Skip to main content
Log in

The effect of nitrogen sources and iron levels on the growth and composition of Sitka spruce and Scots pine

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Nitrate-N was an inferior source of N for both Sitka spruce and Scots pine, resulting in lower dry weights and moderate chlorosis of newly developing needles. The NO3-N source resulted in a greater cation concentration in the tissues and a greater organic anion content as measured by the difference in inorganic cations and inorganic anions. Chlorosis was partially alleviated when additional Fe was supplied as FeEDDHA and there was a slight decrease in organic anions (C-A). It is suggested that the chlorosis might be explained by the competitive chelation hypothesis which states that the activity of the Fe is reduced by metals or various ligands, in this case by the excess organic anions produced by NO3-N nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carter, M. G., Nitrogen and “summer chlorosis” in loblolly pine. Tree Planter's Notes64, 18–19 (1964).

    Google Scholar 

  2. Crooke, W.M., Knight, A.H., and Keay, J., Mineral composition, cation-exchange properties and uronic acid content of various tissues of conifers. For. Sci.10, 415–427 (1964).

    Google Scholar 

  3. Cöic, Y., Lesaint, C., and LeRoux, F., Comparison de l'influence de la nutrition nutrique et ammoniacale combinée ou non avec une déficience en acide phosphorique, sur l'absorption et le métabolisme des anions-cations et plus particulièrement des acides orgàniques chez le maïs. Comparison du mais et de la tomate quant a l'effet de la nature de l'alimentation azotée. Ann. Physiol. Veg.3, 141–163 (1961).

    Google Scholar 

  4. Day, G. M. and Robbins, W. R., Observations on the growth of red spruce in sand culture. J. For.48, 689–692 (1950).

    Google Scholar 

  5. DeKock, P. C., The nutrient balance in plant leaves. Agr. Progress33, 88 (1958).

    Google Scholar 

  6. DeKock, P. C. and Morrison, R. I., The metabolism of chlorotic leaves 2. organic acids. Biochem. J.70, 272–277 (1958).

    Google Scholar 

  7. DeWit, C. T., Dijkshoorn, W., and Noggle, J. C., Ionic balance and growth of plants. Versl. Landbouwk. Onderz.69, 15 (1963).

    Google Scholar 

  8. Dijkshoorn, W., The relation of growth to the chief ionic constituents of the plant, p. 201–213.In Rorison, I. H. (ed.) Biological aspects of the mineral nutrition of plants, A Symp. Brit. Ecol. Soc., Sheffield, 1–5 April 1968, Blackwell (1969).

  9. Dijkshoorn, W. and vanWijk, A. L., The sulphur requirements of plants as evidenced by the sulphur-nitrogen ratio in the organic matter. A review of published data. Plant and Soil26, 129–157 (1967).

    Google Scholar 

  10. Evers, F. H., Neue Erkenntnissee zur Chlorosebekämpfung durch Düngungsmass-nahmen. Repr. Allg. Forstz. No. 32/33, pp. 2 (1963).

  11. Fogg, D. N. and Wilkinson, N. T., The colorimetric determination of phosphorus. Analyst, Lond.83, 406–414 (1958).

    Google Scholar 

  12. Henriksen, A., Application of the “AutoAnalyser” in routine water analyses. “Technicon” Symposium1, 568–572 (1966).

    Google Scholar 

  13. Hewitt, E. J., Sand and water culture methods used in the study of plant nutrition (second edition). Comm. Bur. Hort. Plant Crops, East Malling Tech. Commun. No.22 (revised) (1966).

  14. Iljin, W. S., Metabolism of plants affected with lime-induced chlorosis (calciose). II. Organic acids and carbohydrates. Plant and Soil3, 339–351 (1951).

    Google Scholar 

  15. Ingestad, T., Macroelement nutrition of pine, spruce, and birch seedlings in nutrient solutions. Medd. SkogsforsknInst., Stockh.51 (7), 1–154 (1962).

    Google Scholar 

  16. Ismunadji, M. and Dijkshoorn, W. Nitrogen nutrition of rice plants measured by growth and nutrient content in pot experiments. I. Ionic balance and selective uptake. Neth. J. Agric. Sci.19, 223–236 (1971).

    Google Scholar 

  17. Kirkby, E. A., Ion uptake and ionic balance in plants in relation to the form of nitrogen nutrition, p. 215–235.In Rorison, I. H. (ed.) Biological aspects of the mineral nutrition of plants, A Symp. Brit. Ecol. Soc., Sheffield, 1–5 April 1968, Blackwell (1969).

