Table 1.

Adaptations of Australian tree species to aridity (Ashton 1975; Moore 1981; Pate and McComb 1981; New 1984; Moore 1990; Knox et al. 1994; King 1997; Atwell et al. 1999; Ladiges et al. 2005).

AdaptationMechanismExamples
SclerophyllyMaintains cellular volumeMany Australian genera, such as Acacia, and members of the Proteaceae and Myrtaceae families
Altered leaf anatomyReduces leaf surface areaHakea and Acacia species with rolled needle like leaves
Phyllodes/cladodesReduces surface area; reduces evapotranspirationMost Australian Acacia species
Vertically hanging leavesReduces absorption of radiationMany eucalypt species
Leaf/pinnule movementReduces exposed leaf surface areaBi-pinnate Acacia species; Lophostemon confertus
Cuticular adornmentReduces evapotranspirationMany genera, such as Eucalyptus, Acacia, and Casuarina, with hairy, spiny, or glaucous leaves
Stomatal cryptsReduces evapotranspirationBanksia species, Hakea species
Cuticular ledgesReduces evapotranspirationEucalyptus preissiana, E. obliqua
Stomatal closure in response to atmospheric vapor deficitReduces transpirational water lossEremophila macgillivrayi, Myoporum floribundum, Myoporum platycarpum, Pittosporum phylliraeoides, Geijera parviflora
Facultative deciduousnessReduces growth but allows survival over tropical dry periodSome Blakella eucalypts, such as E. clavigera, E. grandiflora, and E. brachyandra
Lignotubers/basal burlsRapid regrowth after foliage lossMost eucalypts; Acmena smithii
Epicormic budsRapid regrowth after foliage lossMost eucalypts
Deep tap rootAllows access to deeper soil water profileE. camaldulensis
High root:shoot ratioIncreases soil volume accessed for water supplyE. camaldulensis