Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Expression of a bacterial gene in plants by using a viral vector

Abstract

Several properties of the cauliflower mosaic virus (CaMV) indicate that it could provide a useful vector for gene transfer in higher plants: (1) it has a relatively small double-stranded genome that can be easily manipulated in vitro1–3; (2) cloned viral DNA is infectious when rubbed onto healthy leaves4,5; (3) virus spreads throughout the plant and can be found in most cells at high copy number. Two regions of the CaMV genome—open reading frames (ORFs) II and VII—do not seem to be essential for infection, as both can be either deleted or expanded by small inserts of foreign DNA6–8. No functional genes have yet been introduced into these ORFs. Here we report the replacement of CaMV ORF II by the R67 plasmid-encoded dihydrofolate reductase (DHFR) gene; this gene (dhfr) confers resistance to methotrexate in Escherichia coli. The chimaeric viral DNA can be stably propagated in turnip plants and the dhfr gene is expressed, producing a functional enzyme.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Franck, A., Guilley, H., Jonard, G., Richards, K. & Hirth, L. Cell 21, 285–294 (1980).

    Article  CAS  Google Scholar 

  2. Gardner, R. C. et al. Nucleic Acids Res. 9, 2871–2888 (1981).

    Article  CAS  Google Scholar 

  3. Bálázs, E., Guilley, H., Jonard, G. & Richards, K. Gene 19, 239–249 (1982).

    Article  Google Scholar 

  4. Howell, S. H., Walker, L. L. & Dudley, R. K. Science 208, 1265–1267 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Lebeurier, G., Hirth, L., Hohn, T. & Hohn, B. Gene 12, 139–146 (1980).

    Article  CAS  Google Scholar 

  6. Howell, S. H., Walker, L. L. & Walden, R. M. Nature 293, 483–486 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Gronenborn, B., Gardner, R. C., Schaefer, S. & Shepherd, R. J. Nature 294, 773–776 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Dixon, L. K., Koenig, I. & Hohn, T. Gene 25, 189–199 (1983).

    Article  CAS  Google Scholar 

  9. Odell, J. T., Dudley, R. K. & Howell, S. H. Virology 111, 377–385 (1981).

    Article  CAS  Google Scholar 

  10. Guilley, H., Dudley, R. K., Jonard, G., Bálázs, E. & Richards, K. E. Cell 30, 763–773 (1982).

    Article  CAS  Google Scholar 

  11. Covey, S. N. & Hull, R. Virology 111, 463–474 (1981).

    Article  CAS  Google Scholar 

  12. O'Hare, K., Benoist, C. & Breathnach, R. Proc. natn. Acad. Sci. U.S.A. 78, 1527–1531 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Brisson, N. & Hohn, T. Gene 28, 265–269 (1984).

    Article  Google Scholar 

  14. Blakley, R. L. The Biochemistry of Folic Acid and Related Pteridins, 139–187 (North-Holland, Amsterdam, 1969).

    Google Scholar 

  15. Pattishall, K. H., Acar, J., Burchall, J. J., Goldstein, F. W. & Harvey, R. J. J. biol. Chem. 252, 2319–2323 (1977).

    CAS  PubMed  Google Scholar 

  16. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  17. Gardner, R. C. & Shepherd, R. J. Virology 106, 159–161 (1980).

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. Nature new Biol. 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Fling, M. E. & Elwell, L. P. J. Bact. 141, 779–785 (1980).

    CAS  Google Scholar 

  21. Nitsch, J. P. & Nitsch, C. Science 163, 83–87 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisson, N., Paszkowski, J., Penswick, J. et al. Expression of a bacterial gene in plants by using a viral vector. Nature 310, 511–514 (1984). https://doi.org/10.1038/310511a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310511a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing