Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transgenic rye plants obtained by injecting DNA into young floral tillers

Abstract

The most successful method currently used to produce transgenic plants is based on the ability of Argobacterium tumefaciens to infect a number of higher plant species and transfer a defined DNA fragment (T-DNA) to the genome of the infected cells1. This procedure cannot be used with the agriculturally important cereals, although preliminary data have suggested2 infection of maize seedlings by A. tumefaciens strains. Purified exogenous DNA can be taken up, integrated and expressed in cells of a variety of plant species including some cereals following direct gene transfer into isolated protoplasts3–7. However, although it is possible to grow isolated cereal protoplast into unorganized tissue (calli)5,7,8, only rice protoplasts have so far been shown to regenerate mature plants9–11. Here we report an alternative approach to transformation of cereal plants which does not involve tissue culture techniques.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nester, E. W., Gordon, M. P., Amasino, R. M. & Yanofsky, M. F. A. Rev. pl. Physiol. 35, G387–413 (1984).

    Article  Google Scholar 

  2. Graves, A. C. F. & Goldman, S. L. Pl. molec. Biol. 7, 43–50 (1986).

    Article  CAS  Google Scholar 

  3. Paszkowski, J. et al. EMBO J. 3, 2717–2722 (1984).

    Article  CAS  Google Scholar 

  4. Hain, R. et al. Molec. gen. Genet. 119, 161–168 (1985).

    Article  Google Scholar 

  5. Lorz, H., Baker, B. & Schell, J. Molec. gen. Genet. 119, 178–182 (1985).

    Article  Google Scholar 

  6. Potrykus, I., Saul, M. W., Petruska, J., Paszkowski, J. & Shillito, R. D. Molec. gen. Genet. 119, 183–188 (1985).

    Article  Google Scholar 

  7. Fromm, M. E., Taylor, L. P. & Walbot, V. Nature 319, 791–793 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Vasil, I. K. in Cell Culture and Somatic Cell Genetics (Academic, Orlando, 1984).

    Google Scholar 

  9. Fujimura, T., Sakurai, M., Akagi, H., Negishi, T. & Hirose, A. Pl. Tissue Lett. 2, 74–75 (1985).

    Article  Google Scholar 

  10. Yamada, Y., Zhi-Qi, Y. & Ding-Tai, T. Pl. Cell Rep. 5, 85–88 (1986).

    Article  CAS  Google Scholar 

  11. Toriyama, Y., Hinata, K. & Sasaki, K. Theor. appl. Genet. (in the press).

  12. De la Peña, A., Puertas, M. J. & Merino, F. Chromosoma 83, 241–248 (1981).

    Article  Google Scholar 

  13. Puertas, M. J., De la Peña, A., Estades, B. & Merino, F. Chromosoma 89, 121–126 (1984).

    Article  CAS  Google Scholar 

  14. Knop, W. Landwirtsch. Vers. Stn. 7, 93–107 (1885).

    Google Scholar 

  15. Ozias-Akins, P. & Vasil, I. K. in Cell Culture and Somatic Cell Genetics of Plants (Academic, London, 1985).

    Google Scholar 

  16. Reiss, B., Sprengel, R., Will, H. & Schaller, H. Gene 30, 217–223 (1984).

    Article  Google Scholar 

  17. Schreier, P. H., Seftor, E. A., Schell, J. & Bohnert, H. J. EMBO J. 4, 25–32 (1985).

    Article  CAS  Google Scholar 

  18. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  19. Dellaporta, S. L., Wood, J. & Hicks, J. B. Pl. molec. Biol. Rep. 1, 19–21 (1983).

    Article  CAS  Google Scholar 

  20. Czernilofsky, A. P. et al. DNA 5, 101–103 (1986).

    Article  CAS  Google Scholar 

  21. Merino, F. thesis. Univ. Santiago de Compostela (1986).

  22. McQuade, H. A. & Young-Rotter, A. M. Am. J. Bot. 71, 228–238 (1984).

    Article  Google Scholar 

  23. Heslop-Harrison, J. Ann. Bot. 30, 221–229 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Peña, A., Lörz, H. & Schell, J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325, 274–276 (1987). https://doi.org/10.1038/325274a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325274a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing