect of plant water stress. Pl. Cell Environ. 6: 451–456.

    Google Scholar 

  • Johnson, J. S. &E. A. Johnson. 1994. Opening of semi-serotinous cones ofPicea mariana by fire and ambient heating. Bull. Ecol. Soc. Amer. 75: 123.

    Google Scholar 

  • Joly, R. J. &J. B. Zaerr. 1987. Alteration of cell-wall water content and elasticity in Douglas-fir during periods of water deficit. Pl. Physioi. (Lancaster) 83: 418–422.

    Google Scholar 

  • Jones, H. G. 1987. Repeat flowering in apple caused by water stress or defoliation. Trees 1: 135–138.

    Google Scholar 

  • —,T. J. Flowers &M. B. Jones. 1989. Plants under stress: Biochemistry, physiology, and ecology and their application to plant improvement. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Jorgensen, J. 1990. Conservation of valuable gene resources by cryopreservation in some forest tree species. J. Pl. Physiol. 136: 373–376.

    Google Scholar 

  • Justice, O. L. &L. N. Bass. 1978. Principles and practices of seed storage. USDA Agric. Handb. 506. U.S. Gov. Printing Office, Washington, DC.

    Google Scholar 

  • Kandiko, R. A., R. Timmis &J. Worrall. 1980. Pressure-volume curves of shoots and roots of normal and drought conditioned western hemlock seedlings. Canad. J. Forest Res. 10: 10–16.

    Google Scholar 

  • Käpyla, M. 1984. Diurnal variation of tree pollen in the air in Finland. Grana 23: 167–176.

    Google Scholar 

  • Katterman, F. (ed.). 1990. Environmental injury to plants. Academic Press, San Diego, CA.

    Google Scholar 

  • Katterman, F. 1992. Environmental injury to plants. Pp. 2: 153–162in W. A. Nierenberg (ed.), Encyclopedia of earth system science. Academic Press, San Diego, CA.

    Google Scholar 

  • Kawase, M. 1981. Anatomical and morphological adaptation of plants to waterlogging. HortScience 16: 30–34.

    CAS  Google Scholar 

  • Kays, S. J. 1991. Postharvest physiology of perishable plant products. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Keeley, J. E. &W. J. Bond. 1997. Convergent seed germination in South African fynbos and Californian chaparral. Pl. Ecol. 133: 153–167.

    Google Scholar 

  • — &C. J. Fotheringham. 1997. Trace gas emissions and smoke induced seed germination. Science 276: 1248–1250.

    CAS  Google Scholar 

  • ——. 1998. Smoke induced seed germination in California chaparral. Ecology 79: 2320–2336.

    Google Scholar 

  • — &P. H. Zedler. 1978. Reproduction of chaparral shrubs after fire: A comparison of sprouting and seeding strategies. Amer. Midl. Naturalist 99: 142–161.

    Google Scholar 

  • Kellomaki, S. &K. Y. Wang. 1996. Photosynthetic responses to needle water potentials in Scots pine after a four year exposure to elevated CO2 and temperature. Tree Physioi. 16: 765–772.

    Google Scholar 

  • Keyes, M. R. &C. C. Grier. 1981. Aboveand below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canad. J. Forest Res. 11: 599–605.

    Google Scholar 

  • Khairi, M. M. A. &A. E. Hall. 1976a. Temperature and humidity effects on net photosynthesis and transpiration of citrus. Physioi. Pl. 36: 29–34.

    Google Scholar 

  • ——. 1976b. Comparative studies of net photosynthesis and transpiration of some citrus species and relatives. Physioi. Pl. 36: 35–39.

    Google Scholar 

  • Kimmerer, T. W. &T. T. Kozlowski. 1981. Stomatal conductance and sulfur uptake of five clones ofPopulus tremuloides exposed to sulfur dioxide. Pl. Physioi. (Lancaster) 67: 990–995.

    CAS  Google Scholar 

  • King, J. R. 1961. The freeze-drying of pollens. Econ. Bot. 15: 91–98.

    Google Scholar 

  • King, M. W. &E. H. Roberts. 1979. The storage of recalcitrant seeds: Achievements and possible approaches. Int. Board for Pl. Genet. Resources, Rome.

    Google Scholar 

  • Klein, J. D., W. S. Conway, B. D. Whitaker &C. E. Sams. 1997.Botrytis cinerea decay in apples is inhibited by postharvest heat and calcium treatments. J. Amer. Soc. Hort. Sci. 122: 91–94.

    Google Scholar 

  • Knee, M. &S. G. S. Hatfield. 1981. Benefits of ethylene removal during apple storage. Ann. Appl. Biol. 98: 157–165.

    CAS  Google Scholar 

  • Kobayashi, K. D., L. H. Fuchigami &M. J. English. 1982. Modeling temperature requirements for rest development inCornus sericea. J. Amer. Soc. Hort. Sci. 107: 914–918.

    Google Scholar 

  • Koppenaal, R. S., T. J. Tschaplinski &S. J. Colombo. 1991. Carbohydrate accumulation and turgor maintenance in seedling shoots and roots of two boreal forest conifers subjected to water stress. Canad. J. Bot. 69: 2522–2528.

    Google Scholar 

  • Kozlowski, T. T. 1964. Water metabolism in plants. Harper & Row, New York.

    Google Scholar 

  • -. 1967. Physiological implications in afforestation. Pp. 2: 1304–1316in Proceedings of the 6th World Forestry Congress.

  • —. 1972a. Shrinking and swelling of plant tissues. Pp. 1–64in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 3. Plant responses and control of water balance. Academic Press, New York.

    Google Scholar 

  • —. 1972b. Physiology of water stress. Pp. 229–244in C. M. McKell, J. P. Blaisdell & J. R. Goodin (eds.), Wildland shrubs: Their biology and utilization. U.S. Forest Serv., Gen. Tech. Rept. INT-1. Intermountain Forest & Range Exp. Sta., Ogden, UT.

    Google Scholar 

  • —. 1976a. Drought resistance and transplantability of shade trees. Pp. 77–90in F. S. Santamour, H. Gerhold & S. Little (eds.), Better trees for metropolitan landscapes. U.S. Forest Serv., Gen. Tech. Rept. NE-22. Northeast Forest Exp. Sta., Newtown Square, PA.

    Google Scholar 

  • —. 1976b. Water relations and tree improvement. Pp. 307–327in M. G. R. Cannell & F. T. Last (eds.), Tree physiology and yield improvement. Academic Press, New York.

    Google Scholar 

  • —. 1978. How healthy plants grow. Pp. 19–51in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Vol. 3. How plants suffer from diseases. Academic Press, New York.

    Google Scholar 

  • — 1979. Tree growth and environmental stresses. Univ. of Washington Press, Seattle.

    Google Scholar 

  • —. 1980. Impacts of air pollution on forest ecosystems. BioScience 30: 88–93.

    CAS  Google Scholar 

  • —. 1982a. Water supply and tree growth, Part I. Water deficits. Forest. Abstr. 43: 57–95.

    Google Scholar 

  • —. 1982b. Water supply and tree growth, Part II. Flooding. Forest. Abstr. 43: 145–161.

    Google Scholar 

  • —. 1983. Reduction in yield of forest and fruit trees by water and temperature stress. Pp. 67–88in C. D. Raper & P. J. Kramer (eds.), Crop reactions to water and temperature stresses in humid, temperate climates. Westview Press, Boulder, CO.

    Google Scholar 

  • —. 1984. Responses of woody plants to flooding. Pp. 129–163in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • —. 1992. Carbohydrate sources and sinks in woody plants. Bot. Rev. (Lancaster) 58: 107–222.

    Google Scholar 

  • -. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. Monogr. No. 1.http: //www.heronpublishing.com/tp/monograph/kozlowski.pdf.

  • — &H. A. Constantinidou. 1986a. Responses of woody plants to environmental pollution, Part I. Sources, types of pollutants, and plant responses. Forest. Abstr. 47: 5–51.

    Google Scholar 

  • ——. 1986b. Responses of woody plants to environmental pollution, Part II. Factors affecting responses to pollution. Forest. Abstr. 47: 105–132.

    Google Scholar 

  • — &S. G. Pallardy. 1979. Stomatal responses ofFraxinus pennsylvanica seedlings during and after flooding. Physiol. Pl. 46: 155–158.

    Google Scholar 

  • ——. 1984. Effect of flooding on water, carbohydrate and mineral relations. Pp. 165–193in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • ——. 1997a. Physiology of woody plants. Ed. 2. Academic Press, San Diego, CA.

    Google Scholar 

  • ——. 1997b. Growth control in woody plants. Academic Press, San Diego, CA.

    Google Scholar 

  • —,P. J. Kramer &S. G. Pallardy. 1991. The physiological ecology of woody plants. Academic Press, San Diego, CA.

    Google Scholar 

  • Kramer, P. J. &J. S. Boyer. 1995. Water relations of plants and soils. Academic Press, San Diego, CA.

    Google Scholar 

  • Kriedemann, P. E. &H. D. Barrs. 1981. Citrus orchards. Pp. 325–417in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 6. Woody plant communities. Academic Press, New York.

    Google Scholar 

  • —,B. R. Loveys, G. L. Fuller &A. C. Leopold. 1972. Abscisic acid and stomatal regulation. Pl. Physiol. (Lancaster) 79: 842–847.

    Google Scholar 

  • Kubiske, M. E. &M. D. Abrams. 1993. Stomatal and nonstomatal limitations of photosynthesis in 19 temperate tree species on contrasting sites during wet and dry years. Pl. Cell Environ. 16: 1123–1129.

    Google Scholar 

  • Kuhns, M. R., W. W. Stroup &G. M. Gebre. 1993. Dehydration tolerance of 5 bur oak (Quercus macrocarpa) seed sources from Texas, Nebraska, Minnesota, and New York. Canad. J. Forest Res. 23: 387–393.

    Google Scholar 

  • Kulkarni, V. J. 1988. Chemical control of tree vigour and the promotion of flowering and fruiting in mango (Mangifera indica L.) using paclobutrazol. J. Hort. Sci. 63: 557–566.

    CAS  Google Scholar 

  • Kurian, R. M. &C. P. A. Iyer. 1993a. Chemical regulation of tree size in mango (Mangifera indica L.) cv.Alphonso, II. Effects of growth retardants on flowering and fruit set. J. Hort. Sci. 68: 355–360.

    CAS  Google Scholar 

  • Kurian, R. M. &C. P. A. Iyer. 1993b. Chemical regulation of tree size in mango (Mangifera indica L.) cv.Alphonso, III. Effects of growth retardants on yield and quality of fruits. J. Hort. Sci. 68: 361–364.

    CAS  Google Scholar 

  • Kwon, K. W. &S. G. Pallardy. 1989. Temporal changes in tissue water relations of seedlingsof Quercus acutissima, Q. alba, andQ. stellata subjected to chronic water stress. Canad. J. Forest Res. 19: 622–626.

    Google Scholar 

  • Lakso, A. N. 1979. Seasonal changes in stomatal response to leaf water potential in apple. J. Amer. Soc. Hort. Sci. 104: 58–60.

    Google Scholar 

  • —,A. S. Geyer &S. G. Carpenter. 1984. Seasonal osmotic relations in apple leaves of different ages. J. Amer. Soc. Hort. Sci. 109: 541–547.

    Google Scholar 

  • Lamont, B. B. &M. J. Barker. 1988. Seed bank dynamics of a serotinous, fire-sensitiveBanksia species. Austral. J. Bot. 36: 193–204.

    Google Scholar 

  • —,D. C. LeMaitre, R. M. Cowling &N. J. Enright. 1991. Canopy seed storage in woody plants. Bot. Rev. (Lancaster) 57: 277–317.

    Google Scholar 

  • Lampinen, B. D., K. A. Shackel, S. M. Southwick, B. Olson &J. T. Yeager. 1995. Sensitivity of yield and fruit quality of French prune to water deprivation at different growth stages. J. Amer. Soc. Hort. Sci. 120: 139–147.

    Google Scholar 

  • Landsberg, J. J. &H. G. Jones. 1981. Apple orchards. Pp. 419–469in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 6. Woody plant communities. Academic Press, New York.

    Google Scholar 

  • Lang, G. A. 1989. Dormancy: Models and manipulations of environmental/physiological regulation. Pp. 79–98in C. J. Wright (ed.), Manipulation of fruiting. Butterworths, London.

    Google Scholar 

  • —,J. D. Early, N. J. Arroyave, R. L. Darnell, G. C. Martin &G. W. Stutte. 1985. Dormancy: Toward a reduced universal terminology. HortScience 20: 809–812.

    Google Scholar 

  • Lanteri, S., P. Belletti &S. Lotito. 1993. Storage of pollen of Norway spruce and different pine species. Silvae Genet. 42: 104–109.

    Google Scholar 

  • Larcher, W. 1995. Physiologícal plant ecology: Ecophysiology and stress physiology of functional groups. Ed. 3. Springer-Verlag, Berlin.

    Google Scholar 

  • Larson, K. D., T. M. DeJong &R. S. Johnson. 1988. Physiological growth responses of mature peach trees to postharvest water stress. J. Amer. Soc. Hort. Sci. 113: 296–300.

    Google Scholar 

  • —,B. Schaffer &F. S. Davies. 1991. Flooding, leaf gas exchange and growth of mango in containers. J. Amer. Soc. Hort. Sci. 116: 156–160.

    Google Scholar 

  • Lavender, D. P. 1985. Bud dormancy. Pp. 7–15in M. L. Duryea (ed.), Evaluating seedling quality: Principles and predictive abilities of major tests. Forest Res. Lab., Oregon State Univ., Corvallis, OR.

    Google Scholar 

  • — &S. G. Stafford. 1985. Douglas-fir seedlings: Some factors affecting chilling requirement, bud activity, and new foliage production. Canad. J. Forest Res. 15: 309–312.

    Google Scholar 

  • — &P. F. Wareing. 1972. Effects of daylength and chilling on the responses of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings to root damage and storage. New Phytol. 71: 1055–1071.

    Google Scholar 

  • Lee, C. W., J. C. Thomas &S. L. Buchmann. 1985. Factors affectingin vitro germination and storage ofJojoba-Simmondsia chinensis pollen. J. Amer. Soc. Hort. Sci. 110: 671–676.

    CAS  Google Scholar 

  • Lemcoff, J. H., A. B. Guarnaschelli, A. M. Garau, M. E. Bascialli &C. M. Ghersa. 1994. Osmotic adjustment and its use as a selection criterion inEucalyptus seedlings. Canad. J. Forest Res. 24: 2404–2408.

    Google Scholar 

  • Lev-Yadun, S. 1995. Living serotinous cones inCupressus sempervirens. Int. J. PI. Sci. 156: 50–54.

    Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stresses. Ed. 2. 2 vols. Academic Press, New York.

    Google Scholar 

  • Li, J. X., X. Q. Wang, M. B. Watson &S. M. Assmann. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287: 300–303.

    PubMed  CAS  Google Scholar 

  • Li, S.-H., J.-G. Huguet, P. G. Schoch &P. Orlando. 1989. Response of peach tree growth and cropping to soil water deficit at various phenological stages of fruit development. J. Hort. Sci. 64: 541–552.

    Google Scholar 

  • Ligon, F. K., W. E. Dietrich &W. J. Thrush. 1995. Downstream ecological effects of dams. BioScience 45: 183–192.

    Google Scholar 

  • Lin, T.-P. 1996. Seed storage behaviour deviating from the orthodox and recalcitrant type. Seed Sci. & Technol. 24: 523–532.

    Google Scholar 

  • —,M.-H. Chen &C.-H. Lin. 1994. Dormancy in seeds ofPhellodendron wilsonii is mediated in part by abscisic acid. Pl. Cell Physiol. 35: 115–119.

    CAS  Google Scholar 

  • Little, E. L., Jr. &K. W. Dorman. 1952. Geographic differences in cone-opening in sand pine. J. Forest. 50: 204–205.

    Google Scholar 

  • Livingston, G. G. &K. K. Ching. 1967. The longevity and fertility of freeze-dried Douglas-fir pollen. Silvae Genet. 16: 98–101.

    Google Scholar 

  • Logan, B. A. &R. K. Monson. 1999. Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene. Pl. Physiol. (Lancaster) 120: 821–825.

    CAS  Google Scholar 

  • Loreto, F. &T. D. Sharkey. 1990. A gas-exchange study of photosynthesis and isoprene emission inQuercus rubra L. Planta 182: 523–531.

    CAS  Google Scholar 

  • Lösch, R. &B. Schenk. 1978. Humidity response of stomata and the potassium content of guard cells. J. Exp. Bot. 29: 781–787.

    Google Scholar 

  • Lotan, J. E. 1967. Cone serotiny of lodgepole pine near West Yellowstone, Montana. Forest Sci. 13: 55–59.

    Google Scholar 

  • —. 1976. Cone serotiny: Fire relationships in lodgepole pine. Proc. Tall Timbers Fire Ecol. Conf. 14: 267–278.

    Google Scholar 

  • Lurie, S., J. D. Klein &R. B. Arie. 1991. Prestorage heat treatment delays development of superficial scald on Granny Smith apples. HortScience 26: 166–167.

    Google Scholar 

  • Lyons, J. M. &R. W. Breidenbach. 1987. Chilling injury. Pp. 305–326in J. Weichmann (ed.), Postharvest physiology of vegetables. M. Dekker, New York.

    Google Scholar 

  • Maggs, D. H. 1963. The reduction in growth of apple trees brought about by fruiting. J. Hort. Sci. 38: 119–128.

    Google Scholar 

  • Maier-Maercker, U. 1998. Dynamics of change in stomatal response and water status ofPicea abies during a persistent drought period: A contribution to the traditional view of plant water relations. Tree Physiol. 18: 211–222.

    PubMed  Google Scholar 

  • Mansfield, T. A. &W. J. Davies. 1981. Stomata and stomatal mechanisms. Pp. 315–346in L. G. Paleg & D. Aspinall (eds.), The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, Australia.

    Google Scholar 

  • — &O. Majernik. 1970. Can stomata play a part in protecting plants against air pollutants? Environ. Pollut. 1: 149–154.

    Google Scholar 

  • Marsal, J. &J. Girona. 1997. Effects of water stress cycles on turgor maintenance processes in pear leaves. Tree Physiol. 17: 327–333.

    PubMed  Google Scholar 

  • Marschner, H. 1995. Mineral nutrition of higher plants. Ed. 2. Academic Press, London.

    Google Scholar 

  • Marshall, J. G., J. B. Scarratt &E. B. Dumbroff. 1991. Induction of drought resistance by abscisic acid and paclobutrazol in jack pine. Tree Physiol. 8: 415–421.

    CAS  Google Scholar 

  • Martin, U., S. G. Pallardy &Z. A. Bahari. 1987. Dehydration tolerance of leaf tissues of six woody angiosperm species. Physiol. Pl. 69: 182–186.

    Google Scholar 

  • Matthews, F. R. &J. F. Kraus. 1981. Pollen storage. Pp. 37–39in E. C. Franklin (ed.), Pollen management handbook. USDA Handbook No. 587. U.S. Gov. Printing Office, Washington, DC.

    Google Scholar 

  • Mattson, A. &E. Troeng. 1986. Effects of different overwinter storage regimes on shoot growth and net photosynthetic capacity inPinus sylvestris seedlings. Scand. J. Forest Res. 1: 75–84.

    Google Scholar 

  • Maurel, C. 1997. Aquaporins and water permeability of plant membranes. Annual Rev. Pl. Physiol. Pl. Molec. Biol. 48: 399–429.

    CAS  Google Scholar 

  • McBride, J. R. &J. Strahan. 1984. Establishment and survival of woody riparian species on gravel bars of an intermittent stream. Amer. Midl. Naturalist 112: 235–245.

    Google Scholar 

  • McCracken, I. J. 1979a. Changes in the carbohydrate concentration of pine seedlings after cool storage. New Zealand J. Forest Sci. 9: 34–43.

    CAS  Google Scholar 

  • —. 1979b. Packaging and cool storage of tree seedlings. New Zealand J. Forest. 24: 278–287.

    Google Scholar 

  • McKersie, B. D. &Y. Y. Leshem. 1994. Stress and stress coping in cultivated plants. Kluwer, Dordrecht, Netherlands.

    Google Scholar 

  • McLaughlin, J. M. &D. W. Greene. 1991. Fruit and hormones influence flowering of apple, I. Effect of cultivar. J. Amer. Soc. Hort. Sci. 116: 446–449.

    CAS  Google Scholar 

  • McMaster, G. S. &P. H. Zedler. 1981. Delayed seed dispersal inPinus torreyana (Torrey pine). Oecologia 51: 62–66.

    Google Scholar 

  • Meier, C. E., R. J. Newton, J. D. Puryear &S. Sen. 1992. Physiological responses of loblolly pine (Pinus taeda L.) seedlings to drought stress: Osmotic adjustment and tissue elasticity. J. Pl. Physiol. 140: 754–760.

    CAS  Google Scholar 

  • Meinzer, F. C. 1982. The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings. Oecologia 54: 236–242.

    Google Scholar 

  • T. M. Hinckley &R. Ceulemans. 1997. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Pl. Cell Environ. 20: 1301–1308.

    Google Scholar 

  • Menzel, C. M. 1983. The control of floral initiation in lychee: A review. Sci. Hort. 21: 201–215.

    Google Scholar 

  • — &D. R. Simpson. 1990. Effect of environment on growth and flowering of lychee (Litchi chinensis Sonn.). Acta Hort. 275: 161–166.

    Google Scholar 

  • Mexal, J. G. &D. B. South. 1991. Bareroot seedling culture. Pp. 89–115in M. L. Duryea & P. M. Dougherty (eds.), Forest regeneration manual. Kluwer, Dordrecht, Netherlands.

    Google Scholar 

  • —,R. Timmis &W. G. Morris. 1979. Coldhardiness of containerized loblolly pine seedlings: Its effect on field survival and growth. Southern J. Appl. Forest. 3: 15–19.

    Google Scholar 

  • Mitchell, P. D., P. H. Jerie &D. J. Chalmers. 1984. The effects of regulated water deficits on pear tree growth, flowering, fruit growth and yield. J. Amer. Soc. Hort. Sci. 109: 604–606.

    Google Scholar 

  • —,D. J. Chalmers, P. H. Jerie &G. Burge. 1986. The use of initial withholding of irrigation and tree spacing to enhance the effect of regulated deficit irrigation in pear trees. J. Amer. Soc. Hort. Sci. 111: 854–864.

    Google Scholar 

  • Mitchum, E. J. &Y. M. Wu. 1993. Prestorage heat treatments for scald control in apples. HortScience 28: 85.

    Google Scholar 

  • Mochizuki, T. 1962. Studies on the elucidation of factors affecting the decline in tree vigor in apples as induced by fruit load. Bull. Fac. Agric, Hirosaki Univ. 8: 40–124.

    Google Scholar 

  • Moline, H. E. (ed.). 1984. Postharvest pathology of fruits and vegetables: Postharvest losses in perishable crops. Agric. Exp. Sta., Div. of Agric. & Nat. Resources., Univ. of California, Berkeley.

    Google Scholar 

  • Monselise, S. P. &A. H. Halevy. 1964. Chemical inhibition and promotion of citrus flower bud induction. Proc. Amer. Soc. Hort. Sci. 84: 141–146.

    CAS  Google Scholar 

  • Monson R. K &R. Fall. 1989. Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Pl. Physiol. (Lancaster) 90: 267–274.

    CAS  Google Scholar 

  • Monteith, J. L. 1995. A reinterpretation of stomatal responses to humidity. Pl. Cell Environ. 18: 357–364.

    Google Scholar 

  • Moody, R. W. &J. B. Jett. 1990. Effects of pollen viability and vigor on seed production of loblolly pine. Southern J. Appl. Forest. 14: 33–38.

    Google Scholar 

  • Mooney, H. A., W. E. Winner &E. J. Pell (eds.). 1991. Response of plants to multiple stresses. Academic Press, San Diego, CA.

    Google Scholar 

  • Moreno-Casasola, P., J. P. Grime &M. I. Martinez. 1994. A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico. J. Trop. Ecol. 10: 67–86.

    Google Scholar 

  • Mori, I. C, N. Uozumi &S. Muto. 2000. Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase inVicia guard cells. Pl. Cell Physiol. 41: 850–856.

    CAS  Google Scholar 

  • Morris, L. L. 1982. Chilling injury of horticultural crops: An overview. HortScience 17: 161–162.

    Google Scholar 

  • Morse, S. R., P. Wayne, S. L. Miao &F. A. Bazzaz. 1993. Elevated CO2 and drought alter tissue water relations of birch (Betula populifolia Marsh.) seedlings. Oecologia 95: 599–602.

    Google Scholar 

  • Mott, K. A. &D. F. Parkhurst. 1991. Stomatal responses to humidity in air and helox. Pl. Cell Environ. 14: 509–515.

    Google Scholar 

  • Muir, P. S. &J. E. Lotan. 1985a. Disturbance history and serotiny ofPinus contorta in western Montana. Ecology 66: 1658–1668.

    Google Scholar 

  • —— 1985b. Serotiny and life-history ofPinus contorta var.latifolia. Canad. J. Bot. 63: 938–945.

    Google Scholar 

  • Mullin, R. E. 1966. Overwinter storage of baled nursery stock in northern Ontario. Commonw. Forest. Rev. 45: 224–230.

    Google Scholar 

  • Murata, K., K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel &Y. Fujiyoshi. 2000. Structural determinants of water permeation through aquaporin 1. Nature 407: 599–605.

    PubMed  CAS  Google Scholar 

  • Muthalif, M. M. &L. J. Rowland. 1994. Identification of dehydrin like proteins responsive to chilling in floral buds of blueberry (Vaccinium, sectionCyanococcus). Pl. Physiol. (Lancaster) 104: 1439–1447.

    CAS  Google Scholar 

  • Myers, B. A. &T. F. Neales. 1986. Osmotic adjustment induced by drought in seedlings of threeEucalyptus species. Austral. J. Pl. Physiol. 13: 597–604.

    Google Scholar 

  • Naiman, R. J., R. E. Bilby &P. A. Bisson. 2000. Riparian ecology and management in the Pacific coastal rain forest. BioScience 50: 996–1011.

    Google Scholar 

  • Nelson, E. A. &D. P. Lavender. 1979. The chilling requirement of western hemlock seedlings. Forest Sci. 25: 485–490.

    Google Scholar 

  • Newsome, R. D., T. T. Kozlowski &Z. C. Tang. 1982. Responses ofUlmus americana seedlings to flooding of soil. Canad. J. Bot. 60: 1688–1695.

    Google Scholar 

  • Nguyen, A. &A. Laniont. 1989. Variation in growth and osmotic regulation of roots of water-stressed maritime pine (Pinus pinaster Ait.) provenances. Tree Physiol. 5: 123–133.

    PubMed  Google Scholar 

  • Ni, B. R. &S. G. Pallardy. 1992. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Pl. Physiol. (Lancaster) 99: 1502–1508.

    CAS  Google Scholar 

  • Nilsson, J. E. &G. Eriksson. 1986. Freeze testing and field mortalityof Pinus sylvestris (L.) seedlings in northern Sweden. Scand. J. Forest Res. 1: 205–218.

    Google Scholar 

  • Nir, I., R. Goren &B. Leshem. 1972. Effects of water stress, gibberellic acid and 2-chloroethyl triethylammonium chloride (CCC) on flower differentiation in Eureka lemon trees. J. Amer. Soc. Hort. Sci. 97: 774–778.

    CAS  Google Scholar 

  • Noland, T. L. &T. T. Kozlowski. 1979. Influence of potassium nutrition on susceptibility of silver maple to ozone. Canad. J. Forest Res. 9: 501–503.

    CAS  Google Scholar 

  • Norby, R. J. &T. T. Kozlowski. 1982. The role of stomata in sensitivity ofBetula papyrifera Marsh. seedlings to SO2 at different humidities. Oecologia 53: 34–39.

    Google Scholar 

  • ——. 1983. Flooding and SO2-stress interaction inBetula papyrifera andB. nigra seedlings. Forest Sci. 29: 739–750.

    Google Scholar 

  • O’Mahony, P. J. &M. J. Oliver. 1999. The involvement of ubiquitin in vegetative desiccation tolerance. Pl. Molec. Biol. 41: 657–667.

    CAS  Google Scholar 

  • Office of Technology Assessment 1984. Wetlands: Their use and regulation. Gov. Printing Office, Washington, DC. OTA-O-206.

    Google Scholar 

  • Omi, S. K., R. Rose &T. E. Sabine. 1991a. Effectiveness of freezer storage in fulfilling the chilling requirement of fall-lifted ponderosa pine seedlings. New Forests 5: 307–326.

    Google Scholar 

  • —,B. Yoder &R. Rose. 1991b. Fall lifting and long-term freezer storage of ponderosa pine seedlings: Effects on post-storage leaf water potential, stomatal conductance, and root growth potential. Tree Physiol. 8: 315–325.

    PubMed  Google Scholar 

  • Osborne, D. J. 1980. Senescence in seeds. Pp. 13–37in K. V. Thimann (ed.), Senescence in plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Osonubi, O. &W. J. Davies. 1978. Solute accumulation in leaves and roots of woody plants subjected to water stress. Oecologia 32: 323–332.

    Google Scholar 

  • Pallardy, S. G. &T. T. Kozlowski. 1979. Relationships of leaf diffusion resistance ofPopulus clones to leaf water potential and environment. Oecologia 40: 371–380.

    Google Scholar 

  • ——. 1981. Water relationsoiPopulus clones. Ecology 62: 159–169.

    Google Scholar 

  • —,W. C. Parker, R. K. Dixon &H. E. Garrett. 1982. Tissue water relations of roots and shoots of draughted ectomycorrhizal shortleaf pine seedlings. Pp. 368–373in B. A. Thielges (ed.), Proceedings of the Seventh North American Forest Biology Workshop. Univ. of Kentucky, Lexington.

    Google Scholar 

  • Parfitt, D. E. &A. A. Almehdi. 1983. Cryogenic storage of grape pollen. Amer. J. Enol. Viticult. 34: 227–228.

    Google Scholar 

  • ——. 1984a. Liquid nitrogen storage of pollen from five cultivatedPrunus species. HortScience 19: 69–70.

    Google Scholar 

  • ——. 1984b. Cryogenic storage of olive pollen. Fruit Varieties J. 38: 14–16.

    Google Scholar 

  • Parker, D., D. Ziberman &K. Moulton. 1991. How quality relates to price in California fresh peaches. Calif. Agric. 45(2): 14–16.

    Google Scholar 

  • Parker, W. C. &S. G. Pallardy. 1985. Genotypic variation in tissue water relations of leaves and roots of black walnut (Juglans nigra) seedlings. Physiol. PL 64: 105–110.

    Google Scholar 

  • ——. 1988. Pressure-volume analysis of leaves ofRobinia pseudoacacia L. with the sap expression and free transpiration methods. Canad. J. Forest Res. 18: 1211–1213.

    Google Scholar 

  • ——,T. M. Hinckley &R. O. Teskey. 1982. Seasonal changes in tissue water relations of three woody species of theQuercus-Carya forest type. Ecology 63: 1259–1268.

    Google Scholar 

  • Peltier, J. P. &G. Marigo. 1999. Drought adaptation inFraxinus excelsior L.: Physiological basis of the elastic adjustment. J. PL Physiol. 154: 529–535.

    CAS  Google Scholar 

  • Pence, V. C. 1995. Cryopreservation of recalcitrant seeds. Pp. 29–50in Y. P. S. Bajaj (ed.), Biotechnology in agriculture and forestry. Vol. 32. Cryopreservation of germplasm I. Springer-Verlag, New York.

    Google Scholar 

  • Pereira, J. S. &T. T. Kozlowski. 1977. Variations among woody angiosperms in response to flooding. Physiol. Pl. 41: 184–192.

    Google Scholar 

  • Perry, D. A. &J. E. Lotan. 1979. A model of fire selection for serotiny in lodgepole pine. Evolution 33: 958–960.

    Google Scholar 

  • Perry, T. O. 1971. Dormancy of trees in winter. Science 171: 29–36.

    PubMed  CAS  Google Scholar 

  • — &C. W. Wang. 1960. Genetic variation in the winter chilling requirement for date of dormancy break forAcer rubrum. Ecology 41: 790–794.

    Google Scholar 

  • Pezeshki, S. R. 1993. Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica 28: 423–430.

    Google Scholar 

  • — &J. L. Chambers. 1985a. Stomatal and photosynthetic response of sweet gum (Liquidambar styraciflua) to flooding. Canad. J. Forest Res. 15: 371–375.

    Google Scholar 

  • ——. 1985b. Responses of cherrybark oak (Quercus falcata var.pagodaefolia) seedlings to short-term flooding. Forest Sci. 31: 760–771.

    Google Scholar 

  • —,J. H. Pardue &R. D. De Laune. 1996. Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Tree Physiol. 16: 453–458.

    PubMed  Google Scholar 

  • Pfundt, M. 1909. Der Einfluss der Luftfeuchtigkeit auf die Lebensdauer des Blütenstaubes. Jahrb. Wiss. Bot. 47: 1–40.

    Google Scholar 

  • Piringer, A. A. &H. A. Borthwick. 1955. Photoperiodic responses in coffee. Turrialba 5: 72–77.

    Google Scholar 

  • Poff, I. R., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks &J. C. Stromberg. 1997. The natural flow regime. BioScience 47: 769–784.

    Google Scholar 

  • Pollock, M. M., R. J. Naiman &T. A. Hanley. 1998. Plant species richness in forested and emergent wetlands: A test of biodiversity theory. Ecology 79: 94–105.

    Google Scholar 

  • Poole, D. K. &P. C. Miller. 1978. Water related characteristics of some evergreen sclerophyll shrubs in central Chile. Oecol. Pl. 13: 289–299.

    Google Scholar 

  • Portlock, C. C., S. R. Shea, J. D. Majer &D. T. Bell. 1990. Stimulation of germination ofAcer pulchella: Laboratory basis for forest management options. J. Appl. Ecol. 27: 319–324.

    Google Scholar 

  • Powell, G. R. 1977. Biennial strobilus production in balsam fir: A review of its morphogenesis and a discussion of its apparent physiological basis. Canad. J. Forest Res. 7: 547–555.

    Google Scholar 

  • Priestley, D. A. 1986. Seed aging: Implications for seed storage and persistence in the soil. Comstock Associates, Ithaca, NY.

    Google Scholar 

  • Pritchard, J. 1994. Tansley review no. 68: The control of cell expansion in roots. New Phytol. 127: 3–26.

    CAS  Google Scholar 

  • — &A. D. Tomos. 1993. Correlating biophysical and biochemical control of root expansion. Pp. 53–72in J. A. C. Smith & H. Griffiths (eds.), Water deficits: Plant responses from cell to community. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Pukacka, S. &P. J. C. Kuiper. 1988. Phospholipid composition and fatty acid peroxidation during ageing ofAcer platanoides seeds. Physiol. Pl. 72: 89–93.

    CAS  Google Scholar 

  • Putnam, J. A., G. M. Furnival &J. S. McKnight. 1960. Management and inventory of southern hardwoods. U.S. Forest Serv. Agric. Handb. 181.

    Google Scholar 

  • Queitsch, C., S. W. Hong, E. Vierling &S. Lindquist. 2000. Heat shock protein 101 plays a crucial role in thermotolerance inArabidopsis. Pl. Cell 12: 479–492.

    CAS  Google Scholar 

  • Rao, I. M., R. E. Sharp &J. S. Boyer. 1987. Leaf magnesium alters photosynthetic response to low water potentials in sunflower. Pl. Physiol. (Lancaster) 84: 1214–1219.

    CAS  Google Scholar 

  • Rasmussen, R. A. 1970. Isoprene: Identified as a forest-type emission to the atmosphere. Environm. Sci. Tech. 4: 667–671.

    Google Scholar 

  • Regehr, D. L., F. A. Bazzaz &W. R. Boggess. 1975. Photosynthesis, transpiration and leaf conductance ofPopulus deltoides in relation to flooding and drought. Photosynthetica 9: 52–61.

    Google Scholar 

  • Reich, P. B. &R. Borchert. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol. 72: 61–74.

    Google Scholar 

  • Reid, D. M. &K. J. Bradford. 1984. Effects of flooding on hormone relations. Pp. 195–219in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • Richardson, C. J. 1995. Wetlands ecology. Pp. 3: 535–550in W. A. Nierenberg (ed.), Encyclopedia of environmental biology. Academic Press, San Diego, CA.

    Google Scholar 

  • Richardson, E. A., S. D. Seeley &D. R. Walker. 1974. A model for estimating the completion of rest for Redhaven and Elberta peach trees. HortScience 9: 331–332.

    Google Scholar 

  • Rieger, M. 1995. Offsetting effects of reduced hydraulic conductivity and osmotic adjustment following drought. Tree Physiol. 15: 379–385.

    PubMed  Google Scholar 

  • Ritchie, G. A. 1982. Carbohydrate reserves and root growth potential in Douglas fir seedlings before and after cold storage. Canad. J. Forest Res. 12: 905–912.

    Google Scholar 

  • —. 1984. Effect of freezer storage on bud dormancy release in Douglas fir seedlings. Canad. J. Forest Res. 14: 186–190.

    Google Scholar 

  • —. 1987. Some effects of cold storage on seedling physiology. Tree Planter’s Notes. 38: 11–15.

    Google Scholar 

  • —,J. R. Roden &N. Kleyn. 1985. Physiological quality of lodgepole pine and interior spruce seedlings: Effect of lift date and duration of freezer storage. Canad. J. Forest Res. 15: 636–645.

    Google Scholar 

  • Roberts, D. P., P. Toivonen &S. M. Mclnnis. 1991. Discrete proteins associated with overwintering of interior spruce and Douglas fir seedlings. Canad. J. Bot. 69: 437–441.

    CAS  Google Scholar 

  • Roberts, E. H. 1973. Predicting the storage life of seeds. Seed Sci. & Technol. 1: 499–514.

    Google Scholar 

  • -& M. W. King. 1980. Storage of recalcitrant seeds. Pp. 39–48in L. A. Withers & J. T. Williams (eds.), Crop genetic resources: The conservation of difficult material. Int. Union Biol. Sciences, Series B 42.

  • — &R. H. Ellis. 1984. Recalcitrant seeds: Their recognition and storage. Pp. 38–52in J. H. W. Holden & J. T. Williams (eds.), Crop genetic resources: Conservation and evaluation. Allen & Unwin, London.

    Google Scholar 

  • Roberts, S. W., B. R. Strain &K. R. Knoerr. 1980. Seasonal patterns of leaf water relations in four cooccurring forest tree species: Parameters from pressure-volume curves. Oecologia 46: 330–337.

    Google Scholar 

  • Robertson, P. A., G. T. Weaver &J. A Cavanaugh. 1978. Vegetation and tree species patterns near the northern terminus of southern floodplain forest. Ecol. Monogr. 48: 249–267.

    Google Scholar 

  • Ronco, F. 1973. Food reserves of Engelmann spruce planting stock. Forest Sci. 19: 213–219.

    Google Scholar 

  • Rood, S. B., J. M. Mahoney, D. E. Reid &L. Zim. 1994. Instream flows and the decline of riparian cottonwoods along the St. Mary River, Alberta. Canad. J. Bot. 73: 1250–1260.

    Google Scholar 

  • Roos, E. E. 1982. Induced genetic changes in seed germplasm during storage. Pp. 409–434in A. A. Khan (ed.), The physiology and biochemistry of seed development, dormancy, and germination. Elsevier, Amsterdam.

    Google Scholar 

  • Rose, R., S. K. Omi, B. Court &K. Yakimchuk. 1992. Dormancy release and growth responses of 3+0 bare root white spruce (Picea glauca) seedlings subjected to moisture stress before freezer storage. Canad. J. Forest Res. 22: 132–137.

    Google Scholar 

  • Ryugo, K. &L. D. Davis. 1959. The effect of the time of ripening on the starch content of bearing peach branches. Proc. Amer. Soc. Hort. Sci. 74: 130–133.

    CAS  Google Scholar 

  • Sakai, A. &W. Larcher. 1987. Frost survival of plants: Responses and adaptation to freezing stress. Springer-Verlag, Berlin.

    Google Scholar 

  • — &C. J. Weiser. 1973. Freezing resistance of trees in North America with reference to tree regions. Ecology 54: 118–126.

    Google Scholar 

  • Sale, P. J. M. 1970a. Growth, flowering and fruiting of cacao under controlled soil moisture conditions. J. Hort. Sci. 45: 99–118.

    Google Scholar 

  • — 1970b. Growth and flowering of cacao under controlled atmospheric relative humidities. J. Hort. Sci. 45: 119–132.

    Google Scholar 

  • Saliendra, N. Z., J. S. Sperry &J. Comstock. 1995. Influence of leaf water status on stomatal response to humidity, hydraulic conductance and soil drought inBetula occidentalis. Planta 196: 357–366.

    CAS  Google Scholar 

  • Santakumari, M. &G. A. Berkowitz. 1991. Chloroplast volume-cell water relationships and acclimation of photosynthesis to leaf water deficits. Photosynth. Res. 28: 9–20.

    Google Scholar 

  • Sarvas, R. 1962. Investigations on the flowering and seed crop ofPinus silvestris. Commun. Inst. Forest. Fenn. 53: 1–198.

    Google Scholar 

  • — 1968. Investigations on the flowering and seed crop ofPicea abies. Commun. Inst. For. Fenn. 67: 1–84.

    Google Scholar 

  • Schaffer, B. &P. C. Anderson (eds.). 1994. Handbook of environmental physiology of fruit crops. 2 vols. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Schäffner, A. R. 1998. Aquaporin function, structure, and expression: Are there more surprises to surface in water relations? Planta 204: 131–139.

    PubMed  Google Scholar 

  • Scholander, P. F., L. Van Dam &S. I. Scholander. 1955. Gas exchange in the roots of mangroves. Amer. J. Bot. 42: 92–98.

    CAS  Google Scholar 

  • Schulze, E.-D., O. L. Lange, U. Buschbom, L. Kappen &M. Evenari. 1972. Stomatal responses to changes in humidity in plants growing in the desert. Planta 108: 259–270.

    Google Scholar 

  • ——,M. Evenari, L. Kappen &U. Buschbom. 1974. The role of air humidity and leaf temperature in controlling stomatal resistance ofPrunus armeniaca L. under desert conditions, I. A simulation of the daily course of stomatal resistance. Oecologia 17: 159–170.

    Google Scholar 

  • Sedgley, M. &A. R. Griffin. 1989. Sexual reproduction of tree crops. Academic Press, London.

    Google Scholar 

  • — &J. Harbard. 1993. Pollen storage and breeding system in relation to controlled pollination of four species ofAcacia (Leguminosae: Mimosoideae). Austral. J. Bot. 41: 601–609.

    Google Scholar 

  • Sciler, J. R. 1985. Morphological and physiological changes in black alder induced by water stress. Pl. Cell Environ. 8: 219–222.

    Google Scholar 

  • — &B. H. Cozell. 1990. Influence of water stress on the physiology and growth of red spruce seedlings. Tree Physiol. 6: 69–77.

    Google Scholar 

  • — &J. D. Johnson. 1988. Physiological and morphological responses of three half-sib families of loblolly pine to water-stress conditioning. Forest Sci. 34: 487–495.

    Google Scholar 

  • Sena Gomes, A. R. & T. T. Kozlowski 1980a. Growth responses and adaptations ofFraxinus pennsylvanica seedlings to flooding. Pl. Physiol. (Lancaster) 66: 267–271.

    Google Scholar 

  • ——. 1980b. Responses ofMelaleuca quinquenvervia seedlings to flooding. Physiol. Pl. 49: 373–377.

    Google Scholar 

  • ——. 1980c. Effects of flooding in growth ofEucalyptus camaldulensis andE. globulus seedlings. Oecologia 46: 139–142.

    Google Scholar 

  • ——. 1980d. Responses ofPinus halepensis seedlings to flooding. Canad. J. Forest Res. 10: 308–311.

    Google Scholar 

  • ——. 1986. Effects of flooding on water relations and growth ofTheobroma cacao var.catongo seedlings. J. Hort. Sci. 61: 265–276.

    Google Scholar 

  • —— &P. B. Reich. 1987. Some physiological responses ofTheobroma cacao var.catongo seedlings to air humidity. New Phytol. 107: 591–602.

    Google Scholar 

  • Shalhevet, J. &Y. Levy. 1990. Citrus trees. Pp. 951–986in B. A. Stewart & D. R. Nielsen (eds.), Irrigation of agricultural crops. Amer. Soc. Agron., Madison, WI.

    Google Scholar 

  • Shalom, N. B., J. Hanzon, J. D. Klein &S. Lurie. 1993. A postharvest heat treatment inhibits cell wall degradation in apples during storage. Phytochemistry 34: 955–958.

    CAS  Google Scholar 

  • Shaltout, A. D. &C. R. Unrath. 1983. Rest completion prediction model for Starkrimson Delicious apples. J. Amer. Soc. Hort. Sci. 108: 957–961.

    Google Scholar 

  • Shannon, M. C., C. M. Grieve &L. E. Francois. 1994. Whole-plant response to salinity. Pp. 199–244in R. E. Wilkinson (ed.), Plant-environment interactions. Marcel Dekker, New York.

    Google Scholar 

  • Sharkey T. D. &E. L. Singsaas. 1995. Why plants emit isoprene. Nature 374: 769.

    CAS  Google Scholar 

  • — &S. Yeh. 2001. Isoprene emission from plants. Annual Rev. Pl. Physiol. Pl. Molec. Biol. 52: 407–436.

    CAS  Google Scholar 

  • —,E. L. Singsaas, P. J. Vanderveer &C. Geron. 1996. Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol. 16: 649–654.

    PubMed  CAS  Google Scholar 

  • —,X. Y. Chen &S. Yeh. 2001. Isoprene increases thermotolerance of fosmidomycin-fed leaves. Pl. Physiol. (Lancaster) 125: 2001–2006.

    CAS  Google Scholar 

  • Shaybany, B. &G. C. Martin. 1977. Abscisic acid identification and its quantification in leaves ofJuglans seedlings during waterlogging. J. Amer. Soc. Hort. Sci. 102: 300–302.

    CAS  Google Scholar 

  • Sheriff, D. W. 1977. The effect of humidity on water uptake by, and viscous flow resistance of, excised leaves of a number of species: Physiological and anatomical observations. J. Exp. Bot. 28: 1399–1407.

    Google Scholar 

  • —. 1979. Stomatal aperture and the sensing of the environment by guard cells. Pl. Cell Environ. 2: 15–22.

    Google Scholar 

  • Shirazi, A. M. &L. H. Fuchigami. 1995. The relationship of a near-lethal stress on dormancy and stem cold hardiness in red-osier dogwood. Tree Physiol. 15: 275–279.

    PubMed  Google Scholar 

  • Sholberg, P. L. &P. D. Haag. 1996. Incidence of postharvest pathogens of stored apples in British Columbia. Canad. J. Pl. Path. 18: 81–85.

    Google Scholar 

  • Silim, S. N. &D. P. Lavender. 1994. Seasonal patterns and environmental regulation of frost hardiness in shoots of seedlings ofThuja plicata, Chamaecyparis nootkatensis, andPicea glauca. Canad. J. Bot. 72: 309–316.

    Google Scholar 

  • Singh, L. B. 1948. Studies in biennial bearing, III. Growth studies in the “on” and “off” year trees. J. Hort. Sci. 24: 123–148.

    Google Scholar 

  • — 1960. The mango: Botany, cultivation, and utilization. Leonard Hill, London.

    Google Scholar 

  • Sitton, J. W. &M. E. Patterson. 1992. Effect of high carbon dioxide and low oxygen controlled atmospheres on postharvest decays of apples. Pl. Dis. 76: 992–995.

    CAS  Google Scholar 

  • Skreppa, T. 1991. Within-population variation in autumn frost hardiness and its relationship to bud-set and height growth inPicea abies. Scand. J. Forest Res. 6: 353–364.

    Google Scholar 

  • Smart, R. E. &B. G. Coombe. 1983. Water relations of grapevines. Pp. 137–196in T. T. Kozlowski (ed.), Water deficits and plant growth. Vol. 7. Additional woody crop plants. Academic Press, New York.

    Google Scholar 

  • Smit-Spinks, B., B. T. Swanson &A. H. Markhart. 1985. The effect of photoperiod and thermoperiod on cold acclimation and growth ofPinus sylvestris. Canad. J. Forest Res. 15: 453–460.

    Google Scholar 

  • Smith, D. W. &N. E. Linnartz. 1980. The southern hardwood region. Pp. 145–230in J. W. Barrett (ed.), Regional silviculture of the United States. Ed. 2. Wiley, New York.

    Google Scholar 

  • Smith, M. W. &P. L. Ager. 1988. Effects of soil flooding on leaf gas exchange of seedling pecan trees. HortScience 23: 370–372.

    Google Scholar 

  • Smith, W. K. &T. M. Hinckley (eds.). 1995. Ecophysiology of coniferous forests. Academic Press, San Diego, CA.

    Google Scholar 

  • Smock, R. M. 1979. Controlled atmosphere storage of fruits. Hort. Rev. 1: 301–336.

    CAS  Google Scholar 

  • Snyder, B. E. &K. E. Clausen. 1974. Pollen handling. Pp. 75–97in C. S. Schopmeyer (ed.), Seeds of woody plants in the United States. USDA Agric. Handb. 450. U.S. Gov. Printing Office, Washington, DC.

    Google Scholar 

  • Somerville, C., J. Browse, J. G. Jaworski &J. B. Ohlrogge. 2000. Lipids. Pp. 456–527in B. B. Buchanan, W. Gruissem & R. L. Jones (eds.), Biochemistry and molecular biology of plants. Amer. Soc. PL PhysioL, Rockville, MD.

    Google Scholar 

  • Sommer, N. F. 1985. Role of controlled environments in suppression of post harvest diseases. Canad. J. PL Pathol. 7: 331–339.

    Google Scholar 

  • South, D. B. 1986. Nursery management practices for the southern pines. Auburn Univ., Auburn, AL.

    Google Scholar 

  • —,J. N. Boyer &L. Bosch. 1985. Survival and growth of loblolly pine as influenced by seedling grade: 13-year results. Southern J. Appl. Forest. 9: 76–81.

    Google Scholar 

  • Southwick, S. M. &T. L. Davenport. 1986. Characterization of water stress and low temperature effects on flower induction in citrus. Pl. Physiol. (Lancaster) 81: 26–29.

    Google Scholar 

  • Spalding, D. H. &W. F. Reeder. 1983. Conditioning Tahiti limes to reduce chilling injury. Proc. Florida State Hort. Soc. 96: 231–232.

    Google Scholar 

  • Specht, R. L. 1981. Responses to fires in heathlands and related shrublands. Pp. 395–415in A. M. Gill, R. H. Groves & I. R. Noble (eds.), Fire and the Australian biota. Austral. Acad. Sci., Canberra.

    Google Scholar 

  • Spollen, W. G., R. E. Sharp, I. N. Saab &Y. Wu. 1993. Regulation of cell expansion in roots and shoots at low water potentials. Pp. 37–52in J. A. C. Smith & H. Griffiths (eds.), Water deficits: Plant responses from cell to community. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Spotts, R. A. 1984. Environmental modifications for control of postharvest decay. Pp. 67–72in H. E. Moline (ed.), Postharvest pathology of fruits and vegetables: Postharvest losses in perishable crops. Agric. Exp. Sta., Div. of Agric. & Nat. Resources., Univ. of California, Berkeley.

    Google Scholar 

  • Spremulli, L. 2000. Protein synthesis, assembly and degradation. Pp. 412–454in B. B. Buchanan, W. Gruissem & R. L. Jones (eds.), Biochemistry and molecular biology of plants. Amer. Soc. Pl. Physiol., Rockville, MD.

    Google Scholar 

  • Stanley, R. G. &E. G. Kirby. 1973. Shedding of pollen and seeds. Pp. 295–340in T. T. Kozlowski (ed.), Shedding of plant parts. Academic Press, New York.

    Google Scholar 

  • — &H. F. Linskens. 1974. Pollen: Biology, biochemistry, management. Springer-Verlag, New York.

    Google Scholar 

  • Stanwood, P. C. 1985. Cryopreservation of seed germplasm for genetic conservation. Pp. 199–226in K. K. Kartha (ed.), Cryopreservation of plant cells and organs. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Stein, L. A., G. R. McEachern &J. B. Storey. 1989. Summer and fall moisture stress and irrigation scheduling influence pecan growth and production. HortScience 24: 607–611.

    Google Scholar 

  • Stewart, J. D., A. Z. Elabidine &P. Y. Bernier. 1995. Stomatal and mesophyll limitations in black spruce seedlings during multiple cycles of drought. Tree PhysioL 15: 57–64.

    PubMed  Google Scholar 

  • Stoll, M., B. Loveys &P. Dry. 2000. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 51: 1627–1634.

    PubMed  CAS  Google Scholar 

  • Stone, E. C. &G. Juhren. 1951. The effect of fire on the germination ofRhus ovata Wats. Amer. J. Bot. 38: 368–372.

    Google Scholar 

  • —,J. L. Jenkinson &S. L. Krugman. 1962. Root-regenerating potential of Douglas-fir seedlings lifted at different times of the year. Forest Sci. 8: 288–297.

    Google Scholar 

  • —,G. H. Schubert, R. W. Benseler, F. J. Baron &S. L. Krugman. 1963. Variation in the rootregenerating potentials of ponderosa pine from four California nurseries. Forest Sci. 9: 217–225.

    Google Scholar 

  • Stow, J. 1986. Effects of rate of establishment of storage conditions and ethylene removal on the storage performance of a Cox’s Orange Pippin apple. Sci. Hort. 28: 369–378.

    Google Scholar 

  • — 1988. The effects of high carbon dioxide pretreatments and ethylene removal on the storage performance of apples Cox’s Orange Pippin. Sci. Hort. 35: 89–97.

    Google Scholar 

  • —. 1990. The effects of removal of ethylene from low oxygen storage atmospheres on the quality of Cox’s Orange Pippin apples. Sci. Hort. 43: 281–290.

    CAS  Google Scholar 

  • Styles, E. D., J. M. Burgess, C. Mason &B. M. Huber. 1982. Storage of seed in liquid nitrogen. Cryobiology 19: 195–199.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y. & R. Timmis. 1974. Effects of container density on growth and cold hardiness of Douglas-fir seedlings. Pp. 181–186in R. W. Tinus, W. I. Stein & W. E. Balmer (eds.), Proceedings of the North American Containerized Forest Tree Seedling Symposium. Great Plains Agric. Council Publ. 68.

  • Tang, Z. C. &T. T. Kozlowski. 1982a. Some physiological and morphological responses ofQuercus macrocarpa to flooding. Canad. J. Forest Res. 12: 196–202.

    Google Scholar 

  • ——. 1982b. Physiological, morphological and growth responses ofPlatanus occidentalis seedlings to flooding. Pl. & Soil 66: 243–255.

    Google Scholar 

  • ——. 1982c. Some physiological and growth responses ofBetula papyrifera seedlings to flooding. Physiol. Pl. 55: 415–420.

    Google Scholar 

  • —— 1983. Responsesof Pinus banksiana andPinus resinosa seedlings to flooding. Canad. J. Forest Res. 13: 633–639.

    Google Scholar 

  • — 1984. Ethylene production and morphological adaptations of woody plants to flooding. Canad. J. Bot. 62: 1659–1664.

    CAS  Google Scholar 

  • Tardieu, F. &W. J. Davies. 1993. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Pl. Cell Environ. 16: 341–349.

    CAS  Google Scholar 

  • Taylor, M. A., H. V. Davies, S. B. Smith, A. Abruzzese &P. G. Gosling. 1993. Cold-induced changes in gene expression during dormancy breakage in seeds of Douglas fir (Pseudotsuga menziesii). J. Pl. Physiol. 142: 120–123.

    CAS  Google Scholar 

  • Teich, A. H. 1970. Cone serotiny and inbreeding in natural populations ofPinus banksiana andPinus contorta. Canad. J. Bot. 48: 1805–1809.

    Google Scholar 

  • Teller, A., P. Mathy &J. N. R. Jeffers (eds.). 1992. Responses of forest ecosystems to environmental changes. Elsevier, New York.

    Google Scholar 

  • Thanos, C. A., S. Marcow, D. Christodoulakis &A. Yannitsaros. 1989. Early post-fire regeneration inPinus brutia forest ecosystems of Samos Island (Greece). Acta Oecol., Oecol. Pl. 10: 79–94.

    Google Scholar 

  • Thomashow, M. F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Rev. Pl. Physiol. Pl. Molec. Biol. 50: 571–599.

    CAS  Google Scholar 

  • Timmis, R. &Y. Tanaka. 1976. Effects of container density and moisture stress on growth and cold hardiness of Douglas-fir seedlings. Forest Sci. 22: 167–172.

    Google Scholar 

  • — &J. Worrall. 1975. Environmental control of cold acclimation in Douglas-fir during germination, active growth and rest. Canad. J. Forest Res. 5: 464–477.

    Google Scholar 

  • Tompsett, P. B. 1982. The effect of desiccation on the longevity of seeds ofAraucaria hunsteinii andA. cunninghamii. Ann. Bot. (London), n.s., 50: 693–704.

    Google Scholar 

  • — 1992. A review of the literature on storage of dipterocarp seeds. Seed Sci. & Technol. 20: 251–267.

    Google Scholar 

  • Topa, M. A. &K. W. McLeod. 1986a. Responses ofPinus clausa, Pinus serotina, andPinus taeda seedlings to anaerobic solution culture, I. Changes in growth and root morphology. Physiol. Pl. 68: 532–539.

    CAS  Google Scholar 

  • ——. 1986b. Aerenchyma and lenticel formation in pine seedlings: A possible avoidance mechanism to anaerobic growth conditions. Physiol. Pl. 68: 540–550.

    Google Scholar 

  • Towill, L. E. 1985. Low temperature and freeze-vacuum drying preservation of pollen. Pp. 171–198in K. K. Kartha (ed.), Cryopreservation of plant cells and organs. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Triboulot, M. B., J. Pritchard &D. Tomos. 1995. Stimulation and inhibition of pine root growth by osmotic stress. New Phytol. 130: 169–175.

    Google Scholar 

  • Tschaplinski, T. J. &T. J. Blake. 1989. Water-stress tolerance and late-season organic solute accumulation in hybrid poplar. Canad. J. Bot. 67: 1681–1688.

    Google Scholar 

  • — &G. A. Tuskan. 1994. Water-stress tolerance of black and eastern cottonwood clones and four hybrid progeny, II. Metabolites and inorganic ions that constitute osmotic adjustment. Canad. J. For. Res. 24: 681–687.

    CAS  Google Scholar 

  • — &G. A. Tuskan. &C. A. Gunderson. 1994. Water stress tolerance of black and eastern cottonwood clones and four hybrid progeny, I. Growth, water relations, and gas exchange. Canad. J. Forest Res. 24: 364–371.

    Google Scholar 

  • Tsukahara, H. &T. T. Kozlowski. 1985. Importance of adventitious roots to growth of floodedPlatanus occidentalis seedlings. Pl. & Soil 88: 123–132.

    Google Scholar 

  • Tukey, L. D. 1983. Vegetative control and fruiting on mature apple trees treated with PP-333. Acta Hort. 137: 103–109.

    Google Scholar 

  • —. 1986. Cropping characteristics of bearing apple trees annually sprayed with paclobutrazol (PP-333). Acta Hort. 179: 481–488.

    Google Scholar 

  • Tunstall, B. R. &D. J. Connor. 1975. Internal water balance of brigalow (Acacia harpophylla F. Muell.) under natural conditions. Austral. J. Pl. Physiol. 2: 489–499.

    Google Scholar 

  • Turner, N. C. &M. M. Jones. 1980. Turgor maintenance by osmotic adjustment. Pp. 87–104in N. C. Turner & P. J. Kramer (eds.), Adaptation of plants to water and high temperature stress. Wiley, New York.

    Google Scholar 

  • Tylkowski, T. 1985. Overcoming of seed dormancy in cherry plumPrunus cerasifera var.divaricata Bailey. Arbor. Kornickie 30: 339–350.

    Google Scholar 

  • Tyree, M. T., Y. N. S. Cheung, M. E. MacGregor &A. J. B. Talbot. 1978. The characteristics of seasonal and ontogenetic changes in the tissue-water relations ofAcer, Populus, Tsuga andPicea. Canad. J. Bot. 56: 635–647.

    Google Scholar 

  • Ushirozawa, K. &J. Shibukawa. 1948. On the germination and fertility of apple pollen. J. Jap. Soc. Hort. Sci. 17: 209–211.

    Google Scholar 

  • Van den Driessche, R. 1969. Influence of moisture supply, temperature, and light on frost-hardiness changes in Douglas-fir seedlings. Canad. J. Bot. 47: 1765–1772.

    Google Scholar 

  • — 1977. Survival of coastal and interior Douglas fir seedlings after storage at different temperatures, and effectiveness of cold storage in satisfying chilling requirements. Canad. J. Forest Res. 7: 125–131.

    Google Scholar 

  • — 1979. Respiration rate of cold-stored nursery stock. Canad. J. Forest Res. 9: 15–18.

    Google Scholar 

  • Van Eerden, E. &J. W. Gates. 1990. Seedling production and processing: Container. Pp. 226–234in D. P. Lavender, R. Parish, C. Johnson, G. Montgomery, A. Vyse, R. A. Willes & D. Winston (eds.), Regenerating British Columbia’s forests. Univ. British Columbia Press, Vancouver.

    Google Scholar 

  • Vidaver, W. E., W. Binder, R. C. Brooke, G. R. Lister &P. M. A. Toivonen. 1989. Assessment of photosynthetic activity of nursery grownPicea glauca (Moench.) Voss seedlings using an integrating fluorometer to monitor variable chlorophyll fluorescence. Canad. J. Forest Res. 19: 1478–1482.

    Google Scholar 

  • Vogl, R. J., P. W. Armstrong, K. L. White &K. L. Cole. 1977. The closed-cone pines and cypresses. Pp. 295–358in M. G. Barbour & J. Major (eds.), Terrestrial vegetation of California. Wiley, New York.

    Google Scholar 

  • Wagenbreth, D. 1965. Das Auftreten von zwei Letalstufen bei Hitzeeinwirkung auf Pappelblätter. Flora (Jena) 156A: 116–126.

    Google Scholar 

  • Waisel, Y. 1972. Biology of halophytes. Academic Press, New York.

    Google Scholar 

  • — 1991. Adaptation to salinity. Pp. 359–383in A. S. Raghavendra (ed.), Physiology of trees. Wiley, New York.

