Skip to main content
Log in

Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Pinus pinaster (Ait.) is a high yielding forest tree, producing nearly a fourth of French marketed timber essentially from intensively managed stands located in southwestern France, in the Landes Forest. This species has generally a poor stem straightness, especially when it grows in poor sandy podzol of the Landes Forest, affected by summer droughts and winter floods. Above- and below-ground architecture and biomass as well as stem straightness were measured on twenty-nine 5-year-old planted trees uprooted by pulling with a lumbering crane. A very precise numeric representation of the geometry and topology of structural root architecture was gained using a low-magnetic-field digitising device (Danjon et al., 1998; Sinoquet and Rivet, 1997). Data were analysed with AMAPmod, a database software designed to analyse plant topological structures (Godin et al., 1997). Several characteristics of root architecture were extracted by queries including root number, length, diameter, volume, spatial position, ramification order, branching angle and inter-laterals length. Differences between root systems originated from their dimensions, but also from the proportion of deep roots and the taproot size, which represented 8% of the total root volume. The proportion of root volume in the zone of rapid taper was negatively correlated with the proportion of root volume in the taproot indicating a compensation between taproot and main lateral root volume. Among all studied root characteristics the maximal rooting depth, the proportion of deep roots and the root partitioning coefficient were correlated with stem straightness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arbez M 1979 Contrôle génétique et mécanismes d'acquisition des défauts de rectitude du tronc chez le pin maritime landais. In proc. of 104e Congrès national des sociétés savantes, Bordeaux, Sciences, no fasc. II.

  • Atger C 1991 L'architecture est-elle influencée par le milieu? In proc. conf. 'L'ARBRE, Biologie et Développement', Montpellier, France. Ed. C Edelin. pp 72–84. Naturalia Monspeliensia no h. s.

    Google Scholar 

  • Atger C and Edelin C 1995 A case of sympodial branching based on endogenous determinism in root system: Platanus hybrida Brot. Acta Bot. Gallica 142, 23–30.

    Google Scholar 

  • Auberlinder V 1982 De l'instabilité du pin maritime. Annales de Recherche Sylvicoles, A. Fo. Cel, Paris. pp 139–178.

  • Balneaves J M and de la Mare P J 1989 Root patterns of Pinus radiata on five ripping treatments in a Canterbury forest. N.Z. J. For. Sci. 19, 29–40.

    Google Scholar 

  • Batschelet E 1981 Circular statistics in biology. Academic Press, London. 371 p.

    Google Scholar 

  • Berbigier P, Diawara A and Loustau D 1991 Étude microclimatique de l'effet de sécheresse sur l'évaporation d'une plantation de pins maritimes et du sous-bois. Ann. Sci. For. 22, 157–177.

    Google Scholar 

  • Berthier S, Stokes A and Guitard D 1997 Effects of mechanical stress on wood formation in maritime pine (Pinus pinaster) roots. In proc. of the 2nd workshop of IUFRO working party S5.01.04 'Connection between sylviculture and wood quality through modelling approaches and simulation software', Kruger National Park, South Africa, 26–31 August 1996. INRA, Versailles, France.

    Google Scholar 

  • Bloomberg W J and Hall A A 1986 Effects of laminated root rot on relationships between stem growth and root-system size, morphology, and spatial distribution in Douglas-fir. Forest Sci. 32, 202–219.

    Google Scholar 

  • Böhm W1979 Methods of studying root systems. Ecological studies no 33. Eds W D Billing, F Golley, O L Lange and J S Olson. Springer Verlag, Berlin. 188 p.

    Google Scholar 

  • Belgrand M, Dreyer E, Joannes H, Velter C and Scuiller I 1987 A semi-automated data processing system for root growth analysis: application to a growing oak seedling. Tree Physiol. 3, 393–404.

    PubMed  Google Scholar 

  • Breda N, Cochard H, Dreyer E and Granier A 1993 Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Ann. Sci. For. 50, 571–582.

    Google Scholar 

  • Brown T N and Kulasiri D 1994 Simulation of Pinus radiata root system structure for ecosystem management applications. Simulation 62, 42–57.

    Google Scholar 

  • Brown T N, Kulasiri D and Gaunt R E 1997 A root-morphology based simulation for plant soil microbial ecosystem modelling. Ecol. Model. 99, 275–287.

