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(Agrawal and Choudhary 2016) and are taking advan-
tage of this revolution due to rapidly declining costs 
of memory and computing power (Mühleisen 2018). 
Big Data and AI work together: the enormous 
amounts of data stored cannot be efficiently accessed 
and utilized without AI, and AI requires enormous 
amounts of data to build learning models (Ferrucci et 
al. 2013).

Earth observation data is most often collected by 
remote sensing (RS), defined here as obtaining infor-
mation about objects without contacting the observed 
objects. “Spectral imaging” is defined here as collect-
ing discrete bands of reflected light in the electromag-
netic spectrum. Spectral imaging of woody plants is 
useful because plant adaptations and reactions to their 
environment are observable and measurable by ana-
lyzing their optical properties in selected appropriate 
wavelengths (Kattenborn and Schmidtlein 2019). 
The most common types of RS data for urban for-
estry are in the visible wavelengths between 400 and 

INTRODUCTION
Artificial Intelligence, Big Data, and 
Remote Sensing Overview
There is a data and computing revolution occurring 
across the modern world (Hey 2010; United Nations 
Data Revolution Group 2014), which is often called 
the Fourth Industrial Revolution (Schwab 2016; 
Ndung’u and Signé 2020) and encompasses artificial 
intelligence (AI) and “Big Data.” AI is a nebulous 
term but generally is defined as actions to make 
machines intelligent and able to learn and plan (Stone 
et al. 2016). Big Data is generally considered to mean 
data sets so large and/or complex that traditional que-
ries and methods of storage are inadequate with tradi-
tional languages and which grow larger at increasing 
rates (IBM Corporation 2020). Rapid advances in AI 
are driving advances in disciplines such as medicine 
(Onukwugha 2016), agriculture (Bronson and Knezevic 
2016; Kamilaris et al. 2017), and engineering 
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MATERIALS AND METHODS
A scoping review was performed of the relevant liter-
ature in the unpiloted aerial systems (UAS), artificial 
intelligence, and remote sensing disciplines to bring 
together a disparate set of systems soon to be import-
ant to the arboricultural disciplines. 

In addition, a scoping review was performed of 
current online analytical and data-compilation plat-
forms, and the trade literature for the arboricultural 
and UAS disciplines. Due to the rapidly changing nature 
of the current technological environment, a thorough 
analysis also was performed of recent past and cur-
rent news articles and press releases for the AI and 
UAS disciplines to get a sense of likely development 
directions in these respective fields. 

A challenging aspect of any review conducted for a 
set of rapidly changing disciplines is choosing what is 
relevant information. Guiding these choices is the 
author’s experience in the field interacting with a dispa-
rate set of partners, from growers, pilots, UAS and sen-
sor manufacturers, researchers, and software developers. 
Working backwards from an assumed endpoint—
what industries and businesses expect to be the most 
likely futures toward which they are striving—is the 
main driver of the methodology of this review. 
Although it is by no means certain, a future where the 
arboricultural disciplines use modern and future tech-
nology to assist in the analysis and typical work of the 
profession is very likely, therefore the aim of this 
paper is to prepare the arboricultural professions for a 
presumed high-tech future. 

RESULTS
What follows is an outline of the findings important 
to the arboricultural disciplines: what types of data 
are or will be relevant in a high-tech future, and how 
they are or will be collected, analyzed, and applied. 
Then discussed will be how management can 
approach the coming disruption in the profession, as 
well as a discussion of how current or future workers 
can prepare themselves for the future. Lastly, a set of 
scenarios illustrate how the results can be applied to 
real-world problems that exist now or likely will exist 
soon. 

Data Collection
Collecting data on urban forests is traditionally per-
formed by visiting a site and physically measuring 
parameters such as species, location, diameter at 
breast height (DBH), and health condition (Gordon 

700 nanometers and in the near-ultraviolet to short-
wave infrared portion of the electromagnetic spectrum 
between 380 and 2,500 nanometers (Jones and 
Vaughan 2010); a more complete description of types 
of RS data is found below. Today, satellites, aircraft, 
unpiloted vehicles, ground-based sensors, and even 
handheld sensors carried in pockets (de With 2020) 
annually collect terabytes of earth observation data 
(Hansen et al. 2013; Hohn et al. 2021). Platforms to 
compile and analyze earth observation data are prolif-
erating (Mauri et al. 2017). Courses on computing 
languages used to operate these platforms are some of 
the most requested in universities and online across 
the world (Dierbach 2014). The urban forestry pro-
fessions can take advantage of RS and the Big Data 
revolution in computing to vastly improve forest 
assessment, monitoring, and management. 

Threats to Urban Forests
Urban forests provide many benefits to humans who 
live, work, and play in their shade (Dwyer et al. 2000; 
McPherson et al. 2016). Nonetheless, urban forest 
canopy cover is decreasing across much of the devel-
oped world due to several current and emerging threats 
(Kaspar et al. 2017; Doick et al. 2020; Nowak and 
Greenfield 2020). Examples of current and emerging 
biotic threats to urban forests include emerald ash 
borer (Agrilus planipennis)(Poland and McCullough 
2006), spotted lanternfly (Lycorma delicatula)(Urban 
2020), and ash dieback (Hymenoscyphus fraxineus)
(Díaz-Yáñez et al. 2020). Abiotic threats include 
anthropogenic climate change (Nowak et al. 2014; 
Ordóñez and Duinker 2014), which is increasing 
urban heat (Akbari et al. 2016) and changing weather 
patterns (Melillo et al. 2014; Masson et al. 2020). 
Densification of the built environment (Chun and 
Guldmann 2018; Næss et al. 2019) may result in both 
tree removal (Martino et al. 2021) and reduced area 
for new large-statured trees (McPherson et al. 2002; 
Haaland and Konijnendijk van den Bosch 2015). An 
emergent phenomenon that could create both signifi-
cant challenge and opportunity is an evolution in 
driverless vehicles, discussed below. 

How can the urban forestry professions take advan-
tage of RS, AI, and Big Data to improve urban forest 
health? This paper will discuss the current capabili-
ties and likely future directions of RS and computing, 
then suggest a technology path forward for the urban 
forestry professions to ensure future generations will 
enjoy the many benefits of urban forests. 

Staley: Modern Urban Forestry for Modern Cities
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and Templeton 2015). Today, these data points require 
collection in the field, then entry of the collected data 
into a centralized database. A street tree inventory for 
a city of 100,000 people may take 4 to 5 weeks using 
a typical crew of 6 people working 40 hours a week, 
depending upon how many parameters are measured 
(TJ Wood, personal communication, 2021 May 4). 

Today, a tremendous amount of urban forest data 
is already being incidentally collected by third-party 
RS platforms (Liu 2015; Mohney 2020). For exam-
ple, traditional large satellites such as the European 
Space Agency’s Sentinel 2 and 3 platforms (Phiri et 
al. 2020), Worldview 3 platform (Ozkan et al. 2020), 
or constellations of small satellites such as “Doves” 
manufactured by Planet Labs (Werner 2019) collect 
RS data at sufficient resolution to be used for some 
urban forestry applications (Alonzo et al. 2013; 
Schlemmer et al. 2013; Segarra et al. 2020; PlanIT 
Geo 2021). Some platforms image a specific area 
several times a week or better, weather permitting 
(Bradshaw 2020). Aircraft can be tasked to fly over 
cities to collect data that can be utilized for urban for-
est assessments, for example, the Denver Regional 
Council of Governments in Colorado, USA (DRCOG 
2018) regularly collects leaf-on and leaf-off data for 
built environment purposes that also contain data 
usable for urban forestry analyses. Google Earth has 
information across much of the developed world at 
sufficient resolution to estimate DBH class, tree genus, 
and location (Berland and Lange 2017). Remotely 
Piloted Aircraft (RPA) are also beginning to collect 
very high-resolution urban forest data (see examples 
in Figures 1 and 2) that researchers are using to begin 
to decipher plant reflectance and identify health and key 
pests (Staley et al. 2019). Much more RPA data will be 
available soon as aviation governing bodies in coun-
tries across the planet approve operations for flying 
RPA over cities and beyond line of sight (Jones 2017). 

A description of the types of data currently rele-
vant at urban forest vegetation scales and how they 
are collected follows:

•	Visible and spectral imagery: These data are 
collected from satellites, aircraft, RPA, and 
ground-mounted sensors such as Google Street 
View vehicles and handheld smartphones. These 
data can be used to determine tree canopy health, 
disease, canopy extent, pest presence, and—
depending on the sensor—tree species (Thenk-
abail et al. 2018). 

•	Thermal data: These data are collected from air-
craft, RPA, and some satellites. These data can 
be used to detect heat islands, plant water stress, 
and indicators of moisture such as irrigation leaks 
(Stankevich et al. 2019).

•	LiDAR data: LiDAR (light detection and rang-
ing) is similar to radar, but utilizes light instead 
of radio waves. These data are collected from 
aircraft, RPA, ground-mounted sensors, hand-
held sensors, and even smartphones (de With 
2020). These data can display high-resolution 3D 
surface and elevation models of canopy, individ-
ual trees, or structures. LiDAR can also assist in 
calculations for wood volume or carbon seques-
tration (Tigges and Lakes 2017).

•	Digital surface models (DSMs): Constructed 
using data and photogrammetry from satellites, 
aircraft, and RPA (Escobar Villanueva et al. 2019). 
These data can depict urban forest and built 
environment structure across scales. DSMs can 
be derived from sources such as visual imagery, 
LiDAR, spectral imagery, or Synthetic Aperture 
Radar mounted on satellites or aerial platforms. 

•	3D models: Derived from photogrammetry or 
other processes using sensors mounted on aerial 
or ground platforms and constructed from visi-
ble, spectral, or LiDAR data using specialized 
software.

•	Traditional environmental monitoring data: Here 
defined as instruments that collect parameters, 
including soil moisture, temperature, and pan 
evaporation. 

If current trends continue, soon a vast amount of 
data for urban forest trees, both public and private, 
will routinely be collected for use in urban forestry and 
curated somewhere for later discovery and analysis.

Data Analysis
Today, most urban forest inventory data are analyzed 
on purpose-built inventory software created by third-
party entities, stored in the software system, and 
accessed via simple queries within the software inter-
face. Where are all the data on urban forests described 
above stored and analyzed?

Discovering, accessing, and analyzing urban forest 
data curated on third-party platforms is not straight-
forward today. Data must be found across a growing 
number of sites. Once data are located, computer lan-
guages such as Python (Bogdanchikov et al. 2013) or 
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(Arlula 2021), and open-source platforms such as 
GitHub (GitHub 2021) and Orfeo (Grizonnet et al. 
2017). Governments may make data collected for 
various purposes available, often for free (Baines et al. 
2020; Galle et al. 2021). Examples of publicly avail-
able urban forest data sets include Denver, Colorado, 
USA (City and County of Denver 2021) and Mel-
bourne, Victoria, Australia (City of Melbourne 2020). 

R (R Foundation 2021) are generally used to query 
the data sets and parameterize output. Accessing some 
data may require paying a fee (Satellite Imaging Cor-
poration 2021). Nonetheless, terabytes of earth obser-
vation data, including urban forest data across scales, 
are available now on platforms such as the European 
Space Agency’s Copernicus platform (ESA 2021), 
Google Earth Engine (Anchang et al. 2020), Arlula 

Staley: Modern Urban Forestry for Modern Cities

Figure 1. Reflectance signals to identify plant health and pests. (A) Use of spectral algorithms derived from reflectance values to deter-
mine overall plant health and compare ground-based inventory (inventory year: 2015), with proprietary health indicators (collection 
year: 2018). Red denotes healthy vegetation. E = Excellent, G = Good, F = Fair, P = Poor. Derived health indicators match well with 
ground-based inventory. Location: Denver, Colorado, USA. (B) Detail of 1A but comparing Quercus rubra with known stress (QURU). 
E = Excellent, G = Good, F = Fair. Spectrally derived health indicators match well with ground-based inventory.
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Collection is finding relevant existing data (“dis-
covery”), and/or physically collecting needed RS 
data. RS data discovered or collected may be from 
any platform and curated in the public or private 
sphere (open-source or fee-based data). 

Analysis requires an understanding of both the 
applicability and relevance of remote sensing out-
puts, such as vegetation indices, LiDAR point clouds, 
Digital Evaluation Models (DEMs), 3D models, and 
digital orthophotos. Applicability and relevance of 
sensor outputs are key considerations for choosing a 
particular sensor for urban forest analysis. Spectral 
imagery can be processed into vegetation indices to 
indicate tree health and help determine canopy extent 
(Jensen et al. 2012; Alonzo et al. 2016), as well as 
attempt to determine genus and species. It is import-
ant to understand that, currently, analysis of spectral 
data using existing commercial agriculture software 
platforms on the internet does not sufficiently analyze 
trees for accurate pest and disease tracking (Staley et 
al. 2019) and requires human intervention using a 
platform such as ENVI (Harris Geospatial Solutions 
Inc. 2021), ArcGIS (ESRI 2009), or QGIS (QGIS 
2021). Choosing data types will be an important anal-
ysis and budget consideration in the future: just 
because data exist, does not mean those data are rele-
vant to a particular analysis (Li et al. 2019). For exam-
ple: dense point clouds of LiDAR data are excellent 
for three-dimensional representations of tree crowns 
(Gülçin and Konijnendijk van den Bosch 2021) but 
currently struggle to resolve parameters such as leaf 
chlorophyll content or presence of pests or disease 
(Fahey et al. 2021). Paying for the right data and anal-
ysis will be an important discussion in many urban 
forests soon. 

