Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Development of transgenic yellow poplar for mercury phytoremediation

Abstract

We examined the ability of yellow poplar ( Liriodendron tulipifera ) tissue cultures and plantlets to express modified mercuric reductase ( merA ) gene constructs. Mercury-resistant bacteria express merA to convert highly toxic, ionic mercury, Hg(ll), to much less toxic, elemental mercury, Hg(O). Expression of merA in transgenic plants might provide an ecologically compatible approach for the remediation of mercury pollution. Because the alteration of the bacterial merA gene sequence is necessary for high-level expression in Arabidopsis thaliana , yellow poplar proembryogenic masses (PEMs) were transformed with three modified merA constructs via microprojectile bombardment. Each construct was synthesized to have altered flanking regions with increasing amounts of modified coding sequence. All merA constructs conferred resistance to toxic, ionic mercury in independently transformed PEM colonies. Stability of merA transgene expression increased in parallel with the extent of gene coding sequence modification. Regenerated plantlets containing the most modified merA gene ( merA18 ) germinated and grew vigorously in media containing normally toxic levels of ionic mercury. The merA18 plantlets released elemental mercury at approximately 10 times the rate of untransformed plantlets. These results indicate that plants expressing modified merA constructs may provide a means for the phytoremediation of mercury pollution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schnoor, J., Light, L.A., McCuteheon, S.C., Wolfe, N.L., and Carreira, L.H. 1995. Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology 7: 318–323.

    Article  Google Scholar 

  2. Baker, A.J.M. and Brooks, R.R. 1989. Terrestrial higher plants which hyperaccu-mulate metallic elements-a review of their distribution, ecology and phytochem-istry. Biorecovery 1: 81–126.

    CAS  Google Scholar 

  3. Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D., and Reeves, R.D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling 11: 41–49.

    Article  Google Scholar 

  4. Salt, D.E., Prince, R.C., Pickering, I.J., and Raskin, I. 1995. Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol. 109: 1427–1433.

    Article  CAS  Google Scholar 

  5. Dittmer, H.J. 1937. A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale). American Journal of Botany 24: 417–420.

    Article  Google Scholar 

  6. Gray, D.H. and Sotir, R.B. 1996. Biotechnical and soil bioengineering stabilization. John Wiley & Sons, New York.

  7. Allard, B. and Arsenie, I. 1991. Abiotic reduction of mercury by humic substances in aquatic systems: an important process for the mercury cycle. Water, Air and Soil Pollution 56: 457–464.

    Article  CAS  Google Scholar 

  8. Nriagu, J.O. 1979. Production and uses of mercury, pp. 23–41, in: The biogeo-chemistry of mercury in the environment. Nriagu, J.O. (ed). Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  9. Jernelov, A. and Lann, H. 1971. Mercury accumulation in food chains. Oikos 22: 403–406.

    Article  CAS  Google Scholar 

  10. Windom, H.L. and Kendall, D.R. 1979. Accumulation and biotransformation of mercury, pp. 303–323, in: The biogeochemistry of mercury in the environment. Nriagu, J.O. (ed). Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  11. Mason, R.P., Reinfelder, J.R. and Morel, F.M.M. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science and Technology 30: 1835–1845.

    Article  CAS  Google Scholar 

  12. Hudson, R.J.M., Gherini, S.A., Fitsgerald, W.F. and Portella, D.B. 1995 Anthropogenic influences on the global mercury cycle: a model-based analysis. Water, Air, and Soil Pollution 80: 265–272.

    Article  CAS  Google Scholar 

  13. Suzuki, T., Furukawa, K. and Tonomura, K. 1968. Studies on the removal of inorganic mercurial compounds in waste by the cell-reused method of mercury-resistant bacterium. Journal of Fermentation Technology 12: 1048–1055.

    Google Scholar 

  14. Hansen, C.L., Zwolinski, G., Martin, D. and Williams, J.W. 1984. Bacterial removal of mercury from sewage sludge. Biotechnology and Bioengineering 26: 1330–1333.

    Article  CAS  Google Scholar 

  15. Summers, A.0. 1986. Organization, expression, and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40: 607–634.

    Article  CAS  Google Scholar 

  16. Fox, B. and Walsh, C.T. 1982. Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J. Biol. Chem. 257: 2498–2503.

    Google Scholar 

  17. Summers, A.O. and Lewis, E. 1973. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureas, and Psuedomonas aeroginosa. J. Bacteriol. 113: 1070–1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanson, P.J., Lindberg, S.E., Tabberer, T.A., Owens, J.G. and Kim, K.-H. 1995. Foliar exchange of mercury vapor: evidence for compensation point. Water, Air, and Soil Pollution 80: 373–382.

    Article  CAS  Google Scholar 

  19. Rugh, C.L., Wilde, H.D., Stack, N.M., Thompson, D.M., Summers, A.O. and Meagher, R.B. 1996. Mercuric ion reduction and resistance in trangenic Arabidopsis thaliana plants expressing a modified merA gene. Proc. Nat Acad. Scl. USA 93: 3182–3187.

    Article  CAS  Google Scholar 

  20. Barrineau, P., Gilbert, P., Jackson, W.J., Jones, C.S., Summers, A.O. and Wisdom, S. 1984. The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. Journal of Molecular and Applied Genetics 2: 601–619.

    CAS  PubMed  Google Scholar 

  21. Murray, E.E., Lotzer, J. and Eberle, M. 1989. Codon usage in plant genes. Nucleic Acids Res. 17: 477–498.

    Article  CAS  Google Scholar 

  22. Matzke, M.A. and Matzke, A.J.M. 1995. How and why do plants inactivate homologous (trans)genes. Plant Physiol. 107: 679–685.

    Article  CAS  Google Scholar 

  23. Ingelbrecht, I., Van Houdt, H., Van Montagu, M. and Depicker, A. 1995. Posttranslational silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci. USA 91: 10502–10506.

    Article  Google Scholar 

  24. Wilde, H.D., Meagher, R.B. and Merkle, S.A. 1992. Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol. 98: 114–120.

    Article  CAS  Google Scholar 

  25. Kornfeld, R. and Kornfeld, S. 1885. Assembly of asparagine-linked oligosaccha-rides. Annu. Rev. Biochem. 54: 631–664.

    Article  Google Scholar 

  26. Suszcynsky, E.M. and Shann, J.R. 1995. Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environmental Toxicology and Chemistry 14: 61–67.

    Article  CAS  Google Scholar 

  27. Du, S.-H. and Feng, S.C. 1983. Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake. Environmental and Experimental Botany 23: 347–353.

    Article  CAS  Google Scholar 

  28. Ogata, M. and Aikoh, H. 1984. Mechanism of metallic mercury oxidation in vitro by catalase and peroxidase. Biochem. Pharmacol. 33: 490–493.

    Article  CAS  Google Scholar 

  29. Pawlowski, W.P. and Somers, D.A. 1996. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 6: 17–30.

    Article  CAS  Google Scholar 

  30. Malik, V.S. and Wahab, S.Z. 1993. Versatile vectors for expressing genes in plants. Journal of Plant Biochemistry and Biotechnology 2: 60–70.

    Article  Google Scholar 

  31. Sotak, R.J., Sommer, H.E. and Merkle, S.A. 1991. Relation of the developmental stage of zygotic embryos of yellow-poplar to their somatic embryogenic potential. Plant Cell Reports 10: 175–178.

    Article  CAS  Google Scholar 

  32. Klein, T.M., Kornstein, L., Sanford, J.C., and Fromm, M.E. 1989. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91: 440–444.

    Article  CAS  Google Scholar 

  33. Klimyuk, F, Oakeley, E.J., and Jost, J.P 1997. Antibiotics induce genome-wide hypermethylation in cultured Nicotians tabacum plants. J. Biol. Chem. 272: 1534–1540.

    Article  Google Scholar 

  34. Klimyuk, V.I., Carroll, B.J., Thomas, C.M., and Jones, J.D.G. 1993. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3: 493–494.

    Article  CAS  Google Scholar 

  35. McLean, B.G., Huang, S., McKinney, E.C. and Meagher, R.B. 1990. Plants contain highly divergent actin isovariants. Cell Motility and the Cytoskeleton 17: 276–290.

    Article  CAS  Google Scholar 

  36. Merkle, S.A., Wiecko AT., Sotak, R.J., and Sommer,H.E. 1990. Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Developmental and Cellular Biology 26: 1086–1093.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rugh, C., Senecoff, J., Meagher, R. et al. Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16, 925–928 (1998). https://doi.org/10.1038/nbt1098-925

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1098-925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing