Skip to main content
Log in

Agrobacterium and plant genetic engineering

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN: Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743 (1986).

    PubMed  Google Scholar 

  2. Aiba H, Mizuno T: Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli. FEBS Lett 261: 19–22 (1990).

    Article  PubMed  Google Scholar 

  3. Albano M, Breitling R, Dubnau DA: Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bact 171: 5386–5404 (1989).

    PubMed  Google Scholar 

  4. Alt-Moerbe J, Neddermann P, VonLintig J, Weiler EW, Schröder J: Temperature-sensitive step in Ti plasmid vir region induction and correlation with cytokinin secretion by Agrobacteria. Mol Gen Genet 213: 1–8 (1988).

    Article  Google Scholar 

  5. Amasino RM, Powell ALT, Gordon MP: Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol Gen Genet 197: 437–446 (1984).

    PubMed  Google Scholar 

  6. Ambros PF, Matzke AJM, Matzke MA: Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5: 2073–2077 (1986).

    Google Scholar 

  7. Ankenbauer RG, Nester EW: Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bact 172: 6442–6446 (1990).

    PubMed  Google Scholar 

  8. Anzai H, Yoneyama K, Yamaguchi I: Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin. Mol Gen Genet 219: 492–494 (1989).

    Article  Google Scholar 

  9. Bakkeren G, Koukolikova-Nicola Z, Grimsley N, Hohn B: Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell 57: 847–857 (1989).

    Article  PubMed  Google Scholar 

  10. Barker RF, Idler KB, Thompson DV, Kemp JD: Nucleotide sequence of the T-DNA region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2: 335–350 (1983).

    Google Scholar 

  11. Barry GF, Rogers SG, Fraley RT, Brand L: Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA 81: 4776–4780 (1984).

    Google Scholar 

  12. Beaty JS, Powell GK, Lica L, Regier DA, MacDonald EMS, Hommes NG, Morris RO: Tzs, a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with transzeatin biosynthesis. Mol Gen Genet 203: 274–280 (1986).

    Article  Google Scholar 

  13. Beijersbergen A, den Dulk-Ras A, Schilperoort RA, Hooykaas PJJ: Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science (in press).

  14. Beijersbergen A, Hooykaas PJJ: Topology of the VirB complex analysed via PhoA fusions (in preparation).

  15. Beijersbergen A, Idler KB, Melchers LS, Thompson DV, Hooykaas PJJ: The complete nucleotide sequence of the octopine Ti plasmid virulence region (in preparation).

  16. Bevan M: Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).

    PubMed  Google Scholar 

  17. Bevan MW, Chilton M-D: T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16: 357–384 (1982).

    Article  PubMed  Google Scholar 

  18. Bevan MW, Flavell RB, Chilton M-D: A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187 (1983).

    Google Scholar 

  19. Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J: Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145: 177–181 (1976).

    Article  PubMed  Google Scholar 

  20. Boulton MI, Buchholz WG, Marks MS, Parkham PG, Davies JW: Specificity of Agrobacterium mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol Biol 12: 31–40 (1989).

    Article  Google Scholar 

  21. Bourret RB, Hess JF, Simon MI: Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad Sci USA 87: 41–45 (1990).

    PubMed  Google Scholar 

  22. Braun AC: Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34: 234–240 (1947).

    Google Scholar 

  23. Braun AC: A physiological basis for autonomous growth of crown gall tumor cell. Proc Natl Acad Sci USA 44: 344–349 (1958).

    Google Scholar 

  24. Breitman ML, Rombola H, Maxwell IH, Klintworth GD, Bernstein A: Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene. Mol Cell Biol 10: 474–479 (1990).

    PubMed  Google Scholar 

  25. Buchanan-Wollaston V, Passiatore JE, Cannon F: The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172–175 (1987).

    Article  Google Scholar 

  26. Buchholz WG, Thomashow MF: Comparison of T-DNA oncogene complements of Agrobacterium tumefaciens tumor-inducing plasmids with limited and wide host ranges. J Bact 160: 319–326 (1984).

    PubMed  Google Scholar 

  27. Bytebier B, Deboeck F, DeGreve H, VanMontagu M, Hernalsteens J-P: T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci USA 84: 5345–5349 (1987).

    Google Scholar 

  28. Cangelosi GA, Ankenbauer RG, Nester EW: Sugars induce the Agrobacterium tumefaciens virulence genes via a periplasmic binding protein and the VirA protein. Proc Natl Acad Sci USA 87: 6708–6712 (1990).

    PubMed  Google Scholar 

  29. Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Theines C, Nester EW: Role of Agrobacterium tumefaciens ChvA protein in export of β-1,2 glucan. J Bact 171: 1609–1615 (1989).

    PubMed  Google Scholar 

  30. Capecchi MR: Altering the genome by homologous recombination. Science 244: 1288–1292 (1989).

    PubMed  Google Scholar 

  31. Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL: Agrobacterium mediated transformation of thin cell layer explants from Brassica napus L. Theor Appl Genet 75: 438–445 (1988).

    Article  Google Scholar 

  32. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW: Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271 (1977).

    Article  PubMed  Google Scholar 

  33. Chilton M-D, Montoya AL, Merlo DJ, Drummond MH, Nutter R, Gordon MP, Nester EW: Restriction endonuclease mapping of a plasmid that confers oncogenicity upon Agrobacterium tumefaciens strain B6–806. Plasmid 1: 254–269 (1978).

    PubMed  Google Scholar 

  34. Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F: T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 4060–4064 (1980).

    Google Scholar 

  35. Christie PJ, Ward JE, Gordon MP, Nester EW: A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci USA 86: 9677–9681 (1989).

    PubMed  Google Scholar 

  36. Christou P, Ford TL, Kofron M: Production of transgenic rice (Oryza sativa L.) from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9: 957–962 (1991).

    Article  Google Scholar 

  37. Christou P, Platt SG, Ackerman MC: Opine synthesis in wild-type plant tissue. Plant Physiol 82: 218–221 (1986).

    Google Scholar 

  38. Chyi Y-S, Jorgensen RA, Goldstein D, Tanksley SD, Loaiza-Figueroa F: Locations and stability of Agrobacterium mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204: 64–69 (1986).

    Article  Google Scholar 

  39. Citovsky V, Wong ML, Zambryski P: Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193–1197 (1989).

    PubMed  Google Scholar 

  40. Czako M, An G: Expression of DNA coding for diphtheria toxin chain A is toxic to plant cells. Plant Physiol 95: 687–692 (1991).

    Google Scholar 

  41. Dale EC, Ow DW: Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85 (1990).

    Article  PubMed  Google Scholar 

  42. DeBlock M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Van Montagu M, Leemans J: Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518 (1987).

    Google Scholar 

  43. DeBeuckeleer M, Lemmers M, DeVos G, Willmitzer L, VanMontagu M, Schell J: Further insight on the transferred- DNA of octopine crown gall. Mol Gen Genet 183: 283–288 (1981).

    Article  PubMed  Google Scholar 

  44. DeCleene M, DeLey J: The host range of crown gall. Bot Rev 42: 389–466 (1976).

    Google Scholar 

  45. DeFramond AJ, Barton KA, Chilton M-D: Mini-Ti: a new vector strategy for plant genetic engineering. Bio/technology 1: 262–269 (1983).

    Article  Google Scholar 

  46. Douglas CJ, Staneloni RJ, Rubin RA, Nester EW: Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bact 161: 850–860 (1985).

    PubMed  Google Scholar 

  47. Dürrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z: Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 86: 9154–9158 (1989).

    PubMed  Google Scholar 

  48. Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Bradford SB, Fink C, Flick J, O'Connell KM, Fraley RT: Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Som Cell Mol Genet 13: 67–76 (1987).

    PubMed  Google Scholar 

  49. Feldmann KA: T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71–82 (1991).

    Google Scholar 

  50. Forst SA, Delgado J, Inouye M: DNA-binding properties of the transcripton activator (OmpR) for the upstream sequences of ompF in Escherichia coli are altered by envZ mutations and medium osmolarity. J Bact 171: 2949–2955 (1989).

    PubMed  Google Scholar 

  51. Fraser CM: Site-directed mutagenesis of β-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J Biol Chem 264: 9266–9270 (1989).

    PubMed  Google Scholar 

  52. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW: Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 143–153 (1981).

    Article  PubMed  Google Scholar 

  53. Gelvin SB, Thomashow MF, McPherson JC, Gordon MP, Nester EW: Sizes and map positions of several plasmid DNA-encoded transcripts in octopine-type crown gall tumors. Proc Natl Acad Sci USA 79: 76–80 (1982).

    PubMed  Google Scholar 

  54. Gheysen G, Villarroel R, VanMontagu M: Illegitimate recombination in plants: a model for T-DNA integration. Genes Devel 5: 287–297 (1991).

    PubMed  Google Scholar 

  55. Graves ACF, Goldman SL: The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7: 43–50 (1986).

    Google Scholar 

  56. Grimsley N, Hohn B, Hohn T, Walden R: ‘Agroinfection’ an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83: 3282–3286 (1986).

    Google Scholar 

  57. Grimsley N, Hohn T, Davies JW, Hohn B: Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179 (1987).

    Article  Google Scholar 

  58. Hall G, Allen GC, Loer DS, Thompson WF, Spiker S: Nuclear scaffolds and scaffold-attachment regions in higher plants. Proc Natl Acad Sci USA 88: 9320–9324 (1991).

    PubMed  Google Scholar 

  59. Heinemann JA, Sprague GF: Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340: 205–209 (1989).

    Article  PubMed  Google Scholar 

  60. Hemstad PR, Reisch BI: In vitro production of galls induced by Agrobacterium tumefaciens and Agrobacterium rhizogenes on Vitis and Rubus. J Plant Physiol 120: 9–17 (1985).

    Google Scholar 

  61. Hepburn AG, Clarke LE, Pearson L, White J: The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. J Mol Appl Genet 2: 315–329 (1983).

    PubMed  Google Scholar 

  62. Hernalsteens J-P, Thia-Toong L, Schell J, VanMontagu M: An Agrobacterium transformed cell culture from the monocot Asparagus officinalis. EMBO J 3: 3039–3041 (1984).

    Google Scholar 

  63. Herrera-Estrella A, Chen Z, VanMontagu M, Wang K: VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T strand molecules. EMBO J 7: 4055–4062 (1988).

    PubMed  Google Scholar 

  64. Herrera-Estrella A, VanMontagu M, Wang K: A bacterial peptide acting as a plant nuclear targeting signal: the amino-terminal portion of Agrobacterium VirD2 protein directs a β-galactosidase fusion protein into tobacco nuclei. Proc Natl Acad Sci USA 87: 9534–9537 (1990).

    PubMed  Google Scholar 

  65. Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P: Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17: 1013–1021 (1991).

    PubMed  Google Scholar 

  66. Hille J, VanKan J, Klasen I, Schilperoort R: Site-directed mutagenesis in Escherichia coli of a stable R772:: Ti cointegrate plasmid from Agrobacterium tumefaciens. J Bact 154: 693–701 (1983).

    PubMed  Google Scholar 

  67. Hille J, Wullems G, Schilperoort RA: Non-oncogenic T-region mutants of Agrobacterium tumefaciens do transfer T-DNA into plant cells. Plant Mol Biol 2: 155–163 (1983).

    Google Scholar 

  68. Hoekema A, dePater BS, Fellinger AJ, Hooykaas PJJ, Schilperoort RA: The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T region. EMBO J 3: 3043–3047 (1984).

    Google Scholar 

  69. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid Nature 303: 179–180 (1983).

    Google Scholar 

  70. Hooykaas PJJ, denDulk-Ras H, Schilperoort RA: The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol 11: 791–794 (1988).

    Google Scholar 

  71. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A: Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98: 477–484 (1977).

    Google Scholar 

  72. Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA: Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764 (1984).

    Google Scholar 

  73. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  74. Huang Y, Morel P, Powell B, Kado CI: VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bact 172: 1142–1144 (1990).

    PubMed  Google Scholar 

  75. Janssen BJ, Gardner RC: Localized transient expression of GUS in leaf discs following concultivation with Agrobacterium. Plant Mol Biol 14: 61–72 (1989).

    Article  Google Scholar 

  76. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  77. Jin S, Prusti RK, Roitsch T, Ankenbauer RG, Nester EW: The VirG protein of Agrobacterium tumefaciens is phosphorylated by the autophosphorylated VirA protein and this is essential for its biological activity. J Bact 172: 4945–4950 (1990).

    PubMed  Google Scholar 

  78. Jin S, Roitsch T, Ankenbauer RG, Gordon MP, Nester EW: The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bact 172: 525–530 (1990).

    PubMed  Google Scholar 

  79. Kanemoto RH, Powell AT, Akiyoshi DE, Regier DA, Kerstetter RA, Nester EW, Hawes MC, Gordon MP: Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens. J Bact 171: 2506–2512 (1989).

    PubMed  Google Scholar 

  80. Keener J, Kustu S: Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc Natl Acad Sci USA 85: 4976–4980 (1988).

    PubMed  Google Scholar 

  81. Kerr A: Transfer of virulence between isolates of Agrobacterium. Nature 223: 1175–1176 (1969).

    Google Scholar 

  82. Klapwijk PM, Scheulderman T, Schilperoort RA: Coordinated regulation of octopine degradation and conjugative transfer of Ti plasmids in Agrobacterium tumefaciens: evidence for a common regulatory gene and separate operons. J Bact 136: 775–785 (1987).

    Google Scholar 

  83. Klein TM, Wolf ED, Wu R, Sanford JC: High-velocity microprojectiles for delivery of nucleic acids into living cells. Nature 327: 70–73 (1987).

    Article  Google Scholar 

  84. Koekman BP, Ooms G, Klapwijk PM, Schilperoort RA: Genetic map of an octopine Ti-plasmid. Plasmid 2: 347–357 (1979).

    PubMed  Google Scholar 

  85. Komro CT, DiRita VJ, Gelvin SB, Kemp JD: Site-specific mutagenesis in the TR-DNA region of octopine-type Ti plasmids. Plant Mol Biol 4: 253–263 (1985).

    Google Scholar 

  86. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J: High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467–8471 (1989).

    PubMed  Google Scholar 

  87. Krens FA, Mans RMW, vanSlogteren TMS, Hoge JHC, Wullems GJ, Schilperoort RA: Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti-plasmid DNA: co-transfer of T-DNA and non-T-DNA sequences. Plant Mol Biol 5: 223–234 (1985).

    Google Scholar 

  88. Kuldau GA, DeVos G, Owen J, McCaffrey G, Zambryski P: The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221: 256–266 (1990).

    Article  PubMed  Google Scholar 

  89. Körber H, Strizhov N, Staiger D, Feldwisch J, Olsson O, Sandberg G, Palme K, Schell J, Koncz C: T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO J 10: 3983–3991 (1991).

    PubMed  Google Scholar 

  90. Lazo GR, Stein PA, Ludwig RA: A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/technology 9: 963–967 (1991).

    Article  PubMed  Google Scholar 

  91. Ledeboer AM: Large plasmids in Rhizobiaceae. Studies on the transcription of the tumour inducing plasmid from Agrobacterium tumefaciens in sterile crown gall tumour cells. Thesis, University of Leiden, Netherlands, p 180 (1978).

  92. Lee KY, Lund P, Lowe K, Dunsmuir P: Homologous recombination in plant cells after Agrobacterium mediated transformation. Plant Cell 2: 415–425 (1990).

    Article  PubMed  Google Scholar 

  93. Leemans J, Deblaere R, Willmitzer L, deGreve H, Hernalsteens JP, VanMontagu M, Schell J: Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J 1: 147–152 (1982).

    Google Scholar 

  94. Leroux B, Yanofsky MF, Winans SC, Ward JE, Ziegler SF, Nester EW: Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6: 849–856 (1987).

    PubMed  Google Scholar 

  95. Lippincott BB, Lippincott JA: Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J Bact 97: 620–628 (1969).

    PubMed  Google Scholar 

  96. Manoil C, Beckwith J: Tn phoA: a transposon probe for protein export signals. Proc Natl Acad Sci USA 82: 8129–8133 (1985).

    PubMed  Google Scholar 

  97. Mariani C, DeBeuckeleer M, Truettner J, Leemans J, Goldberg RB: Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741 (1990).

    Article  Google Scholar 

  98. Matsumoto S, Ito Y, Hosoi T, Takahashi Y, Machida Y: Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224: 309–316 (1990).

    Article  PubMed  Google Scholar 

  99. Matzke MA, Primig M, Trnovsky J, Matzke AJM: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8: 643–649 (1989).

    Google Scholar 

  100. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C: T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10: 697–704 (1991).

    PubMed  Google Scholar 

  101. McCabe DE, Swain MF, Martinell BJ, Christou P: Stable transformation of soybean (Glycine max) by particle acceleration. Bio/technology 6: 923–926 (1988).

    Article  Google Scholar 

  102. Melchers LS, Maroney MJ, denDulk-Ras A, Thompson DV, vanVuuren HAJ, Schilperoort RA, Hooykaas PJJ: Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF-locus. Plant Mol Biol 14: 249–259 (1990).

    PubMed  Google Scholar 

  103. Melchers LS, Regensburg-Tuïnk AJG, Schilperoort RA, Hooykaas PJJ: Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol Microbiol 3: 969–977 (1989).

    PubMed  Google Scholar 

  104. Melchers LS, Regensburg-Tuïnk AJG, Bourret RB, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 8: 1919–1925 (1989).

    PubMed  Google Scholar 

  105. Melchers LS, Thompson DV, Idler KB, Neuteboom STC, DeMaagd RA, Schilperoort RA, Hooykaas PJJ: Molecular characterization of the virulence gene virA of the Agrobacterium tumefaciens octopine Ti plasmid. Plant Mol Biol 9: 635–645 (1987).

    Google Scholar 

  106. Melchers LS, Thompson DV, Idler KB, Schilperoort RA, Hooykaas PJJ: Nucleotide sequence of the virulence gene virG of the Agrobacterium tumefaciens octopine Ti plasmid: significant homology between virG and the regulatory genes ompR, phoB and dye of E. coli. Nucl Acids Res 14: 9933–9942 (1986).

    PubMed  Google Scholar 

  107. Messens E, Dekeyser R, Stachel SE: A nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc Natl Acad Sci USA 87: 4368–4372 (1990).

    PubMed  Google Scholar 

  108. Nixon BT, Ronson CW, Ausubel FM: Two-component regulatory systems responsive to enviromental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA 83: 7850–7854 (1986).

    PubMed  Google Scholar 

  109. Oakes JV, Shewmaker CK, Stalker DM: Production of cyclodextrins, a novel carbohydrate, in the tubers of transgenic potato plants. Bio/technology 9: 982–986 (1991).

    Article  PubMed  Google Scholar 

  110. Offringa R, deGroot MJA, Haagsman HJ, Does MP, van denElzen PJ, Hooykaas PJJ: Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9: 3077–3084 (1990).

    PubMed  Google Scholar 

  111. Ooms G, Hooykaas PJJ, Moolenaar G, Schilperoort RA: Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids: analysis of T-DNA functions. Gene 14: 33–50 (1981).

    Article  PubMed  Google Scholar 

  112. Ooms G, Hooykaas PJJ, vanVeen RJM, vanBeelen P, Regensburg-Tuïnk AJG, Schilperoort RA: Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T region. Plasmid 7: 15–29 (1982).

    PubMed  Google Scholar 

  113. Otten LABM, Schilperoort RA: A rapid micro scale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim Biophys Acta 527: 497–500 (1978).

    PubMed  Google Scholar 

  114. Ow DW, Wood KV, DeLuca M, DeWet JR, Helinski DR, Howell SH: Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859 (1986).

    Google Scholar 

  115. Panagopoulos CG, Psallidas PG: Characteristics of Greek isolates of Agrobacterium tumefaciens (Smith and Townsend). Conn J Appl Bact 36: 233–240 (1973).

    Google Scholar 

  116. Pansegrau W, Lanka E: Common sequence motifs in the DNA relaxases and nick regions from a variety of DNA transfer systems. Nucl Acids Res 19: 3455 (1991).

    PubMed  Google Scholar 

  117. Paszkowski J, Baur B, Bogucki A, Potrykus I: Gene targeting in plants. EMBO J 7: 4021–4026 (1988).

    Google Scholar 

  118. Pazour GJ, Das A: VirG, an Agrobacterium tumefaciens transcriptional activator, initiates translation at a UUG codon and is a sequence-specific DNA-binding protein. J Bact 172: 1241–1249 (1990).

    PubMed  Google Scholar 

  119. Peach C, Velten J: Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17: 49–60 (1991).

    PubMed  Google Scholar 

  120. Peerbolte R, Leenhouts K, Hooykaas-van Slogteren GMS, Hoge JHC, Wullems GJ, Schilperoort RA: Clones from a shooty tobacco crown gall tumor I: deletions, rearragements and amplifications resulting in irregular T-DNA structures and organizations. Plant Mol Biol 7: 265–284 (1986).

    Google Scholar 

  121. Peralta EG, Hellmiss R, Ream W: Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137–1142 (1986).

    Google Scholar 

  122. Peralta EG, Ream LW: T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci USA 82: 5112–5116 (1985).

    PubMed  Google Scholar 

  123. Petit A, Delhaye S, Tempé J, Morel G: Recherches sur les guanidines des tissus de crown-gall. Mise en evidence d'une relation biochimique spécifique entre les souches d'Agrobacterium tumefaciens et les tumeurs qu'elles induisent. Physiol Végét 8: 205–213 (1970).

    Google Scholar 

  124. Regensburg-Tuïnk AJG, Mozo T, Hooykaas PJJ: The virulence protein VirF of Agrobacterium tumefaciens is transferred to and active in plant cells (in preparation).

  125. Rodenburg K, Vriend G, Schilperoort RA, Hooykaas PJJ: A model for VirG based on the 3 dimensional structure of the E. coli CheY protein (in preparation).

  126. Rodenburg KW, deGroot MJA, Schilperoort RA, Hooykaas PJJ: Single stranded DNA used as an efficient new vehicle for plant protoplast transformation. Plant Mol Biol 13: 711–719 (1989).

    PubMed  Google Scholar 

  127. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI: Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bact 169: 5101–5112 (1987).

    PubMed  Google Scholar 

  128. Rogowsky PM, Powell BS, Shirasu K, Lin T-S, Morel P, Zyprian EM, Steck TR, Kado CI: Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid 23: 85–106 (1990).

    PubMed  Google Scholar 

  129. Rueb S, Hensgens LAM, Schilperoort RA: Transgenic rice plants obtained after particle gun transformation (in preparation).

  130. Sahi SV, Chilton M-D, Chilton WS: Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 87: 3879–3883 (1990).

    PubMed  Google Scholar 

  131. Schilperoort RA: Investigations on plant tumors-Crown gall. On the biochemistry of tumor induction by Agrobacterium tumefaciens. Thesis, Leiden University, Netherlands (1969).

  132. Schröder G, Waffenschmidt S, Weiler EW, Schröder J: The T-region of Ti-plasmids codes for an enzyme synthesizing idole-3-acetic acid. Eur J Biochem 138: 387–391 (1984).

    PubMed  Google Scholar 

  133. Schäfer W, Görz A, Kahl G: T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–532 (1987).

    Article  Google Scholar 

  134. Shaw CH, Watson MD, Carter GH, Shaw CH: The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumour formation. Nucl Acids Res 12: 6031–6041 (1984).

    PubMed  Google Scholar 

  135. Sheikholeslam SN, Weeks DP: Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8: 291–298 (1987).

    Google Scholar 

  136. Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y: Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87: 6684–6688 (1990).

    PubMed  Google Scholar 

  137. Sikorski RS, Michaud W, Levin HL, Boeke JD, Hieter P: Trans-kingdom promiscuity. Nature 345: 581–582 (1990).

    Article  Google Scholar 

  138. Skoog F, Miller CO: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118–131 (1957).

    Google Scholar 

  139. Smit G, Logman TJJ, Boerrigter MET, Kijne JW, Lugtenberg BJJ: Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bact 171: 4054–4062 (1989).

    PubMed  Google Scholar 

  140. Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D: Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726 (1988).

    Article  Google Scholar 

  141. Smith EF, Townsend CO: A plant tumor of bacterial origin. Science 25: 671–673 (1907).

    Google Scholar 

  142. Song Y-N, Shibuya M, Ebizuka Y, Sankawa U: Synergistic action of phenolic signal compounds and carbohydrates in the induction of virulence gene expression in Agrobacterium tumefaciens. Chem Pharm Bull 39: 2613–2616 (1991).

    PubMed  Google Scholar 

  143. Song Y-N, Shibuya M, Ebrizuka Y, Sankawa U: Identification of plant factors inducing virulence gene expression in Agrobacterium tumefaciens. Chem Pharm Bull 39: 2347–2350 (1991).

    Google Scholar 

  144. Southern E: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–518 (1975).

    PubMed  Google Scholar 

  145. Spencer PA, Towers GHN: Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2785 (1988).

    Article  Google Scholar 

  146. Spencer PA, Towers GHN: Restricted occurrence of acetophenone signal compounds. Phytochemistry 30: 2933–2937 (1991).

    Article  Google Scholar 

  147. Spielmann A, Simpson RB: T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol Gen Genet 205: 34–41 (1986).

    Google Scholar 

  148. Stachel SE, Messens E, VanMontagu M, Zambryski P: Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629 (1985).

    Google Scholar 

  149. Stachel SE, Timmerman B, Zambryski P: Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–712 (1986).

    Google Scholar 

  150. Stachel SE, Zambryski PC: virA and virG control the plant-induced activation of the T-DNA transfer process of Agrobacterium tumefaciens. Cell 46: 325–333 (1986).

    Article  PubMed  Google Scholar 

  151. Steck TR, Close TJ, Kado CI: High levels of double-stranded transferred DNA (T-DNA) processing from an intact nopaline Ti plasmid. Proc Natl Acad Sci USA 86: 2133–2137 (1989).

    PubMed  Google Scholar 

  152. Stief A, Winter DM, Strätling WH, Sippel AE: A nuclear DNA attachement element mediates elevated and position-independent gene activity. Nature 341: 343–345 (1989).

    Article  PubMed  Google Scholar 

  153. Stiekema WJ, Heidekamp F, Louwerse JD, Verhoeven HA, Dijkhuis P: Introduction of foreign genes into potato cultivars Bintje and Desirée using an Agrobacterium tumefaciens binary vector. Plant Cell Rep 7: 47–50 (1988).

    Article  Google Scholar 

  154. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF: Identification of two serine residues involved in agonist activation of the β-adrenergic receptor. J Biol Chem 264: 13572–13578 (1989).

    PubMed  Google Scholar 

  155. Tamamoto S, Aoyama T, Takanami M, Oka A: Binding of the regulatory protein VirG to the phased signal sequences upstream from virulence genes on the hairyroot-inducing plasmid. J Mol Biol 215: 537–547 (1990).

    PubMed  Google Scholar 

  156. Teeri TH, Herrera-Estrella L, Depicker A, VanMontagu M, Palva ET: Identification of plant promoters in situ by T-DNA mediated transcriptional fusions to the nptII gene. EMBO J 5: 1755–1760 (1986).

    Google Scholar 

  157. Teeri TH, Lehväslaiho H, Franck M, Uotila J, Heino P, Palva ET, VanMontagu M, Herrera-Estrella L: Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. EMBO J 8: 343–350 (1989).

    PubMed  Google Scholar 

  158. Tempé J, Goldmann A: Occurrence and biosynthesis of opines. In: Kahl G, Schell J (eds) Molecular Biology of Plant Tumors, pp. 427–449 Academic Press, New York (1982).

    Google Scholar 

  159. Thomashow MF, Hugly S, Buchholz WG, Thomashow LS: Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231: 616–618 (1986).

    PubMed  Google Scholar 

  160. Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE: Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bact 169: 3209–3216 (1987).

    PubMed  Google Scholar 

  161. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW: Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729–739 (1980).

    PubMed  Google Scholar 

  162. Thompson DV, Melchers LS, Idler KB, Schilperoort RA, Hooykaas PJJ: Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nucl Acids Res 16: 4621–4636 (1988).

    PubMed  Google Scholar 

  163. Timmerman B, VanMontagu M, Zambryski P: vir induced recombination in Agrobacterium. Physical characterization of precise and imprecise T-circle formation. J Mol Biol 203: 373–384 (1988).

    Article  PubMed  Google Scholar 

  164. Tinland B, Huss B, Paulus F, Bonnard G, Otten L: Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet 219: 217–224 (1989).

    Article  Google Scholar 

  165. Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW: The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bact 171: 6845–6849 (1989).

    PubMed  Google Scholar 

  166. Turk S, Hooykaas PJJ: Effect of C-terminal deletions on the VirA function (in preparation).

  167. Turk SCHJ, Melchers LS, denDulk-Ras H, Regensburg-Tuïnk AJG, Hooykaas PJJ: Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol Biol 16: 1051–1059 (1991).

    PubMed  Google Scholar 

  168. vanHaaren MJJ, Pronk JT, Schilperoort RA, Hooykaas PJJ: Functional analysis of the Agrobacterium tumefaciens octopine Ti-plasmid left and right T-region border fragments. Plant Mol Biol 8: 95–104 (1987).

    Google Scholar 

  169. vanHaaren MJJ, Sedee NJA, deBoer HA, Schilperoort RA, Hooykaas PJJ: Mutational analysis of the conserved domains of a T-region border repeat of Agrobacterium tumefaciens. Plant Mol Biol 13: 523–531 (1989).

    PubMed  Google Scholar 

  170. vanHaaren MJJ, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Overdrive is a T-region transfer enhancer which stimulates T-strand production in Agrobacterium tumefaciens. Nucl Acids Res 15: 8983–8997 (1987).

    PubMed  Google Scholar 

  171. vanLarebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, VanMontagu M: Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255: 742–743 (1975).

    PubMed  Google Scholar 

  172. vanVeen RJM, denDulk-Ras H, Bisseling T, Schilperoort RA, Hooykaas PJJ: Grown gall tumor and root nodule formation by the bacterium Phyllobacterium myrsinacearum after the introduction of an Agrobacterium Ti plasmid or a Rhizobium Sym plasmid. Mol Plant-Microbe Interact 1: 231–234 (1988).

    Google Scholar 

  173. van denElzen PJM, Townsend J, Lee KY, Bedbrook JR: A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302 (1985).

    Google Scholar 

  174. van der Graaff E, Hooykaas PJJ: Construction of special-purpose T-DNA vectors (in preparation).

  175. van derKrol AR, Lenting PE, Veenstra J, van derMeer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR: An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869 (1988).

    Article  Google Scholar 

  176. vanSlogteren GMS, Hooykaas PJJ, Schilperoort RA: Silent T-DNA genes in plant lines transformed by Agrobacterium tumefaciens are activated by grafting and by 5-azacytidine treatment. Plant Mol Biol 3: 333–336 (1984).

    Google Scholar 

  177. vanSlogteren GMS, Hoge JHC, Hooykaas PJJ, Schilperoort RA: Clonal analysis of heterogeneous crown gall tumor tissues induced by wildtype and shooter mutant strains of Agrobacterium tumefaciens expression of T-DNA genes. Plant Mol Biol 2: 321–333 (1983).

    Google Scholar 

  178. Vancanneyt G, Schmidt R, O'Conner-Sanchez A, Willmitzer L, Rocha-Sosa M: Construction of an introncontaining marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium mediated plant transformation. Mol Gen Genet 220: 245–250 (1990).

    Article  PubMed  Google Scholar 

  179. Visser RGF, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E: Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225: 289–296 (1991).

    Article  PubMed  Google Scholar 

  180. VonSchaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L: Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9: 3033–3044 (1990).

    PubMed  Google Scholar 

  181. Walden R, Hayashi H, Schell J: T-DNA as a gene tag. Plant J 1: 281–288 (1991).

    Google Scholar 

  182. Wan-yin D, Xiao-ying L, Qi-quan S: Agrobacterium tumefaciens can transform Triticum aestivum and Hordeum vulgare of Gramineae. Science China Ser B 33: 27–34 (1990).

    Google Scholar 

  183. Ward ER, Barnes WM: VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242: 927–930 (1988).

    Google Scholar 

  184. Ward JE, Dale EM, Nester EW, Binns AN: Identification of a VirB10 protein aggregate in the inner membrane of Agrobacterium tumefaciens. J Bact 172: 5200–5210 (1990).

    PubMed  Google Scholar 

  185. Ward JE, Akiyoshi DE, Reiger D, Dalta A, Gordon MP, Nester EW: Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263: 5804–5814 (1988).

    PubMed  Google Scholar 

  186. Willetts N, Wilkins B: Processing of plasmid DNA during bacterial conjugation. Microbiol Rev 48: 24–41 (1984).

    PubMed  Google Scholar 

  187. Willmitzer L, Simons G, Schell J: The TL-DNA in octopine crown-gall tumours codes for seven well-defined polyadenylated transcripts. EMBO J 1: 139–146 (1982).

    Google Scholar 

  188. Winans SC: An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol 5: 2345–2350 (1991).

    PubMed  Google Scholar 

  189. Winans SC, Ebert PR, Stachel SE, Gordon MP, Nester EW: A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci USA 83: 8278–8282 (1986).

    PubMed  Google Scholar 

  190. Winans SC, Kerstetter RA, Ward JE, Nester EW: A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Bact 171: 1616–1622 (1989).

    PubMed  Google Scholar 

  191. Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D: Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326 (1982).

    Google Scholar 

  192. Yamada T, Palm CJ, Brooks B, Kosuge T: Nucleotide sequences of the Pseudomonas savastanoi indole acetic acid gene show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci USA 82: 6522–6526 (1985).

    Google Scholar 

  193. Yamashita T, Tida A, Morikawa H: Evidence that more than 90% of β-glucuronidase-expressing cells after particle bombardment directly receive the foreign gene in their nucleus. Plant Physiol. 97: 829–831 (1991).

    Google Scholar 

  194. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM: The protein encoded by the Arabidopsis hometic gene agamous resembles transcription factors. Nature 346: 35–39 (1990).

    Article  PubMed  Google Scholar 

  195. Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW: The virD operon of Agrobacterium tumefaciens encodes a site-specific andonuclease. Cell 47: 471–477 (1986).

    Article  PubMed  Google Scholar 

  196. Zaenen I, VanLarebeke N, Teuchy H, VanMontagu M, Schell J: Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86: 109–127 (1974).

    PubMed  Google Scholar 

  197. Zambryski P, Joos H, Genetello C, Leemans J, VanMontagu M, Schell J: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150 (1983).

    Google Scholar 

  198. Zerback R, Dressler K, Hess D: Flavonoid compounds from pollen and stigma of Petunia hybrida: inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Sci 62: 83–91 (1989).

    Article  Google Scholar 

  199. Zhan X, Jones DA, Kerr A: The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes. Plant Mol Biol 14: 785–792 (1990).

    PubMed  Google Scholar 

  200. Ziegelin G, Pansegrau W, Strack B, Balzer D, Kroger M, Kruft V, Lanka E: Nucleotide sequence and organization of genes flanking the transfer origin of promiscuous plasmid RP4. DNA Sequence 1: 303–327 (1991).

    PubMed  Google Scholar 

  201. Zorreguieta A, Ugalde RA: Formation in Rhizobium and Agrobacterium spp. of a 235-Kilodalton protein intermediate in β-d(1–2)glucan synthesis. J Bact 167: 947–951 (1986).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooykaas, P.J.J., Schilperoort, R.A. Agrobacterium and plant genetic engineering. Plant Mol Biol 19, 15–38 (1992). https://doi.org/10.1007/BF00015604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015604

Key words

Navigation