Skip to main content
Log in

The evolutionary ecology of nut dispersal

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

A variety of nut-producing plants have mutualistic seed-dispersal interactions with animals (rodents and corvids) that scatter hoard their nuts in the soil. The goals of this review are to summarize the widespread horticultural, botanical, and ecological literature pertaining to nut dispersal inJuglans, Carya, Quercus, Fagus, Castanae, Castanopsis, Lithocarpus, Corylus, Aesculus, andPrunus; to examine the evolutionary histories of these mutualistic interactions; and to identify the traits of nut-bearing plants and nut-dispersing rodents and jays that influence the success of the mutualism. These interactions appear to have originated as early as the Paleocene, about 60 million years ago. Most nuts appear to have evolved from ancestors with wind-dispersed seeds, but the ancestral form of dispersal in almonds (Prunus spp.) was by frugivorous animals that ingested fruit.

Nut-producing species have evolved a number of traits that facilitate nut dispersal by certain rodents and corvids while serving to exclude other animals that act as parasites of the mutualism. Nuts are nutritious food sources, often with high levels of lipids or proteins and a caloric value ranging from 5.7 to 153.5 kJ per propagule, 10–1000 times greater than most wind-dispersed seeds. These traits make nuts highly attractive food items for dispersers and nut predators. The course of nut development tends to reduce losses of nuts to insects, microbes, and nondispersing animals, but despite these measures predispersal and postdispersal nut mortality is generally high. Chemical defenses (e.g., tannins) in the cotyledons or the husk surrounding the nut discourage some nut predators. Masting of nuts (periodic, synchronous production of large nut crops) appears to reduce losses to insects and to increase the number of nuts dispersed by animals, and it may increase cross-pollination. Scatter hoarding by rodents and corvids removes nuts from other sources of nut predation, moves nuts away from source trees where density-dependent mortality is high (sometimes to habitats or microhabitats that favor seedling establishment), and buries nuts in the soil (which reduces rates of predation and helps to maintain nut viability). The large nutrient reserves of nuts not only attract animal dispersers but also permit seedlings to establish a large photosynthetic surface or extensive root system, making them especially competitive in low-light environments (e.g., deciduous forest) and semi-arid environments (e.g., dry mountains, Mediterranean climates). The most important postestablishment causes of seedling failure are drought, insufficient light, browsing by vertebrate herbivores, and competition with forbs and grasses. Because of the nutritional qualities of nuts and the synchronous production of large nut crops by a species throughout a region, nut trees can have pervasive impacts on other members of ecological communities. Nut-bearing trees have undergone dramatic changes in distribution during the last 16,000 years, following the glacial retreat from northern North America and Europe, and the current dispersers of nuts (i.e., squirrels, jays, and their relatives) appear to have been responsible for these movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Abrahamson, W. G. &C. R. Abrahamson. 1989. Nutritional quality of animal dispersed fruits in Florida sandridge habitats. Bull. Torrey Bot. Club 116: 215–228.

    Article  Google Scholar 

  • Adams, J. C. &B. A. Thielges 1979. Seed sizes effects on first- and second-year pecan and hybrid pecan growth. Tree Planters’ Notes 30: 31–33.

    Google Scholar 

  • Aizen, M. A. &W. A. I. Patterson. 1990. Acorn size and geographical range in the North American oaks (Quercus L.). J. Biogeogr. 17: 327–332.

    Article  Google Scholar 

  • Ashby, K. R. 1967. Studies on the ecology of field mice and voles (Apodemus sylvaticus, Clethrionomys glareolus andMicrotus agrestis) in Houghall Wood, Durham. J. Zool. (London) 152: 389–513.

    Google Scholar 

  • Badenes, M. L. &D. E. Parfitt. 1995. Phylogenetic relationships of cultivatedPrunus species from an analysis of chloroplast DNA variation. Theor. Appl. Genet. 90: 1035–1041.

    Article  CAS  Google Scholar 

  • Baker, H. G. 1972. Seed weight in relation to environmental conditions in California. Ecology 53: 997–1010.

    Article  Google Scholar 

  • Barnett, R. J. 1977. The effect of burial by squirrels on germination and survival of oak and hickory nuts. Amer. Midl. Naturalist 98: 319–330.

    Article  Google Scholar 

  • Barrett, L. I. 1931. Influence of forest litter on the germination and early survival of chestnut oak,Quercus montana Willd. Ecology 12: 476–484.

    Article  Google Scholar 

  • Baumgras, P. 1944. Experimental feeding of captive fox squirrels. J. Wildlife Managern. 8: 296–300.

    Article  Google Scholar 

  • Beck, D. E. 1977. Twelve-year acorn yield in southern Appalachian oaks. USDA Forest Service Res. Note SE 244. Southeastern Forest Experiment Station, Asheville, NC.

    Google Scholar 

  • Bennett, K. D. 1985. The spread ofFagus grandifolia across eastern North America during the last 18,000 years. J. Biogeogr. 12: 147–164.

    Article  Google Scholar 

  • Beuchat, L. R. &R. E. Worthington. 1978. Technical note: Fatty acid composition of tree nut oils. J. Food Techn. 13: 355–358.

    CAS  Google Scholar 

  • Bhagat, S., O. Singh &V. Singh. 1993. Effect of seed weight on germination, survival and initial growth of horsechestnut (Aesculus indica colebr) in the nursery. Indian Forester 119: 627–629.

    Google Scholar 

  • Bilsing, S. W. 1931. The pecan nut case bearer. Proc. Natl. Pecan Assoc. 30: 51–57.

    Google Scholar 

  • Bock, W. J., R. P. Balda &S. B. Vander Wall. 1973. Morphology of the sublingual pouch and tongue musculature in Clark’s nutcracker. Auk90: 491–519.

    Google Scholar 

  • Bonfil, C. 1998. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth inQuercus rugosa andQ. laurina (Fagaceae). Amer. J. Bot. 85: 79–87.

    Article  Google Scholar 

  • Borchert, M. I., F. W. Davis, J. Michaelsen &L. D. Oyler. 1989. Interaction of factors affecting seedling recruitment of blue oak (Quercus douglasii) in California. Ecology 70: 389–404.

    Article  Google Scholar 

  • Bossema, I. 1979. Jays and oaks: An eco-ethological study of a symbiosis. Behaviour 70: 1–117.

    Article  Google Scholar 

  • Botta, R., G. Vergano, G. Me&R. Vallania. 1995. Floral biology and embryo development in chestnut (Castanea sativa Mill.). HortScience 30: 1283–1286.

    Google Scholar 

  • Boucher, D. H. 1981. Seed predation by mammals and forest dominance byQuercus oleoides, a tropical lowland oak. Oecologia 49: 409–414.

    Article  Google Scholar 

  • — &V. L. Sork. 1979. Early drop of nuts in response to insect infestation. Oikos 33: 440–443.

    Article  Google Scholar 

  • Boyce, A. M. 1934. Bionomics of the walnut husk fly,Rhagoletis completa. Hilgardia 8: 363–579.

    Google Scholar 

  • Bradbeer, J. W. 1968. Studies in seed dormancy, IV. The role of endogenous inhibitors and gibberellin in the dormancy and germination ofCorylus avellana L. seeds. Planta 78: 266–276.

    Article  CAS  Google Scholar 

  • Brett, D. W. 1964. The inflorescence ofFagus andCastanea, and the evolution of the cupules of the fagaceae. New Phytol. 63: 96–118.

    Article  Google Scholar 

  • Briggs, J. M. &K. G. Smith. 1989. Influence of habitat on acorn selection byPeromyscus leucopus. J. Mammalogy 70: 35–43.

    Article  Google Scholar 

  • Brodkorb, P. 1978. Catalogue of fossil birds, part 5 (Passeriformes). Bull. Florida State Mus., Biol. Sci. 23: 139–228.

    Google Scholar 

  • Brookes, P. C., D. L. Wigston &W. F. Bourne. 1980. The dependence ofQuercus robur andQ. petraea seedlings on cotyledon potassium, magnesium, calcium and phosphorus during the first year of growth. Forestry 53: 167–177.

    Article  CAS  Google Scholar 

  • Brooks, F. E. 1922. Curculios that attack the young fruits and shoots of walnut and hickory. U.S.D.A. Bull. 1066: 1–16.

    Google Scholar 

  • Browitz, K. &D. Zohary. 1996. The genusAmygdalus L. (Rosaceae): Species relationships, distribution, and evolution under domestication. Genet. Resources & Crop Evol. 43: 229–247.

    Article  Google Scholar 

  • Brown, L. G. &L. E. Yeager. 1945. Fox squirrel and gray squirrels in Illinois. Bull. Illinois Nat. Hist. Surv. 23: 449–536.

    Google Scholar 

  • Burns, T. A. &C. E. Viers Jr. 1973. Caloric and moisture content values of selected fruits and mast. J. Wildlife Managern. 37: 585–587.

    Article  Google Scholar 

  • Cahalane, V. 1942. Caching and recovery of food by the western fox squirrels. J. Wildlife Managern. 6: 338–352.

    Article  Google Scholar 

  • Calcote, V. R., R. E. Hunter &T. E. Thompson. 1984. Nutrient flow through the pecan shuck into the nut and disruption of this flow by hickory shuckworm larvae. Proc. SE Pecan Growers Assoc. 77: 61–69.

    Google Scholar 

  • Callaway, R. M. 1992. Effect of shrubs on recruitment ofQuercus douglasii andQuercus lobata in California. Ecology 73: 2118–2128.

    Article  Google Scholar 

  • Carmen, W. J., W. D. Koenig &R. L. Mumme. 1987. Acorn production by five species of oaks over a seven year period at the Hastings Reservation, Carmel Valley, California. Pp. 429–434in T. R. Plumb & N. H. Pillsbury (eds.), Proceedings of the Symposium on Multiple-Use Management of California’s Hardwood Resources: November 12–14, 1986, San Luis Obispo, California. General Technical Report PSW 100. Pacific Forest and Range Experiment Station, Berkeley, CA.

    Google Scholar 

  • Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.

    Google Scholar 

  • Chalmers, D. J. &B. Van den Ende. 1977. The relation between seed and fruit development in the peach (Prunus persica L.). Ann. Bot. (London) 41: 707–714.

    Google Scholar 

  • Chambers, J. C., J. A. MacMahon &J. H. Haefner. 1991. Seed entrapment in alpine ecosystems: Effects of soil particle size and diaspore morphology. Ecology 72: 1668–1677.

    Article  Google Scholar 

  • Chettleburgh, M. R. 1952. Observations on the collection and burial of acorns by jays in Hainault Forest. Brit. Birds 45: 359–364.

    Google Scholar 

  • Christisen, D. M. 1955. Yield of seed by oaks in the Missouri Ozarks. J. Forest. 53: 439–441.

    Google Scholar 

  • — &L. J. Korschgen. 1955. Acorn yields and wildlife usage in Missouri. Trans. N. Amer. Wildlife Conf. 20: 337–356.

    Google Scholar 

  • Chung, C. S., M. K. Harris &J. B. Storey. 1995. Masting in pecan. J. Amer. Soc. Hort. Sci. 120: 386–393.

    Google Scholar 

  • Clark, J. S. 1998. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Amer. Naturalist 152: 204–224.

    Article  CAS  Google Scholar 

  • Clarkson, K., S. F. Eden, W. J. Sutherland &A. I. Houston. 1986. Density dependence and magpie food hoarding. J. Animal Ecol. 55: 111–121.

    Article  Google Scholar 

  • Clemens, W. A. &Z. Kielan-Jaworowska. 1979. Multituberculata. Pp. 99–149in J. A. Lillegraven, Z. Kielan-Jaworowska & W. A. Clemens (eds.), Mesozoic mammals: The first two-thirds of mammalian history. University of California Press, Berkeley.

    Google Scholar 

  • Collada, C., I. Allona, P. Aragoncillo &C. Aragoncillo. 1993. Development of protein bodies in cotyledons ofFagus sylvatica. Physiol. Pl. (Copenhagen) 89: 354–359.

    Article  CAS  Google Scholar 

  • Crane, P. R. 1989. Early fossil history and evolution of the Betulaceae. Pp. 2: 87–116in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.

    Google Scholar 

  • — &S. R. Manchester. 1982. An extinct juglandaceous fruit from the Upper Paleocene of southern England. Bot. J. Linn. Soc. 85: 89–101.

    Article  Google Scholar 

  • Crawley, M. J. &C. R. Long. 1995. Alternate bearing, predator satiation and seedling recruitment inQuercus robur L. J. Ecol. 83: 683–696.

    Article  Google Scholar 

  • Crepet, W. L. 1989. History and implications of the early North American fossil record of Fagaceae. Pp. 2: 45–66in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.

    Google Scholar 

  • — &K. C. Nixon. 1989. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. Amer. J. Bot. 76: 842–855.

    Article  Google Scholar 

  • Criswell, J. T., D. J. Boethel, R. D. Morrison &R. D. Eikenbary. 1975. Longevity, puncturing of nuts, and ovipositional activities by the pecan weevil on three cultivars of pecans. J. Econ. Entomol. 68: 173–177.

    Google Scholar 

  • Crow, T. R. 1988. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra): A review. Forest Sci. 34: 19–40.

    Google Scholar 

  • Cypert, E. &B. S. Webster. 1948. Yield and use by wildlife of acorns of water and willow oaks. J. Wildlife Managern. 12: 227–231.

    Google Scholar 

  • Darley-Hill, S. &W. C. Johnson. 1981. Acorn dispersal by blue jays (Cyanocitta cristata). Oecologia 50: 231–232.

    Article  Google Scholar 

  • Davis, M. B. 1981. Quaternary history and the stability of forest communities. Pp. 132–153in D. C. West, H. H. Shugart & D. B. Botkin (eds.), Forest succession: Concepts and application. Springer-Verlag, New York.

    Google Scholar 

  • K. D. Woods, S. L. Webb &R. P. Futyma. 1986. Dispersal versus climate expansion ofFagus andTsuga into the Upper Great Lakes region. Vegetatio 67: 93–103.

    Article  Google Scholar 

  • Deen, R. T. &J. D. Hodges. 1991. Oak regeneration in abandoned fields: Presumed role of the blue jay. Pp. 84–93in S. S. Coleman & D. G. Neary (comps.), Proceedings of the Sixth Biennial Southern Silvicultural Research Conference: Memphis, Tennessee, October 30–November 1, 1990. Southeastern Forest Experiment Station, Asheville, NC.

    Google Scholar 

  • DeGange, A. R., J. W. Fitzpatrick, J. N. Layne &G. E. Woolfenden. 1989. Acorn harvesting by Florida scrub jays. Ecology 70: 348–356.

    Article  Google Scholar 

  • Del Tredici, P. 1989. Ginkgos and multituberculates: Evolutionary interactions in the Tertiary. BioSystems 22: 327–339.

    Article  PubMed  Google Scholar 

  • Delcourt, H. R. &P. A. Delcourt. 1984. Ice age haven for hardwoods. Nat. Hist. 93: 22–28.

    Google Scholar 

  • Delcourt, P. A. &H. R. Delcourt. 1987. Long-term forest dynamics of the temperate zone: A case study of late-Quaternary forests in eastern North America. Ecological Studies, 63. Springer-Verlag, New York.

    Google Scholar 

  • Dennis, W. 1930. Rejection of wormy nuts by squirrels. J. Mammillaria Soc. 11: 195–201.

    Google Scholar 

  • Dickson, R. E., J. G. Isebrands &P. T. Tomlinson. 1990. Distribution and metabolism of current photosynthate by single-flush northern red oak seedlings. Tree Physiol. 7: 65–77.

    PubMed  Google Scholar 

  • Dixon, M. D., W. C. Johnson &C. S. Adkisson. 1997a. Effects of caching on acorn tannin levels and blue jay dietary performance. Condor 99: 756–764.

    Article  Google Scholar 

  • ———. 1997b. Effects of weevil larvae on acorn use by blue jays. Oecologia 111: 201–208.

    Article  Google Scholar 

  • Dohanian, S. M. 1944. Control of the filbert worm and filbert weevil by orchard sanitation. J. Econ. Entomol. 37: 764–766.

    Google Scholar 

  • Downs, A.A. &W. E. McQuillen. 1944. Seed production of southern Appalachian oaks. J. Forest. 42: 913–920.

    Google Scholar 

  • Drossopoulos, J. B., G. G. Kouchaji &D. L. Bouranis. 1996. Seasonal dynamics of mineral nutrients by walnut tree fruits. J. Pl. Nutr. 19: 435–455.

    CAS  Google Scholar 

  • Drozdz, A. 1968. Digestibility and assimilation of natural foods in small rodents. Acta Theriol. 13: 367–389.

    Google Scholar 

  • Elias, T. S. 1971. The genera of Fagaceae in the southeastern United States. J. Arnold Arbor. 52: 159–191.

    Google Scholar 

  • Elkinton, J. S., W. H. Healy, J. P. Buonacorsi, G. H. Boettner, A. M. Hazzard, H. R. Smith &A. M. Liebhold. 1996. Interactions among gypsy moth, white-footed mice, and acorns. Ecology 77: 2332–2342.

    Article  Google Scholar 

  • Emry, R. J. &R. W. Thorington Jr. 1984. The tree squirrelSciurus (Sciuridae, Rodentia) as a living fossil. Pp. 23–31in N. Eldridge & S. M. Stanley (eds.), Living fossils. Springer-Verlag, New York.

    Google Scholar 

  • Eriksson, O., E. M. Friis &P. Löfgren. 2000. Seed size, fruit size, and dispersal systems in angiosperms from the early Cretaceous to the late Tertiary. Amer. Naturalist 156: 47–58.

    Article  Google Scholar 

  • Farmer, R. E., Jr. 1981. Variation in seed yield of white oak. Forest Sci. 27: 377–380.

    Google Scholar 

  • Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581.

    Article  Google Scholar 

  • Feret, P. P., R. E. Kreh, S. A. Merkle &R. G. Oderwald. 1982. Flower abundance, premature acorn abscission, and acorn production inQuercus alba L. Bot. Gaz. (Crawfordsville) 143: 216–218.

    Article  Google Scholar 

  • Fey, B. S. &P. K. Endress. 1983. Development and morphological interpretation of the cupule in Fagaceae. Flora 173: 451–468.

    Google Scholar 

  • Finch-Savage, W. E. 1992. Embryo water status and survival in the recalcitrant speciesQuercus robur L.: Evidence for a critical moisture content. J. Exp. Bot. 43: 663–669.

    Article  Google Scholar 

  • — &H. A. Clay. 1994. Water relations of germination in the recalcitrant seeds ofQuercus robur L. Seed Sci. Res. 4: 315–322.

    Google Scholar 

  • Fleck, D. C. &J. N. Layne. 1990. Variation in tannin activity of acorns of seven species of central Florida oaks. J. Chem. Ecol. 16: 2925–2934.

    Article  CAS  Google Scholar 

  • — &D. F. Tomback. 1996. Tannin and protein in the diet of a food-hoarding granivore, the western scrub-jay. Condor 98: 474–482.

    Article  Google Scholar 

  • Flowerdew, J. R. 1972. The effect of supplemental food on a population of wood mice (Apodemus sylvaticus). J. Animal Ecol. 41: 553–566.

    Article  Google Scholar 

  • Forget, P.-M. 1991. Scatterhoarding ofAstrocaryum paramaca byProechimys in French Guiana: Comparison withMyoprocta exilis. Trop. Ecol. 32: 155–167.

    Google Scholar 

  • — 1992. Seed removal and seed fate inGustavia superba (Lecythidaceae). Biotropica 24: 408–414.

    Article  Google Scholar 

  • — 1993. Post-dispersal predation and scatterhoarding ofDipteryx panamensis (Papilionaceae) seeds by rodents in Panama. Oecologia 94: 255–261.

    Article  Google Scholar 

  • Forman, L. L. 1966. On the evolution of cupules in the Fagaceae. Kew Bull. 18: 385–419.

    Article  Google Scholar 

  • Formozov, A. N. 1933. The crop of cedar nuts, invasion into Europe of the Siberian nutcracker (Nucifraga caryocatactes macrorhynchus Brehm) and fluctuations in numbers of the squirrel (Sciurus vulgaris L.). J. Animal Ecol. 2: 70–81.

    Article  Google Scholar 

  • Foster, S. A. 1986. On the adaptive value of large seeds for tropical moist forest trees: A review and synthesis. Bot. Rev. (Lancaster) 52: 260–299.

    Article  Google Scholar 

  • Fox, J. F. 1982. Adaptation of gray squirrel behavior to autumn germination by white oak acorns. Evolution 36: 800–809.

    Article  Google Scholar 

  • Garrot, D. J., Jr.,M. W. Kilby, D. D. Fangmeier, S. H. Husman &A. E. Ralowicz. 1993. Production, growth, and nut quality in pecans under water stress based on the crop water stress index. J. Amer. Soc. Hort. Sci. 118: 694–698.

    Google Scholar 

  • Gemoets, E. E., L. A. Gemoets, T. E. Cannon &R. G. McIntyre. 1976. Cycles in U.S. pecan production 1919–1974 identified by power spectral analysis. J. Amer. Soc. Hort. Sci. 101: 550–553.

    Google Scholar 

  • Gibson, L. P. 1964. Biology and life history of acorn-infesting weevils of the genusConotrachelus (Coleoptera: Curculionidae). Bull. Ent. Soc. Amer. 57: 521–526.

    Google Scholar 

  • — 1971. Insects of bur oak acorns. Bull. Ent. Soc. Amer. 64: 232–234.

    Google Scholar 

  • — 1972. Insects that damage white oak acorns. USDA Forest Service Res. Paper NE 220. Northeastern Forest Experiment Station, Upper Darby, PA.

    Google Scholar 

  • Goldstein, J. L. &T. Swain. 1965. The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.

    Article  CAS  Google Scholar 

  • Goodrum, P. D., V. H. Reid &C. E. Boyd. 1971. Acorn yields, characteristics, and management criteria of oaks for wildlife. J. Wildlife Managern. 35: 520–532.

    Article  Google Scholar 

  • Gordon, D. R., J. M. Welker, J. W. Menke &K. J. Rice. 1989. Competition for soil water between annual plants and blue oak (Quercus douglasii) seedlings. Oecologia 79: 533–541.

    Article  Google Scholar 

  • Gosling, P. G. 1989. The effect of dryingQuercus robur acorns to different moisture contents followed by storage, either with or without imbibition. Forestry 62: 41–50.

    Article  Google Scholar 

  • Gottschalk, K. W. 1990. Gypsy moth effects on mast production. Pp. 42–50in C. E. McGee (ed.), Proceedings of the Workshop on Southern Appalachian Mast Management. University of Tennessee, Knoxville.

    Google Scholar 

  • Grey, G. W. &G. G. Naughton. 1971. Ecological observations on the abundance of black walnut in Kansas. J. Forest. 69: 741–743.

    Google Scholar 

  • Griffin, J. R. 1971. Oak regeneration in the upper Carmel Valley, California. Ecology 52: 862–868.

    Article  Google Scholar 

  • Grime, J. P. &D. W. Jeffrey. 1965. Seedling establishment in vertical gradients of sunlight. J. Ecol. 53: 621–642.

    Article  Google Scholar 

  • Grodzinski, W. &K. Sawicka-Kapusta. 1970. Energy value of tree seeds eaten by small mammals. Oikos 21: 52–58.

    Article  Google Scholar 

  • Grubb, P. J., W. G. Lee, J. Kollmann &J. Bastow Wilson. 1996. Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall-shrub species andFagus sylvatica. J. Ecol. 84: 827–840.

    Article  Google Scholar 

  • Gysel, L. W. 1956. Measurement of acorn crops. Forest Sci. 2: 305–313.

    Google Scholar 

  • — 1957. Acorn production on good, medium, and poor oak sites in southern Michigan. J. Forest. 55: 570–574.

    Google Scholar 

  • — 1971. A 10-year analysis of beechnut production and use in Michigan. J. Wildlife Managern. 35: 516–519.

    Article  Google Scholar 

  • Hagerup, O. 1942. The morphology and biology of theCorylus-fruit. Biol. Meddel. Kongel. Danske Vidensk. Selsk. 17: 1–33.

    Google Scholar 

  • Hallwachs, W. 1986. Agoutis (Dasyprocta punstata): The inheritors of guapinol (Hymenaea courbaril: Leguminosae). Pp. 285–304in A. Estrada and T. H. Fleming (eds.), Frugivores and seed dispersal. W. Junk, Dordrecht, Netherlands.

    Google Scholar 

  • Hammar, H. E. &J. H. Hunter. 1946. Some physical and chemical changes in the composition of pecan nuts during kernel filling. Pl. Physiol. (Lancaster) 21: 476–491.

    CAS  Google Scholar 

  • Hannon, S. J., R. L. Mumme, W. D. Koenig, S. Spon &F. A. Pitelka. 1987. Acorn crop failure, dominance, and a decline in numbers in the cooperatively breeding acorn woodpecker. J. Animal Ecol. 56: 197–207.

    Article  Google Scholar 

  • Hansen, L. P. &G. O. Batzli. 1978. The influence of food availability on the white-footed mouse: Populations in isolated woodlots. Canad. J. Zool. 56: 2530–2541.

    Article  Google Scholar 

  • — 1979. Influence of supplemental food on local populations ofPeromyscus leucopus. J. Mammillaria Soc. 60: 335–342.

    Google Scholar 

  • Hardin, J. W. 1955. Studies in the Hippocastanaceae, I. Variation within the mature fruit ofAesculus. Rhodora 57: 37–42.

    Google Scholar 

  • — 1957. A revision of the American Hippocastanaceae. Brittonia 9: 145–171.

    Article  Google Scholar 

  • Harley, J. L. 1939. The early growth of beech seedlings under natural and experimental conditions. J. Ecol. 27: 384–400.

    Article  Google Scholar 

  • Harlow, R. F., J. B. Whelan, S. C. Hewlette &J. E. Skeen. 1975. Deer foods during years of oak mast abundance and scarcity. J. Wildlife Managern. 39: 330–336.

    Article  Google Scholar 

  • Harper, J. L., P. H. Lovell &K. G. Moore. 1970. The shapes and sizes of seeds. Ann. Rev. Ecol. Syst. 1: 327–356.

    Article  Google Scholar 

  • Harrison, J. S. &P. A. Werner. 1984. Colonization by oak seedlings into a heterogeneous successional habitat. Canad. J. Bot. 62: 559–563.

    Google Scholar 

  • Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense: A reappraisal. J.Chem. Ecol. 14: 1789–1805.

    Article  CAS  Google Scholar 

  • Havera, S. P. &K. E. Smith. 1979. A nutritional comparison of selected fox squirrel foods. J. Wildlife Managern. 43: 691–704.

    Article  CAS  Google Scholar 

  • Heaney, L. R. &R. W. Thorington Jr. 1978. Ecology of neotropical red-tailed squirrels,Sciurusgranatensis, in the Panama Canal Zone. J. Mammillaria Soc. 59: 846–851.

    Google Scholar 

  • Herrera, C. M. &P. Jordano. 1981.Prunus mahaleb and birds: The high-efficiency seed dispersal system of a temperate fruiting tree. Ecol. Monogr. 51: 203–218.

    Article  Google Scholar 

  • Herrera, J. 1995. Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.). Forest. Ecol. Managern. 76: 197–201.

    Article  Google Scholar 

  • Hewitt, N. 1998. Seed size and shade-tolerance: A comparative analysis of North American temperate trees. Oecologia 114: 432–440.

    Article  Google Scholar 

  • Higuchi, H. 1977. Stored nutsCastanopsis cuspidata as a food resource of nestling varied titsParus varius. Tori 26: 9–12.

    Google Scholar 

  • Hopper, G. M., D. W. Smith &D. J. Parrish. 1985. Germination and seedling growth of northern red oak: Effects of stratification and pericarp removal. Forest Sci.31: 31–39.

    Google Scholar 

  • Hoshizaki, K., W. Suzuki &S. Sasaki. 1997. Impacts of secondary seed dispersal and herbivory on seedling survival inAesculus turbinata. J. Veg. Sci. 8: 735–742.

    Article  Google Scholar 

  • —— &T. Nakashizuka. 1999. Evaluation of secondary dispersal in a large-seeded treeAesculus turbinata: A test of directed dispersal. Pl. Ecol. 144: 167–176.

    Article  Google Scholar 

  • Hubbard, J. A. &G. R. McPherson. 1997. Acorn selection by Mexican jays: A test of a tri-trophic symbiotic relationship hypothesis. Oecologia 110: 143–146.

    Article  Google Scholar 

  • Hughes, J. W. &T. J. Fahey. 1988. Seed dispersal and colonization in a disturbed northern hardwood forest. Bull. Torrey Bot. Club 115: 89–99.

    Article  Google Scholar 

  • Huntley, B. 1988. Europe. Pp. 341–383in B. Huntley & T. Webb III (eds.), Vegetation history. Kluwer Academic, Dordrecht, Netherlands.

    Google Scholar 

  • Iida, S. 1996. Quantitative analysis of acorn transportation by rodents using magnetic locator. Vegetatio 124: 39–43.

    Article  Google Scholar 

  • Ims, R. A. 1990. On the adaptive value of reproductive synchrony as a predator-swamping strategy. Amer. Naturalist 136: 485–498.

    Article  Google Scholar 

  • Jacobs, L. F. 1992. The effect of handling time on the decision to cache by grey squirrels. Animal Behavior 43: 522–524.

    Article  Google Scholar 

  • — &E. R. Liman. 1991. Grey squirrels remember the locations of buried nuts. Animal Behavior 41: 103–110.

    Article  Google Scholar 

  • Janzen, D. 1971. Seed predation by animals. Ann. Rev. Ecol. Syst. 2: 465–492.

    Article  Google Scholar 

  • — 1986. Seeds as products. Oikos 46: 1–2.

    Article  Google Scholar 

  • Jarvis, B. C. 1975. The role of seed parts in the induction of dormancy of hazel (Corylus avellana L.). New Phytol. 75: 491–494.

    Article  CAS  Google Scholar 

  • Jarvis, P. G. 1963. The effects of acorn size and provenance on the growth of seedlings of sessile oak. Quart. J. Forest. 57: 11–19.

    Google Scholar 

  • Jennings, T. J. 1976. Seed detection by the wood mouseApodemus sylvaticus. Oikos 27: 174–177.

    Article  Google Scholar 

  • Jensen, T. S. 1982. Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia 54: 184–192.

    Article  Google Scholar 

  • — 1985. Seed-seed predator interactions of European beech,Fagus silvatica and forest rodents,Clethrionomys glareolus andApodemus flavicollis. Oikos 44: 149–156.

    Article  Google Scholar 

  • — &O. F. Nielsen. 1986. Rodents as seed dispersers in a heath-oak wood succession. Oecologia 70: 214–221.

    Article  Google Scholar 

  • Johnson, W. C. &C. S. Adkisson. 1985. Dispersal of beech nuts by blue jays in fragmented landscapes. Amer. Midl. Naturalist 113: 319–324.

    Article  Google Scholar 

  • — &T. Webb III. 1989. The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. J. Biogeogr. 16: 561–571.

    Article  Google Scholar 

  • —,D. M. Sharpe, D. L. DeAngelis, D. E. Fields &R. J. Olson. 1981. Modeling seed dispersal and forest island dynamics. Pp. 215–239in R. L. Burgess & D. M. Sharpe (eds.), Forest island dynamics in man-dominated landscapes. Springer-Verlag, New York.

    Google Scholar 

  • —,L. Thomas &C. S. Adkisson. 1993. Dietary circumvention of acorn tannins by blue jays: Implications for oak demography. Oecologia 94: 159–164.

    Article  Google Scholar 

  • — 1997. Nut caching by blue jays (Cyanocitta cristata L.): Implications for tree demography. Amer. Midl. Naturalist 138: 357–370.

    Article  Google Scholar 

  • Jones, C. G., R. S. Ostfeld, M. P. Richard, E. M. Schauber &J. O. Wolff 1998. Chain reactions linking acorns to gypsy moth outbreaks and lyme disease risk. Science 279: 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  • Kältender, H. 1978. Hoarding in the rookCorvus frugilegus. Anser Suppl. 3: 124–128.

    Google Scholar 

  • Kamil, A. C. &R. P. Balda. 1985. Cache recovery and spatial memory of Clark’s nutcracker (Nucifraga columbiana). J. Exp. Psychol., Animal Behavior Proc. 11: 95–111.

    Article  Google Scholar 

  • Kato, J. 1985. Food and hoarding behavior of Japanese squirrels. Jap. J. Ecol. 35: 13–20.

    Google Scholar 

  • Kaul, R. B. 1985. Reproductive morphology ofQuercus (Fagaceae). Amer. J. Bot. 72: 1962–1977.

    Article  Google Scholar 

  • — 1986. Evolution and reproductive biology of inflorescences inLithocarpus, Castanopsis, Castanea, andQuercus (Fagaceae). Ann. Missouri Bot. Gard. 73: 284–296.

    Article  Google Scholar 

  • — 1987. Reproductive structures ofLithocarpus senso lato (Fagaceae): Cymules and fruits. J. Arnold Arbor. 68: 73–104.

    Google Scholar 

  • — 1988. Cupular structure in paleotropicalCastanopsis (Fagaceae). Ann. Missouri Bot. Gard. 75: 1480–1498.

    Article  Google Scholar 

  • — 1989. Fruit structure and ecology in paleotropicalLithocarpus (Fagaceae). Pp. 67–86in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.

    Google Scholar 

  • Kautz, L. G. &F. G. Liming. 1939. Notes on the 1937 and 1938 acorn crops in the Missouri Ozarks. J. Forest. 37: 904.

    Google Scholar 

  • Kelly, D. 1994. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9: 465–470.

    Article  Google Scholar 

  • Kenward, R. E. &J. L. Holm. 1993. On the replacement of the red squirrel in Britain: A phytotoxic explanation. Proc. Roy. Soc. London 251: 187–194.

    Article  CAS  Google Scholar 

  • Kester, D. E., T. M. Gradziel &C. Grasselly. 1991. Almonds (Prunus). Acta Hort. 290: 701–758.

    Google Scholar 

  • Kikuzawa, K. 1988. Dispersal ofQuercus mongolica acorns in a broadleaved deciduous forest, 1. Disappearance. Forest. Ecol. Managern. 25: 1–8.

    Article  Google Scholar 

  • Koenig, W. D. 1991. The effect of tannins and lipids on digestion of acorns by acorn woodpeckers. Auk 108: 79–88.

    Google Scholar 

  • — 1998. Effects of storage on tannin and protein content of cached acorns. Southw. Naturalist 43: 170–175.

    Google Scholar 

  • —. 1988. Ability of two species of oak woodland birds to subsist on acorns. Condor 90: 705–708.

    Article  Google Scholar 

  • —. 1998. Testing for spatial autocorrelation in ecological studies. Ecography 21: 423–429.

    Article  Google Scholar 

  • ——. 2000. Patterns of annual seed production by northern hemisphere trees: A global perspective. Amer. Naturalist 155: 59–69.

    Article  Google Scholar 

  • -& -. In press. The behavioral ecology of masting in oaks.In W. McShea & W. Healy (eds.), Oak forest ecosystems. Johns Hopkins University Press, Baltimore.

  • — &R. L. Mumme. 1987. Population ecology of the cooperatively breeding acorn woodpecker. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • —,W. J. Carmen, M. T. Stanback &R. L. Mumme. 1991. Determinants of acorn productivity among five species of oak in central coastal California. Pp. 136–142in Proceedings of the Symposium on Oak Woodlands and Hardwood Rangeland Management, October 31 –November 2, 1990, Davis, California. General Technical Report PSW 126. U.S. Dept. of Agriculture, Pacific Southwest Research Station, Berkeley, CA.

    Google Scholar 

  • —. 1994. Acorn production by oaks in central coastal California: variation within and among years. Ecology 75: 99–109.

    Article  Google Scholar 

  • —,W. J. Carmen, M. T. Stanback &R. L. Mumme. 1996. Acorn production by oaks in central coastal California: Influence of weather at three levels. Canad. J. Forest Res. 26: 1677–1683.

    Article  Google Scholar 

  • Korstian, C. F. 1927. Factors controlling germination and early survival in oaks. Bull. Yale Univ. School Forest. 19: 1–115.

    Google Scholar 

  • Krause, D. W. 1982. Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8: 265–281.

    Google Scholar 

  • Kubitzki, K. 1993. Betulaceae. Pp. 152–157in K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants. Vol. 2. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Springer-Verlag, Berlin.

    Google Scholar 

  • Lagerstedt, H. B. 1977. The occurrence of blanks in the filbertCorylus avellana L. and possible causes. Econ. Bot. 31: 153–159.

    Google Scholar 

  • Lal, H., M. C. Nautiyal &R. M. Sharma. 1984. Walnut (Juglans regia) seed germination, I. Effect of planting depth and seed position in soil. Progr. Hort. 16: 6–8.

    Google Scholar 

  • Lanner, R. M. 1982. Adaptations of whitebark pine seed dispersal by Clark’s nutcracker. Canad. J. Forest Res. 12: 391–402.

    Google Scholar 

  • — 1998. Seed dispersal inPinus. Pp. 281–295in D. M. Richardson (ed.), Ecology and biogeography of pines. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Levin, D. A. 1974. The oil content of seeds: An ecological perspective. Amer. Naturalist 108: 193–206.

    Article  Google Scholar 

  • Lewis, A. R. 1982. Selection of nuts by gray squirrels and optimal foraging theory. Amer. Midl. Naturalist 107: 250–257.

    Article  Google Scholar 

  • Lewis, I. M. 1911. The seedlings ofQuercus virginiana. Pl. World 14: 119–123.

    Google Scholar 

  • Lewis, R. D. &J. H. Hunter. 1944. Changes in some mineral constituents of pecan nuts and their supporting shoots during development. J. Agric. Res. 68: 299–306.

    CAS  Google Scholar 

  • Linsdale, J. M. 1946. The California ground squirrel. University of California Press, Berkeley.

    Google Scholar 

  • Lloyd, H. G. 1968. Observations on nut selection by a hand-reared grey squirrel (Sciurus carolinensis). J. Zool. (London) 155: 240–244.

    Google Scholar 

  • Macdonald, I. M. V. 1997. Field experiments on duration and precision of grey and red squirrel spatial memory. Animal Behavior 54: 879–891.

    Article  Google Scholar 

  • Madsen, P. 1995a. Effects of seedbed type on wintering of beech nuts (Facus sylvatica) and deer impact on sprouting seedlings in natural regeneration. Forest Ecol. Managern. 73: 37–43.

    Article  Google Scholar 

  • — 1995b. Effects of soil water content, fertilization, light, weed competition and seedbed type on natural regeneration of beech (Fagus sylvatica). Forest. Ecol. Managern. 72: 251–264.

    Article  Google Scholar 

  • Mailliard, J. 1931. Redwood chickaree testing and storing hazel nuts. J. Mammalogy 12: 68–70.

    Google Scholar 

  • Manchester, S. R. 1987. The fossil history of the Juglandaceae. Monogr. Syst. Bot., 21. Missouri Botanical Garden, Saint Louis.

  • — &P. R. Crane. 1983. Attached leaves, inflorescences, and fruits ofFagopsis, an extinct genus of fagaceous affinity from the Oligocene florissant flora of Colorado, U.S.A. Amer. J. Bot. 70: 1147–1164.

    Article  Google Scholar 

  • Manning, W. E. 1940. The morphology of the flowers of the juglandaceae: The pistillate flowers and fruit. Amer. J. Bot. 27: 839–852.

    Article  Google Scholar 

  • — 1978. The classification within the Juglandaceae. Ann. Missouri Bot. Gard. 65: 1058–1087.

    Article  Google Scholar 

  • Martin, M. M. &J. S. Martin. 1984. Surfactants: Their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61: 342–345.

    Article  Google Scholar 

  • Mason, S. C. 1913. The pubescent-fruited species ofPrunus of the southwestern states. J. Agric. Res. 1: 147–177.

    Google Scholar 

  • Matsuda, K. &J. R. McBride. 1986. Difference in seedling growth morphology as a factor in the distribution of three oaks in central California. Madroño 33: 207–216.

    Google Scholar 

  • McCarthy, B. C. 1994. Experimental studies of hickory recruitment in a wooded hedgerow and forest. Bull. Torrey Bot. Club 121: 240–250.

    Article  Google Scholar 

  • — &D. R. Bailey. 1992. Seed germination and seedling establishment ofCatya floridana (Sarg.) Small (Juglandaceae). Bull. Torrey Bot. Club 119: 384–391.

    Article  Google Scholar 

  • — &F. I. Meredith. 1988. Nutrient data on chestnuts consumed in the United States. Econ. Bot. 42: 29–36. 215–228.

    Google Scholar 

  • — &J. A. Quinn. 1989. Within- and among-tree variation in flower and fruit production in two species ofCatya (Juglandaceae). Amer. J. Bot. 76: 1015–1023.

    Article  Google Scholar 

  • —. 1992. Fruit maturation patterns of Carya spp. (Juglandaceae): An intra-crown analysis of growth and reproduction. Oecologia 91: 30–38.

    Google Scholar 

  • McComb, A. L. 1934. The relation between acorn weight and the development of one year chestnut oak seedlings. J. Forest. 32: 479–484.

    Google Scholar 

  • McCreary, D. D. 1989. Regenerating native oaks in California. Calif. Agric. 42 (1): 4–6.

    Google Scholar 

  • McGranahan, G. &C. Leslie. 1991. Walnuts (Juglans). Acta Hort. 290: 907–951.

    Google Scholar 

  • McKay, J. W. 1942. Self-sterility in the Chinese chestnut (Castanea mollissima). Proc. Amer. Soc. Hort. Sci. 41: 156–160.

    Google Scholar 

  • — 1947. Embryology of pecans. J. Agric. Res. 74: 263–283.

    Google Scholar 

  • McMeans, J. L. &H. M. Malstrom. 1982. Relationship between pecan yields and the quality and quantity of oil in nutmeats. HortScience 17: 69–70.

    Google Scholar 

  • McNair, J. B. 1929. The taxonomic and climatic distribution of oils, fats, and waxes in plants. Amer. J. Bot. 16: 832–841.

    Article  Google Scholar 

  • McPherson, G. R. 1993. Effects of herbivory and herb interference on oak establishment in a semi-arid temperate savanna. J. Veg. Sci. 4: 687–692.

    Article  Google Scholar 

  • McQuilkin, R. A. &R. A. Musbach. 1977. Pin oak acorn production on green tree reservoirs in southeastern Missouri. J. Wildlife Managern. 41: 218–225.

    Article  Google Scholar 

  • McShea, W. J. 2000. The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81: 228–238.

    Article  Google Scholar 

  • — &G. Schwede. 1993. Variable acorn crops: Responses of white-tailed deer and other mast consumers. J. Mammillaria Soc. 74: 999–1006.

    Google Scholar 

  • Me, G., E. Emanuel, R. Botta &R. Ballania. 1989. Embryo development in “Tonda Gentile della Langhe” hazelnut. HortScience 24: 122–125.

    Google Scholar 

  • Mehlenbacher, S. A. 1991. Hazelnuts (Corylus). Acta Hort. 290: 791–836.

    Google Scholar 

  • Michelbacher, A. E. &J. C. Ortega. 1958. A technical study of insects and related pests attacking walnuts. Calif. Agric. Exp. Sta. Bull. 764: 1–86.

    Google Scholar 

  • Mirocha, C. J. &E. E. Wilson. 1961. Hull rot disease of almonds. Phytopathology 51: 843–847.

    Google Scholar 

  • Miyaki, M. &K. Kikuzawa. 1988. Dispersal ofQuercus mongolica acoms in a broadleaved deciduous forest, 2. Scatterhoarding by mice. Forest Ecol. Managern. 25: 9–16.

    Article  Google Scholar 

  • Monk, C. D. 1981. Age structure ofCarya tomentosa (Poir.) Nutt. in a young oak forest. Amer. Midl. Naturalist 106: 189–191.

    Article  Google Scholar 

  • Moznette, G. F., C. B. Nickels, W. C. Pierce, T. L. Bissell, J. B. Demaree, J. R. Cole, H. E. Parson &J. R. Large. 1940. Insects and diseases of the pecan and their control. Fanners’ Bull. 1829. U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  • Muul, I. 1970. Daylength and food caches. Pp. 78–86in Field studies in natural history. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Myster, R. W. &B. C. McCarthy. 1989. Effects of herbivory and competition on survival ofCarya tomentosa (Juglandaceae) seedlings. Oikos 56: 145–148.