    Google Scholar 

  • A. Eshel &M. Agami. 1986. Salt balance of leaves of the mangroveAvicennia marina. Physiol. Pl. 67: 67–72.

    CAS  Google Scholar 

  • Wakabayashi, K., T. Hoson &S. Kamisaka. 1997. Osmotic stress suppresses cell wall stiffening and the increase in cell wall bound ferulic and diferulic acids in wheat coleoptiles. Pl. Physiol. (Lancaster) 113: 967–973.

    CAS  Google Scholar 

  • Wakeley, P. C. 1954. Planting the southern pines. Agric. Monogr. 18.U.S. Dept. of Agric, Washington, DC.

    Google Scholar 

  • Walkins, C. B., K. L. McMath, J. H. Bowen, C. J. Brennan, S. L. McMillan &D. P. Billing. 1991. Controlled atmosphere storage of Granny Smith apples. New Zealand J. Crop Hort. Sci. 19: 61–68.

    Google Scholar 

  • Walser, R. H. &T. D. Davis. 1989. Growth, reproductive development and dormancy characteristics of paclobutrazol-treated tart cherry trees. J. Hort. Sci. 64: 435–441.

    Google Scholar 

  • Wang, B. S. P., P. J. Charest &B. Downie. 1993.Ex situ storage of seeds, pollen andin vitro culture of perennial woody plants. FAO Forest. Pap. 113. Food & Agric. Org. of the United Nations, Rome.

    Google Scholar 

  • Wang, C.-Y. 1990. Alleviation of chilling injury in horticultural crops. Pp. 281–302in C.-Y. Wang (ed.), Chilling injury of horticultural crops. CRC Press, Boca Raton, FL.

    Google Scholar 

  • — 1993. Approaches to reducing chilling injury of fruits and vegetables. Hort. Rev. 15: 63–95.

    Google Scholar 

  • Wang, S. Y. &M. Faust. 1994. Changes in the antioxidant system associated with bud break in Anna apple (Malus domestica Borkh.) buds. J. Amer. Soc. Hort. Sci. 119: 735–741.

    CAS  Google Scholar 

  • Wang, Z. &G. W. Stutte. 1992. The role of carbohydrates in active osmotic adjustment in apple under water stress. J. Amer. Soc. Hort. Sci. 117: 816–823.

    CAS  Google Scholar 

  • —,B. Quebedeaux &G. W. Stutte. 1995. Osmotic adjustment: Effect of water stress on carbohydrates in leaves, stems and roots of apple. Austral. J. Pl. Physiol. 22: 747–754.

    CAS  Google Scholar 

  • Wardrop, A. B. 1983. The opening mechanism of follicles of some species ofBanksia. Austral. J. Bot. 31: 485–500.

    Google Scholar 

  • Waring, R. H. 1991. Responses of evergreen trees to multiple stresses. Pp. 371–390in H. A. Mooney, W. E. Winner & E. J. Pell (eds.), Response of plants to multiple stresses. Academic Press, San Diego, CA.

    Google Scholar 

  • Wazir, F. K., M. W. Smith &S. W. Akers. 1988. Effects of flooding on phosphorous levels in pecan seedlings. HortScience 23: 595–597.

    Google Scholar 

  • Webb, D. P. &F. W. Von Althen. 1980. Storage of hardwood planting stock: Effects of various storage regimes and packaging methods on root growth and physiological quality. New Zealand J. Forest Sci. 10: 83–89.

    Google Scholar 

  • Webster, A. D., J. D. Quinlan &P. J. Richardson. 1986. The influence of paclobutrazol on the growth and cropping of sweet cherry cultivars, I. The effect of annual soil treatments on the growth and cropping of cv.Early Rivers. J. Hort. Sci. 61: 471–478.

    CAS  Google Scholar 

  • Weichmann, J. 1986. The effect of controlled-atmosphere storage on the sensory and nutritional quality of fruits and vegetables. Hort. Rev. 8: 101–127.

    Google Scholar 

  • White, D. A., C. L. Beadle &D. Worledge. 1996. Leaf water relations ofEucalyptus globulus ssp.globulus andE. nitens: Seasonal, drought and species effects. Tree Physiol. 16: 469–476.

    PubMed  Google Scholar 

  • Wildung, D. K., C. J. Weiser &H. M. Pellett. 1973. Temperature and moisture effects on hardening of apple roots. HortScience 8: 53–55.

    Google Scholar 

  • Williams, G. J., N. E. Pellett &R. M. Klein. 1972. Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Pl. Physiol. (Lancaster) 50: 262–265.

    Google Scholar 

  • Winjum, J. K. 1963. Effects of lifting date and storage on 2+0 Douglas fir and Noble fir. J. Forest. 61: 648–654.

    Google Scholar 

  • Winner, W. E., G. W. Koch &H. A. Mooney. 1982. Ecology of SO2 resistance, IV. Predicting metabolic responses of fumigated trees and shrubs. Oecologia 52: 16–21.

    Google Scholar 

  • Wisniewski, M., J. J. Sauter, V. Stepien &L. H. Fuchigami. 1994. Effects of near lethal heat stress on endodormancy and ecodormancy of peach and hybrid poplar. HortScience 29: 511.

    Google Scholar 

  • —,R. Arora &T. Artlip. 1995. Seasonal patterns of dehydrin in bark tissue of eight species of woody plants. HortScience 30: 851.

    Google Scholar 

  • —,L. H. Fuchigami, J. J. Sauter, A. Shirazi &L. Zhen. 1996. Near-lethal stress and bud dormancy in woody plants. Pp. 201–210in G. A. Lang (ed.), Plant dormancy: Physiology, biochemistry and molecular biology. CAB International, Oxford.

    Google Scholar 

  • —,J. Sauter, L. Fuchigami &V. Stepien. 1997. Effects of near-lethal heat stress on bud break, heat-shock proteins and ubiquitin in dormant poplar (Populus nigra charkowiensis ×P. nigra incrassata). Tree Physiol. 17: 453–460.

    PubMed  CAS  Google Scholar 

  • Wood, B. W. 1988. Paclobutrazol suppresses shoot growth and influences nut quality and yield of young pecan trees. J. Amer. Soc. Hort. Sci. 113: 374–377.

    CAS  Google Scholar 

  • Worley, R. E. 1982. Tree yield and nut characteristics of pecans with drip irrigation under humid conditions. J. Amer. Soc. Hort. Sci. 107: 30–34.

    Google Scholar 

  • Yahia, E. M. 1994. Apple flavor. Hort. Rev. 16: 197–234.

    CAS  Google Scholar 

  • —,F. W. Liu &T. E. Acree. 1990. Changes of some odor-active volatiles in controlled atmosphere-stored apples. J. Food Qual. 13: 185–202.

    CAS  Google Scholar 

  • Yamada, S., T. Komori, P. N. Myers, S. Kuwata, T. Kubo &H. Imaseki. 1997. Expression of plasma membrane water channel genes under water stress inNicotiana excelsior. Pl. Cell Physiol. 38: 1226–1231.

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., M. Koizumi, S. Urao &K. Shinozaki. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation inArabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Pl. Cell Physiol. 33: 217–224.

    CAS  Google Scholar 

  • Yamamoto, F., S. Sakata &K. Tenazawa. 1995. Physiological, morphological and anatomical responses ofFraxinus mandshurica seedlings to flooding. Tree Physiol. 15: 713–719.

    PubMed  Google Scholar 

  • Yelenosky, G. 1979. Water-stress induced cold hardening of young citrus trees. J. Amer. Soc. Hort. Sci. 104: 270–273.

    Google Scholar 

  • Young, E. 1992. Timing of high temperature influences chilling negation in dormant apple shoots. J. Amer. Soc. Hort. Sci. 117: 271–272.

    Google Scholar 

  • Young, J. A. &C. G. Young. 1992. Seeds of woody plants in North America. Rev. & enl. ed. Dioscorides Press, Portland, Oregon.

    Google Scholar 

  • Zaerr, J. B. 1983. Short-term flooding and net photosynthesis in seedlings of three conifers. Forest Sci. 29: 71–78.

    Google Scholar 

  • Zedler, P. H. 1986. Closed-cone conifers of the chaparral. Fremontia 14(October): 14–17.

    Google Scholar 

  • Zhang, B. &D. D. Archbold. 1991. Solute accumulation in leaves ofFragaria chiloensis andF. virginiana in response to water deficit stress. HortScience 26: 176.

    Google Scholar 

  • Zhang, J. &W. J. Davies. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Pl. Cell Environ. 12: 73–81.

    CAS  Google Scholar 

  • ——. 1990. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Pl. Cell Environ. 13: 277–286.

    CAS  Google Scholar 

  • —,U. Schurr &W. J. Davies. 1987. Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J. Exp. Bot. 38: 1174–1181.

    CAS  Google Scholar 

  • Zwiazek, J. J. &T. J. Blake. 1989. Effects of preconditioning on subsequent water relations, stomatal sensitivity and photosynthesis in osmotically stressed black spruce. Canad. J. Bot. 67: 2240–2246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowski, T.T., Pallardy, S.G. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev 68, 270–334 (2002). https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

Keywords

Navigation