    Article  Google Scholar 

  • Cailliez F and Gueneau P 1972 Analyse en composantes principales des propriétés technologiques des bois malgaches. Ann. Sci. For. 30, 215–266.

    Article  Google Scholar 

  • Canham C D, Berkowitz A R, Kelly V R, Lovett G M, Ollinger S V and Schnurr J 1996 Biomass allocation and multiple resource limitation in tree seedlings. Can. J. For. Res. 26, 1521–1530.

    Google Scholar 

  • Carlson W C and Harrington C A 1987 Cross-sectional area relationships in root systems of loblolly and shortleaf pine. Can. J. For. Res. 17, 556–558.

    Google Scholar 

  • Chaperon H, Hinschberger F, Haury P and Alazard P. 1991 Étude comparative du développement de plants de pin maritime issus de boutures et de semis. Ann. de Rech. Sylvicoles, AFOCEL, Paris. 1991, 15–34.

    Google Scholar 

  • Colin F, Danjon F and Wehrlen L 1996 Études racinaires au sein du programme 'Croissance' de l'INRA (Quercus petraea et Pinus pinaster). Rev. For. Fr. 46, 165–172.

    Google Scholar 

  • Colin-Belgrand M, Joannes H, Dreyer E and Pagès L 1989 A new data processing system for root growth and ramification analysis: Description of methods. Ann. Sci. For. 46, 305–309.

    Google Scholar 

  • Coutts M P 1983 Root architecture and tree stability. Plant Soil 71, 171–188.

    Article  Google Scholar 

  • Coutts M P 1987 Developmental process in tree root systems. Can. J. For. Res. 17, 761–767.

    Google Scholar 

  • Crémière L 1994 Conteneurs, quelle conséquences pour le pin maritime. Information-Forêt, AFOCEL-ARMEF, Paris, 1, 69–88.

    Google Scholar 

  • Danjon F 1994 Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine. Theor. Appl. Genet. 89, 911–921.

    Article  Google Scholar 

  • Danjon F 1995 Observed selection effects on height growth, diameter and stem form in maritime pine. Silvae Genet. 44, 10–19.

    Google Scholar 

  • Danjon F, Sinoquet H, Godin C, Colin F and Drexhage M 1999 Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211, 241–258.

    Article  CAS  Google Scholar 

  • Drexhage M and Gruber F 1998 Architecture of the skeletal root system of 40-year-old Picea abies on strongly acidified soils in the Harz Mountains (Germany). Can. J. For. Res. 28, 13–22.

    Article  Google Scholar 

  • Drexhage M, Chauvière M, Colin F and Nielsen C N N 1999 Development of structural root architecture and allometry of Quercus petraea. Can. J. For. Res. 29, 600–608.

    Article  Google Scholar 

  • Eis S 1974 Root system morphology of western hemlock, western red cedar and Douglas-fir. Can. J. For. Res. 4, 28–38.

    Article  Google Scholar 

  • Gale MR and Grigal D F 1987 Vertical root distributions of northern tree species in relation to successional status. Can. J. For. Res. 17, 829–834.

    Google Scholar 

  • Godin C, Costes E and Caraglio Y 1997 Exploring plant topological structure with the AMAPmod software: an outline. Silva Fennica 31, 355–366.

    Google Scholar 

  • Granier A and Loustau D, 1994. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agric. For. Meteorol. 71, 61–82.

    Article  Google Scholar 

  • Henderson R, Ford E D, Renshaw E and Deans J D 1983a Morphology of the structural root system of sitka spruce: 1. Analysis and quantitative description. Forestry 56, 121–135.

    Google Scholar 

  • Henderson R, Ford E D and Renshaw E 1983b Morphology of the structural root system of sitka spruce: 2. Computer simulation of rooting pattern. Forestry 56, 137–153.

    Google Scholar 

  • Lemoine B, Gelpe J, Ranger J and Nys C 1986 Biomasses et croissance du pin maritime. Étude de la variabilité dans un peuplement de 16 ans. Ann. Sci. Forest. 43, 67–84.

    Google Scholar 

  • Lynch J 1995 Root architecture and plant productivity. Plant Physiol. 109, 7–13.

    PubMed  CAS  Google Scholar 

  • Mason E G 1985 Causes of juvenile instability of Pins radiata in New Zealand. N.Z. J. For. Sci. 15, 263–280.

    Google Scholar 

  • Maugé J P 1987 Le pin maritime, premier résineux de France. Institut pour le Développement Forestier, Paris, France. 192 p.

  • McMinn R G 1963 Characteristics of Douglas-fir root systems. Can. J. Bot. 41, 105–122.

    Article  Google Scholar 

  • Nicoll B C, Easton E P, Milner A D, Walker C and Coutts M P 1997 Wind stability factors in tree selection: distribution of biomass within root systems of sitka spruce clones. In Wind and wind related damage to trees, Eds M Coutts and J Grace. pp 276–301. Cambridge University Press.

  • Polhemus 1993 3SPACE user's manual, Kaiser Aerospace & Electronics Company, Colchester, Vermont, USA. 158 p.

    Google Scholar 

  • Porté, A. 1999 Modélisation des effets du bilan hydrique sur la production primaire et la croissance d'un couvert de pin maritime (Pinus pinaster Ait.) en Lande Humide. Ph.D. thesis, Université de Paris-Sud Orsay. 172 p.

  • Puhe J 1994 Die Wurzelentwicklung der Fichte (Picea abies [L.] Karst.) bei unterschiedlichen chemischen Bodenbedingungen. Berichte des Forschungszentrum Waldökosysteme der Universität Göttingen, Reihe A, Band 108, 129p.

    Google Scholar 

  • Reffye P de, Houllier F, Blaise F, Barthélémy D, Dauzat J and Auclair D 1995 A model simulating above-and below-ground tree architecture with agroforestry applications. Agrofor. Syst. 30, 175–197.

    Article  Google Scholar 

  • Saur E 1989 Alimentation oligo-minérale du pin maritime (Pinus pinaster Soland in Ait.) en relation avec quelques caractéristiques physico-chimiques des sols sableux des Landes de Gascogne. Ann. Sci. For. 46, 119–129.

    Google Scholar 

  • Sinoquet H and Rivet P 1997 Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Trees-Struct. Funct. 11, 265–270.

    Google Scholar 

  • Sinoquet H, Rivet P and Godin C 1997 Assessment of the threedimensional architecture of walnut trees using digitising. Silva Fennica 31, 265–273.

    Google Scholar 

  • Somerville A 1979 Root anchorage and root morphology of Pinus radiata on a range of ripping treatments. N.Z. J. For. Sci. 9, 294–315.

    Google Scholar 

  • Statistical Sciences 1993 S-PLUS User's Manual, Version 3.2, Seattle: StatSci, a division of MathSoft, Inc., 450 p.

  • Stokes A, Ball J, Fitter A H, Brain P and Coutts M P 1996 An experimental investigation of the resistance of model root systems to uprooting. Ann. Bot. 78, 415–421.

    Article  Google Scholar 

  • Stokes A, Berthier S, Sacriste S and Martin F 1998 Variations in root shape and maturation strains in the root systems of maritime pine. Trees 12, 334–339.

    Google Scholar 

  • Stone E L and Kalisz P J 1991 On the maximum extent of tree roots. Forest Ecol. Manage. 46, 59–102.

    Article  Google Scholar 

  • Watson A and O'Loughlin C 1990 Structural root morphology and biomass of three age-classes of Pinus radiata. N.Z. J. For. Sci. 20, 97–110.

    Google Scholar 

  • Williams C G and Lambeth C C 1989 Bole straightness measurement for advanced-generation loblolly pine genetic tests. Silvae Genet. 38, 212–217.

    Google Scholar 

  • Wilson B F 1975 Distribution of secondary thickening in tree root systems. In The development and function of roots. Eds J G Torrey and D T Clarkson. pp 197–219. Academic Press Inc., London.

    Google Scholar 

  • Wu T H, Bettadapura D P and Beal P E 1988 A statistical model of root geometry. For. Sci. 34, 980–997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danjon, F., Bert, D., Godin, C. et al. Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant and Soil 217, 49–63 (1999). https://doi.org/10.1023/A:1004686119796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004686119796

Navigation