    Article  Google Scholar 

  • Nast, C. G. 1935. Morphological development of the fruit ofJuglans regia. Hilgardia 9: 345–381.

    Google Scholar 

  • Neilson, R. P. &L. H. Wullstein. 1980. Catkin freezing and acorn production in Gambel oak in Utah, 1978. Amer. J. Bot. 67: 426–428.

    Article  Google Scholar 

  • Nielsen, B. O. 1977. Beech seeds as an ecosystem component. Oikos 29: 268–274.

    Article  Google Scholar 

  • Nilsson, S. G. 1985. Ecological and evolutionary interactions between reproduction of beechFagus sylvatica and seed eating animals. Oikos 44: 157–164.

    Article  Google Scholar 

  • — &U. Wästljung. 1987. Seed predation and cross-pollination in mast-seeding beech (Fagus sylvatica) patches. Ecology 68: 260–265.

    Article  Google Scholar 

  • Nixon, K. C. 1989. Origins of Fagaceae. Pp. 23–43in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Systematics Association; Clarendon Press, Oxford.

    Google Scholar 

  • Nyandiga, C. O. &G. R. McPherson. 1992. Germination of two warm-temperate oaks,Quercus emoryi andQuercus arizonica. Canad. J. Forest Res. 22: 1395–1401.

    Google Scholar 

  • Ofcarcik, R. P. &E. E. Burns. 1971. Chemical and physical properties of selected acorns. J. Food Sci. 36: 576–578.

    Article  CAS  Google Scholar 

  • Oliver, A. D. &J. B. Chapin. 1984.Curculio fulvus (Coleoptera: Curculionidae) and its effects on acorns of live oak,Quercus virginiana Miller. Environm. Entomol. 13: 1507–1510.

    Google Scholar 

  • Olmsted, C. E. 1937. Vegetation of certain sand plains of Connecticut. Bot. Gaz. (Crawfordsville) 99: 209–300.

    Article  Google Scholar 

  • Ostfeld, R. S., C. G. Jones &J. O. Wolff. 1996. Of mice and mast. BioScience 46: 323–330.

    Article  Google Scholar 

  • Ovington, J. D. &C. MacRae. 1960. The growth of seedlings ofQuercus petraea. J. Ecol. 48: 549–555.

    Article  Google Scholar 

  • Paillet, F. L. &P. A. Rutter. 1989. Replacement of native oak and hickory tree species by the introduced American chestnut (Castanea dentata) in southwestern Wisconsin. Canad. J. Bot. 67: 3457–3469.

    Google Scholar 

  • Pallardy, S. G. &J. L. Rhoads. 1993. Morphological adaptations to drought in seedlings of deciduous angiosperms. Canad. J. Forest Res. 23: 1766–1774.

    Article  Google Scholar 

  • Parcerisa, J., J. Boatella, R. Codony, A. Farran, J. Garcia, A. Lopez, M. Rafecas &A. Romero. 1993. Influence of variety and geographical origin on the lipid fraction of hazelnuts (Corylus avellana L.) from Spain, I. Fatty acid composition. Food Chem. 48: 411–414.

    Article  CAS  Google Scholar 

  • —,M. Rafecas, A. I. Castellote, R. Codony, A. Farran, J. Garcia, A. Lopez, A. Romero &J. Boatella. 1994. Influence of variety and geographical origin on the lipid fraction of hazelnuts (Coryllus avellana L.) from Spain, II. Triglyceride composition. Food Chem. 50: 245–249.

    Article  CAS  Google Scholar 

  • Parker, W. C. &S. G. Pallardy. 1985. Drought-induced leaf abscission and whole-plant drought tolerance of seedlings of seven black walnut families. Canad. J. Forest Res. 15: 818–821.

    Article  Google Scholar 

  • Payne, J. A., R. A. Jaynes &S. J. Kays. 1983. Chinese chestnut production in the United States: Practice, problems, and possible solutions. Econ. Bot. 37: 187–200.

    Google Scholar 

  • Peres, C. A. &C. Baider. 1997. Seed dispersal, spatial distribution and population structure of Brazilnut trees (Bertholletia excelsa) in southeastern Amazonia. J. Trop. Ecol. 13: 395–616.

    Google Scholar 

  • —,L. C. Schiesari &C. L. Dias-Leme. 1997. Vertebrate predation of Brazil-nuts (Bertholletia excelsa, Lecythidaceae), an agouti-dispersed Amazonian seed crop: A test of the escape hypothesis. J. Trop. Ecol. 13: 69–79.

    Google Scholar 

  • Perrins, C. M. 1966. The effect of beech crops on great tit populations and movements. Brit. Birds 59: 419–432.

    Google Scholar 

  • Pigott, C. D., A. C. Newton &S. Zammit. 1991. Predation of acorns and oak seedlings by grey squirrel. Quart. J. Forest. 85: 173–178.

    Google Scholar 

  • Pinney, K. &V. S. Polito. 1983. English walnut fruit growth and development. Sci. Hort. (Amsterdam) 21: 19–28.

    Article  Google Scholar 

  • Polies, S. G., B. W. Hanny &A. J. Harvey. 1981. Condensed tannins in kernels of thirty-one pecan [Carya illinoensis (Wangenh) K. Koch] cultivars. J. Agric. Food Chem. 29: 196–197.

    Article  Google Scholar 

  • Purchas, T. P. G. 1980. Feeding ecology of rooks (Corvus frugilegus) on the Heretaunga Plains, Hawke’s Bay, New Zealand. New Zealand J. Zool. 7: 557–578.

    Google Scholar 

  • Quintana-Ascencio, P. F., M. Gonzalez-Espinosa &N. Ramirez-Marcial. 1992. Acorn removal, seedling survivorship, and seedling growth ofQuercus crispipilis in successional forests of the highlands of Chiapas, Mexico. Bull. Torrey Bot. Club 119: 6–18.

    Article  Google Scholar 

  • Reich, P. B., R. O. Teskey, P. S. Johnson &T. M. Hinckley. 1980. Periodic root and shoot growth in oak. Forest Sci. 26: 590–598.

    Google Scholar 

  • Reid, V. H. &P. D. Goodrum. 1958. The effect of hardwood removal on wildlife. Proc. Soc. Amer. Foresters 57: 141–147.

    Google Scholar 

  • Richards, T. J. 1958. Concealment and recovery of food by birds, with some relevant observations on squirrels. Brit. Birds 51: 497–508.

    Google Scholar 

  • Robbins, C. T., T. A. Hanley, A. E. Hagerman, O. Hjeljord, D. L. Baker, C. C. Schwartz &W. W. Mautz. 1987. Role of tannins in defending plants against ruminants: Reduction in protein availability. Ecology 68: 98–107.

    Article  CAS  Google Scholar 

  • Ross, J. D. &J. W. Bradbeer. 1968. Concentrations of gibberellin in chilled hazel seeds. Nature 220: 85–86.

    Article  PubMed  CAS  Google Scholar 

  • Rutter, P. A., G. Miller &J. A. Payne. 1991. Chestnuts (Castanea). Acta Hort. 290: 761–788.

    Google Scholar 

  • Salisbury, E. 1974. Seed size and mass in relation to environment. Proc. Roy. Soc. London 186: 83–88.

    Google Scholar 

  • Scarlett, T. L. &K. G. Smith. 1991. Acorn preference of urban blue jay (Cyanocitta cristata) during fall and spring in northwestern Arkansas. Condor 93: 438–442.

    Article  Google Scholar 

  • Schuster, L. 1950. Über den Sammeltrieb des Eichelhähers (Garrulus glandarius). Vogelwelt 71: 9–17.

    Google Scholar 

  • Seiwa, K. &K. Kikuzawa. 1991. Phenology of tree seedlings in relation to seed size. Canad. J. Bot. 69: 532–538.

    Article  Google Scholar 

  • Semel, B. &D. C. Andersen. 1988. Vulnerability of acorn weevils (Coleoptera: Curculionidae) and attractiveness of weevils and infestedQuercus alba acorns toPeromycus leucopus andBlarina brevicauda. Amer. Midl. Naturalist 119: 385–393.

    Article  Google Scholar 

  • Senter, S. D., J. A. Payne, G. Miller &S. L. Anagnostakis. 1994. Comparison of total lipids, fatty acids, sugars and nonvolatile organic acids in nuts from fourCastanea species. J. Sci. Food Agric. 65: 223–227.

    Article  CAS  Google Scholar 

  • Servello, F. A. &R. L. Kirkpatrick. 1989. Nutritional value of acorns for ruffed grouse. J. Wildlife Managern. 53: 26–29.

    Article  Google Scholar 

  • Shannon, P. R. M., R. A. Jeavons &B. C. Jarvis. 1983. Light-sensitivity of hazel seeds with respect to the breaking of dormancy. Pl. Cell Physiol. 24: 933–936.

    Google Scholar 

  • Sharp, W. M. &V. G. Sprague. 1967. Flowering and fruiting in the white oaks: Pistillate flowering, acorn development, weather, and yields. Ecology 48: 243–251.