  18. Kirkby, E. A. and Mengel, K., Ionic balance in different tissues of the tomato plant in relation to nitrate, urea or ammonium nutrition. Plant Physiol.42, 6–14 (1967).

    Google Scholar 

  19. Kostic, M., Dijkshoorn, W. and DeWit, C. T., Evaluation of the nutrient status of wheat plants. Neth. J. Agr. Sci.15, 267–280 (1957).

    Google Scholar 

  20. Leeper, G. W., Factors affecting availability of inorganic nutrients in soils with special reference to micronutrient elements. Ann. Rev. Plant Physiol.3, 1–16 (1952).

    Google Scholar 

  21. Litchfield, M. H., The automated analysis of nitrite and nitrate in blood. Analyst, Lond.92, 132–136 (1967).

    Google Scholar 

  22. McFee, W. W. and StoneJr., E. L., Ammonium and nitrate as nitrogen sources forPinus radiata andPicea glauca. Soil Sci. Soc. Am. Proc.32, 879–884 (1968).

    Google Scholar 

  23. Oechssler, G., Der Gehalt an organischen Säuren in den Nadeln chlorotischer und gesunder Koniferen. Flora, Jena158B (4/5), 473–479 (1969).

    Google Scholar 

  24. Oechssler, G., Untersuchungen zur Ätiologie von Chloroseerscheinungen bei der Douglasie (Pseudotsuga menziesii (Mirb.) Franco). Flora, Jena160, 60–71 (1971).

    Google Scholar 

  25. Pierce, E. C. and Appleman, C. O., Role of ether soluble organic acids in the cation-anion balance in plants. Plant Physiol.18, 224–238 (1943).

    Google Scholar 

  26. Rhoads, W. A. and Wallace, A., Possible involvement of dark fixation of CO2 in lime-induced chlorosis. Soil Sci.89, 248–256 (1960).

    Google Scholar 

  27. Salt, P. D., Soil and plant analysis by flame emission spectrophotometry. Spectrovision18, 9–12 (1967).

    Google Scholar 

  28. Shoulders, E. and Czabator, F. J., Chlorosis in a southern pine nursery: a case study. Tree Planter's Notes71, 19–21 (1965).

    Google Scholar 

  29. Stone, Jr., E. L., Microelement nutrition of forest trees: a review, p. 132–175.In Bengtson, G. W. (ed.) Forest fertilization-Theory and practice, TVA, Muscle Shoals (1968).

  30. Su, L. T. and Miller, G. W., Chlorosis in higher plants as related to organic acid content. Plant Physiol. 36, 415–420 (1961).

    Google Scholar 

  31. Tuil, H. D. W. van, Organic salts in plants in relation to nutrition and growth. Agri. Res. Rpt. No. 657, Centre for Agr. Pub. Doc., Wageningen, 83 p. (1965).

  32. Tuil, H. D. W.van, Lampe, J. E. M., and Dijkshoorn, W., The possibility of relating the ash alkalinity to the organic-salt content. Jaarb. Inst. Biol. Scheik. Med.250, 157–160 (1964).

    Google Scholar 

  33. Varley, J. A., Automatic methods for the determination of nitrogen, phosphorus, and potassium in plant material. Analyst, Lond.91, 119–126 (1966).

    Google Scholar 

  34. Wallace, A., The competitive chelation hypothesis of lime-induced chlorosis, p. 230–239.In Wallace, A. (ed.) Regulation of the micro-nutrient status of plants by chelating agents and other factors. A. Wallace, Los Angeles, p. 309 (1971).

    Google Scholar 

  35. Wallace, A. and Lunt, O. R., Iron chlorosis in horticultural plants, a review. Proc. Am. Soc. Hort. Sci.75, 819–841 (1960).

    Google Scholar 

  36. Williams, C. H. and Twine, J. R., Determinations of nitrogen, sulphur, phosphorus, potassium, sodium, calcium and magnesium in plant material by automatic analysis. Div. Plant Ind. C.S.I.R.O. Australia Tech. Pap. No.24 (1967).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Journal contribution no.2672 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State, Mississippi 39762.

Journal contribution no.2672 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State, Mississippi 39762.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, L.E., Selby, R. The effect of nitrogen sources and iron levels on the growth and composition of Sitka spruce and Scots pine. Plant Soil 41, 573–588 (1974). https://doi.org/10.1007/BF02185817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02185817

Keywords

Navigation