    Article  Google Scholar 

  • Shaw, M. W. 1968a. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in north Wales, I. A preliminary study of acorn production, viability and losses. J. Ecol. 56: 565–583.

    Article  Google Scholar 

  • — 1968b. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in north Wales, II. Acorn losses and germination under field conditions. J. Ecol. 56: 647–660.

    Article  Google Scholar 

  • — 1974. The reproductive characteristics of oak. Pp. 162–181in M. G. Morris & F. H. Perring (eds.), The British oak: Its history and natural history. E. W. Classey, Farington, England.

    Google Scholar 

  • Shirley, H. L. 1929. Light requirements and silvicultural practice. J. Forest. 27: 535–537.

    Google Scholar 

  • Short, H. L. 1976. Composition and squirrel use of acorns of black and white oak groups. J. Wildlife Managern. 40: 479–483.

    Article  Google Scholar 

  • Shuhart, D. V. 1932. Morphology and anatomy of the fruit of hicoria pecan. Bot. Gaz. (Crawfordsville) 93: 1–20.

    Article  Google Scholar 

  • Sibley, C. G. &J. E. Ahlquist 1990. Phylogeny and classification of birds. Yale University Press, New Haven, CT.

    Google Scholar 

  • Silvertown, J. W. 1980. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14: 235–250.

    Article  Google Scholar 

  • Smallwood, P. D. &W. D. Peters. 1986. Grey squirrel food preferences: The effects of tannin and fat concentration. Ecology 67: 168–174.

    Article  Google Scholar 

  • Smith, C. C. &D. Follmer. 1972. Food preferences of squirrels. Ecology 53: 82–91.

    Article  Google Scholar 

  • —,J. L. Hamrick &C. L. Kramer. 1990. The advantage of mast years for wind pollination. Amer. Naturalist 136: 154–166.

    Article  Google Scholar 

  • Smith, J. F. &J. J. Doyle. 1995. A cladistic analysis of chloroplast DNA restriction site variation and morphology for the genera of the Juglandaceae. Amer. J. Bot. 82: 1163–1172.

    Article  Google Scholar 

  • Smith, K. G. &T. Scarlett. 1987. Mast production and winter populations of red-headed woodpeckers and blue jays. J. Wildlife Managern. 51: 459–467.

    Article  Google Scholar 

  • Sone, K. &A. Kohno. 1996. Application of radiotelemetry to the survey of acorn dispersal byApodemus mice. Ecol. Research 11: 187–192.

    Article  Google Scholar 

  • — 1999. Acorn hoarding by the field mouse,Apodemus speciosus Temminck (Rodentia: Muridae). J. Forest Res. 4: 167–175.

    Article  Google Scholar 

  • Sonesson, L. K. 1994. Growth and survival after cotyledon removal inQuercus robur seedlings: Growth in different natural soil types. Oikos 69: 65–70.

    Article  Google Scholar 

  • Sork, V. L. 1983a. Distribution of pignut hickory (Carya glabra) along a forest to edge transect, and factors affecting seedling recruitment. Bull. Torrey Bot. Club 110: 494–506.

    Article  Google Scholar 

  • — 1983b. Mammalian seed dispersal of pignut hickory during three fruiting seasons. Ecology 64: 1049–1056.

    Article  Google Scholar 

  • — 1983c. Mast-fruiting in hickories and availability of nuts. Amer. Midl. Naturalist 109: 81–88.

    Article  Google Scholar 

  • — 1984. Examination of seed dispersal and survival in red oak,Quercus rubra (Fagaceae), using metal-tagged acorns. Ecology 65: 1020–1022.

    Article  Google Scholar 

  • — 1993. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). Vegetatio 107/108: 133–147.

    Google Scholar 

  • — &D. H. Boucher. 1977. Dispersal of sweet pignut hickory in a year of low fruit production, and the influence of predation by a curculionid beetle. Oecologia 28: 289–299.

    Google Scholar 

  • —,P. Stacey &J. E. Averett. 1983. Utilization of red oak acorns in non-bumper crop year. Oecologia 59: 49–53.

    Article  Google Scholar 

  • —,J. Bramble &O. Sexton. 1993. Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 74: 528–541.

    Article  Google Scholar 

  • Sparks, D. &J. L. Heath. 1972. Pistillate flower and fruit drop of pecan as a function of time and shoot length. HortScience 7: 402–404.

    Google Scholar 

  • — &G. D. Madden. 1985. Pistillate flower and fruit abortion in pecan as a function of cultivar, time, and pollination. J. Amer. Soc. Hort. Sci. 110: 219–223.

    Google Scholar 

  • — &I. E. Yates. 1995. Anatomy of shuck abscission in “desirable” pecan. J. Amer. Soc. Hort. Sci. 120: 790–797.

    Google Scholar 

  • Stapanian, M. A. &C. C. Smith. 1978. A model for seed scatterhoarding: Coevolution of fox squirrels and black walnuts. Ecology 59: 884–896.

    Article  Google Scholar 

  • ——. 1984. Density-dependent survival of scatterhoarded nuts: An experimental approach. Ecology 65: 1387–1396.

    Article  Google Scholar 

  • ——. 1986. How fox squirrels influence the invasion of prairies by nut-bearing trees. J. Mammalogy 67: 326–332.

    Article  Google Scholar 

  • Steele, M. A., T. Knowles, K. Bridle &E. L. Simms. 1993. Tannins and partial consumption of acorns: Implications for dispersal of oaks by seed predators. Amer. Midl. Naturalist 130: 229–238.

    Article  Google Scholar 

  • —,L. Z. Hadj-Chikh &J. Hazeltine. 1996. Caching and feeding decisions bySciurus carolinensis: Response to weevil-infested acorns. J. Mammillaria Soc. 77: 305–314.

    Google Scholar 

  • Stephenson, A. G. 1981. Flower and fruit abortion: Proximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 12: 253–279.

    Article  Google Scholar 

  • Stiles, E. W. &E. T. Dobi. 1987. Scatterhoarding of horsechestnuts by eastern gray squirrels. Bull. New Jersey Acad. Sci. 32: 1–3.

    Google Scholar 

  • Stone, D. E. 1973. Patterns in the evolution of amentiferous fruits. Brittonia 25: 371–384.

    Article  Google Scholar 

  • — 1989. Biology and evolution of temperate and tropical Juglandaceae. Clarendon Press, Oxford.

    Google Scholar 

  • —,G. A. Adrouny &R. H. Flake. 1969. New World Juglandaceae, II. Hickory nut oils, phenetic similarities, and evolutionary implications in the genusCarya. Amer. J. Bot. 56: 928–935.

    Article  CAS  Google Scholar 

  • Sviridenko, P. A. 1971. Role ofSciurus vulgaris L. in distribution of walnut. Vestn. Zool. 5: 87–88.

    Google Scholar 

  • Swanberg, P. O. 1951. Food storage, territory and song in the thick-billed nutcracker. Proc. Xth Int. Ornithol. Congr. 10: 545–554.

    Google Scholar 

  • — 1981. Clutch size in the thick-billed nutcrackerNucifraga c. caryocatactes in Scandinavia in relation to the supply of hazel nuts in the individual winter stores. Vår Fågelvärld 40: 399–408.

    Google Scholar 

  • Tamura, N. &E. Shibasaki. 1996. Fate of walnut seeds,Juglans ailanthifolia, hoarded by Japanese squirrels,Sciurus lis. J. Forest Res. 1: 219–222.

    Article  Google Scholar 

  • —,Y. Hashimoto &F. Hayashi. 1999. Optimal distances for squirrels to transport and hoard walnuts. Animal Behavior 58: 635–642.

    Article  Google Scholar 

  • Tanton, M. T. 1965. Acorn destruction potential of small mammals and birds in British woodlands. Quart. J. Forest. 59: 230–234.

    Google Scholar 

  • Tecklin, J. &D. D. McCreary. 1991. Acorn size as a factor in early seedling growth of blue oaks. Pp. 48–53in Proceedings of the Symposium on Oak Woodlands and Hardwood Rangeland Management, October 31–November 2, 1990, Davis, California. General Technical Report PSW 126. U.S. Dept. of Agriculture, Pacific Southwest Research Station, Berkeley, CA.

    Google Scholar 

  • Teclaw, R. M. &J. G. Isebrands. 1986. Collection procedures affect germination of northern red oak (Quercus rubra L.) acorns. Tree Planters’ Notes 37: 8–12.

    Google Scholar 

  • Thompson, D. C. &P. S. Thompson. 1980. Food habits and caching behavior of urban grey squirrels. Canad. J. Zool. 58: 701–710.

    Article  Google Scholar 

  • Thompson, K. 1987. Seeds and seed banks. New Phytol. 106: 23–34.

    Google Scholar 

  • Thompson, M. M. 1979. Growth and development of the pistillate flower and nut in “Barcelona” filbert. J. Amer. Soc. Hort. Sci. 104: 427–432.

    Google Scholar 

  • Thompson, T. E. &J. F. Baker. 1993. Heritability and phenotypic correlations of six pecan nut characteristics. J. Amer. Soc. Hort. Sci. 118: 415–418.

    Google Scholar 

  • — &L. J. Grauke. 1991. Pecans and other hickories (Carya). Acta Hort. 290: 839–904.

    Google Scholar 

  • —,E. F. Young Jr.,W. O. McIlrath, H. D. Petersen &G. S. Sibbett. 1989. Pecan nut kernel characteristics show genotype-environment interactions. J. Amer. Soc. Hort. Sci. 114: 706–711.

    Google Scholar 

  • Thor, C. J. B. &C. L. Smith. 1935. A physiological study of seasonal changes in the composition of the pecan during fruit development. J. Agric. Res. 50: 97–101.

    CAS  Google Scholar 

  • Tiffney, B. H. 1986. Fruit and seed dispersal and the evolution of the Hamamelidae. Ann. Missouri Bot. Gard. 73: 394–416.

    Article  Google Scholar 

  • Tomback, D. F. 1982. Dispersal of whitebark pine seeds by Clark’s nutcracker: A mutualism hypothesis. J. Animal Ecol. 51: 451–467.

    Article  Google Scholar 

  • — &Y. B. Linhart. 1990. The evolution of bird-dispersed pines. Evol. Ecol. 4: 185–219.

    Article  Google Scholar 

  • Tripathi, R. S. &M. L. Khan. 1990. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species ofQuercus in a subtropical wet hill forest. Oikos 57: 289–296.

    Article  Google Scholar 

  • Turcek, F. J. &L. Kelso. 1968. Ecological aspects of food transportation and storage in the Corvidae. Comm. Behav. Biol., Part A 1: 277–297.

    Google Scholar 

  • Van den Hammen, T., T. A. Wijmstra &W. H. Zagwijn. 1971. The floral record of the late Cenozoic of Europe. Pp. 391–424in K. K. Turekian (ed.), The late Cenozoic glacial ages. Yale University Press, New Haven, CT.

    Google Scholar 

  • Van Valen, L. &R. E. Sloan. 1966. The extinction of the multituberculates. Syst. Zool. 15: 261–278.

    Article  Google Scholar 

  • Vander Wall, S. B. 1982. An experimental analysis of cache recovery in Clark’s nutcracker. Animal Behavior 30: 84–94.

    Article  Google Scholar 

  • — 1988. Foraging of Clark’s nutcrackers on rapidly changing pine seed resources. Condor 90: 621–631.

    Article  Google Scholar 

  • — 1990. Food hoarding in animals. University of Chicago Press, Chicago.

    Google Scholar 

  • — 1991. Mechanisms of cache recovery by yellow pine chipmunks. Animal Behavior 41: 851–863.

    Article  Google Scholar 

  • — 1992. The role of animals in dispersing a “wind-dispersed” pine. Ecology 73: 614–621.

    Article  Google Scholar 

  • — 1993. Seed water content and the vulnerability of buried seed to foraging rodents. Amer. Midl. Naturalist 129: 272–281.

    Article  Google Scholar 

  • — 1998. Foraging success of granivorous rodents: Effects of variation in seed and soil water on olfaction. Ecology 79: 233–241.

    Article  Google Scholar 

  • — 2000. The influence of environmental conditions on cache recovery and cache pilferage by yellow pine chipmunks (Tamias amoenus) and deer mice (Peromyscus maniculatus). Behaviour Ecol. 11: 544–549.

    Article  Google Scholar 

  • — &R. P. Balda. 1977. Coadaptations of the Clark’s nutcracker and the piñon pine for efficient seed harvest and dispersal. Ecol. Monogr. 47: 89–111.

    Article  Google Scholar 

  • —— 1981. Ecology and evolution of food-storage behavior of conifer-seed-caching corvids. Z. Tierpsychol. 56: 217–242.

    Google Scholar 

  • — &J. W. Joyner. 1998. Recaching of Jeffrey pine (Pinus jeffreyi) seeds by yellow pine chipmunks (Tamias amoenus): Potential effects on plant reproductive success. Canad. J. Zool. 76: 154–162.

    Article  Google Scholar 

  • Wainio, W. W. &E. B. Forbes. 1941. The chemical composition of forest fruits and nuts from Pennsylvania. J. Agric. Res. 62: 627–635.

    CAS  Google Scholar 

  • Waller, D. M. 1979. Models of mast fruiting in trees. J. Theor. Biol. 80: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Wästljung, U. 1989. Effects of crop size and stand size on seed removal by vertebrates in hazelCorylus avellana. Oikos 54: 178–184.

    Article  Google Scholar 

  • Watkins, R. 1995. Cherry, plum, peach, apricot and almond:Prunus spp. Pp. 242–247in N. W. Simmonds (ed.), Evolution of crop plants. Longman, London.

    Google Scholar 

  • Watt, A. S. 1919. On the causes of failure of natural regeneration in British oakwoods. J. Ecol. 7: 173–203.

    Article  Google Scholar 

  • — 1923. On the ecology of British beechwoods with special reference to their regeneration. J. Ecol. 7: 1–48.

    Google Scholar 

  • Watts, C. H. S. 1969. The regulation of wood mouse (Apodemus sylvaticus) numbers in Wytham woods, Berkshire. J. Animal Ecol. 38: 285–304.

    Article  Google Scholar 

  • Wauters, L. A. &P. Casale. 1996. Long-term scatterhoarding by Eurasian red squirrels (Sciurus vulgaris). J. Zool. (London) 238: 195–207.

    Google Scholar 

  • —,C. Swinnen &A. A. Dhondt. 1992. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J. Zool. (London) 227: 71–86.

    Google Scholar 

  • Webb, S. L. 1986. Potential role of passenger pigeons and other vertebrates in rapid Holocene migrations of nut trees. Quaternary Res. 26: 367–375.

    Article  Google Scholar 

  • — 1987. Beech range extension and vegetation history: Pollen stratigraphy of two Wisconsin lakes. Ecology 68: 1993–2005.

    Article  Google Scholar 

  • Webb, T. 1981. The past 11,000 years of vegetation change in eastern North America. BioScience 31: 501–506.

    Article  Google Scholar 

  • — 1988. Eastern North America. Pp. 31–59in B. Huntley & T. Webb III (eds.), Vegetation history. Kluwer Academic, Dordrecht, Netherlands.

    Google Scholar 

  • Weckerly, F. W., K. E. Nicholson &R. D. Semlitsch. 1989a. Experimental test of discrimination by squirrels for insect-infested and noninfested acorns. Amer. Midl. Naturalist 122: 412–415.

    Article  Google Scholar 

  • —,D. W. Sugg &R. D. Semlitsch. 1989b. Germination success of acorns (Quercus): Insect predation and tannins. Canad. J. Forest Res. 19: 811–815.

    Article  Google Scholar 

  • Wentworth, J. M., A. S. Johnson, P. E. Hale &K. E. Kammermeyer. 1992. Relationships of acorn abundance and deer herd characteristics in the southern Appalachians. Southern J. Appl. Forest. 16: 5–8.

    Google Scholar 

  • Williamson, M. J. 1966. Premature abscissions and white oak acorn crops. Forest Sci. 12: 19–21.

    Google Scholar 

  • Wing, S. L. &L. J. Hickey. 1984. ThePlatycarya perplex and the evolution of the Juglandaceae. Amer. J. Bot. 71: 388–411.

    Article  Google Scholar 

  • Wolff, J. O. 1996. Population fluctuations of mast-eating rodents are correlated with production of acorns. J. Mammillaria Soc. 77: 850–856.

    Google Scholar 

  • Wolgast, L. J. &B. B. Stout. 1977. The effects of relative humidity at the time of flowering on fruit set in bear oak (Quercus ilicifolia). Amer. J. Bot. 64: 159–160.

    Article  Google Scholar 

  • Wood, B. W. 1993. Production characteristics of the United States pecan industry. J. Amer. Soc. Hort. Sci. 118: 538–545.

    Google Scholar 

  • Wood, O. M. 1938. Seedling reproduction of oak in southern New Jersey. Ecology 19: 276–293.

    Article  Google Scholar 

  • Woodroof, J. G. &N. C. Woodroof. 1927. The development of the pecan nut (Hicoria pecan) from flower to maturity. J. Agric. Res. 34: 1049–1063.

    Google Scholar 

  • Woods, K. D. &M. B. Davis. 1989. Paleoecology of range limits: Beech in the upper peninsula of Michigan. Ecology 70: 681–696.

    Article  Google Scholar 

  • Yasuda, M., S. Miura &N. A. Hussein. 2000. Evidence for food hoarding behaviour in terrestrial rodents in Pasoh Forest Reserve, a Malaysian lowland rain forest. J. Trop. Forest Sci. 12: 164–173.

    Google Scholar 

  • Zucker, W. V. 1983. Tannins: Does structure determine function? An ecological perspective. Amer. Naturalist 121: 335–365.

    Article  CAS  Google Scholar 

  • Zusi, R. L. 1987. A feeding adaptation of the jaw articulation in New World jays (Corvidae). Auk 104: 665–680.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vander Wall, S.B. The evolutionary ecology of nut dispersal. Bot. Rev 67, 74–117 (2001). https://doi.org/10.1007/BF02857850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857850

Keywords

Navigation