Communication, for purposes of this paper, includes 
written, spoken, and digital communication. Exam-
ples of communication types relevant to urban forestry 
include tasks such as explaining to decision makers 
the merits of a project or a proposal, advising third-
party contractors on the validity of an output or con-
clusion, notifying citizens of the findings of a project, 
writing urban forest plans based on RS data and anal-
ysis, asking for money to act on a proposal or analysis, 
explaining to a contractor the scope of project require-
ments and expectations, and answering questions or 
relaying findings to the public via social media and web 
pages. Communication skills and coalition building 
will be even more important in an information-rich 

Collecting or accessing remotely sensed data, ana-
lyzing on software platforms, integrating new infor-
mation into action, and communicating results to users 
and clients will soon be a standard task for the urban 
forestry professions. Urban forestry routinely using RS 
data and acting on it will be an important inflection 
point in the direction and history of urban forestry. 
“Digital urban foresters” collecting, harvesting, curat-
ing, and analyzing data will be a new specialty, because 
current and emergent threats to urban ecosystems—and 
the citizens who depend on urban forests—require 
utilization of all available data in an increasingly 
complex world. Now is the time to begin the transi-
tion to the era of Big Data-driven urban forestry. 

The coming era of urban forest technology can be 
characterized as a “Big Data Urban Forestry” infor-
mation environment. This new era will require new 
ways of organizing some traditional tasks and devel-
oping new tasks arising from the proliferation of data. 

The CACI Model
The CACI model in this paper refers to the process of 
urban forest RS data Collection, Analysis, Commu-
nication, and Implementation. Key to this process is a 
specialized branch of artificial intelligence comput-
ing called machine learning (ML), discussed below. 

Figure 2. Pest detection using spectral reflectance algorithms. 
Proprietary plant health algorithm developed specifically to 
detect emerald ash borer (EAB). Three Fraxinus pennsylvanica 
attacked by EAB and in various stages of early stress are 
denoted by yellow arrows. 1 = best condition and 3 = worst 
condition. In this image, colors are only relevant for Fraxinus: 
blue is healthy foliage, and orange is thinning foliage due to 
EAB attack. At the time of imaging, only crown thinning was 
evident visually, and no other indicators of attack were visible. 
Woodpeckers were found in these trees several months after 
this imaging mission. Location: Boulder, Colorado, USA. 
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on outside contractors to do most of the work will 
require that an organization has project management 
staff who can ensure third parties perform work per 
contracts and that the output makes sense. Balancing 
these two considerations will be an important task for 
urban forest managers and require discipline to keep 
everyone on track. 

Key questions for operations will be how much 
capacity, resources, and competency the organization 
will keep in house versus how much will be acquired 
via third-party contractors. Other questions include: 
Who curates the data? Who handles cybersecurity 
protocols and responsibilities? Who purchases physi-
cal infrastructure such as office space, computers, serv-
ers, data purchase, data security, and software licenses? 
Who writes the technical reports and management 
plans arising from data analysis? Who creates, pres-
ents, and shares the visual representations of data and 
results to the client or the public? These questions 
will be relevant in many organizations in the future. 

Career Paths and Other Opportunities to 
Address Modern Technology Challenges
As the demand for Big Data grows, one can envision 
the existing industry of environment-specific compa-
nies such as those providing field technology services 
for wetland delineation, surveying, construction man-
agement, and engineering expanding their offerings 
to provide urban forestry services (Schewe 2020). 
Similarly, existing analytics and technology-focused 
office firms that are lacking field experience or botan-
ical education may need individuals from the urban 
forestry professions to assist in product development, 
testing, or deployment. Lastly, a market may evolve 
for firms that specifically offer RS and/or Big Data 
services tailored for the urban forestry professions or 
other professions in built or wild landscapes. Organi-
zations may forego investment in maintaining physi-
cal resources and staff and instead decide to contract 
services to provide and curate data, provide analysis, 
and manage software licensing, data security, and 
physical infrastructure for smaller organizations or 
companies. Similarly, a niche may arise for a career 
consultant who bills time by specializing in interpret-
ing data or analyses and writes highly technical data 
reports for diverse environmental clients.

Individuals already in the traditional urban forestry 
professions looking for a change due to age, injury, or 
life event may want to have an option like those 

environment with multiple communication platforms 
used by diverse publics. Communicating effectively 
to many different audiences will soon be an important 
skill in an information-rich world.

Implementation in this paper is defined as action 
resulting from results of analysis. This action results 
in outcomes such as publishing and enforcing a man-
agement plan, requesting for a budget to address find-
ings, submitting a bid encompassing work for a 
Request for Proposal, or issuing work orders. 

Machine learning will be a key component of the 
future CACI process and is a sub-discipline of artifi-
cial intelligence. ML uses data and algorithms to 
make predictions, models, and decisions, without being 
explicitly programmed to make predictions and deci-
sions, then learns and improves with experience (Malone 
et al. 2020). ML is a rapidly growing field, is quickly 
becoming ubiquitous across many fields of human 
endeavor, and includes plant species identification 
applications on smartphones and plant disease identi-
fication algorithms for handheld sensors (Mohanty et 
al. 2016; Buja et al. 2021). 

It is likely at the current pace of ML development 
that within 10 years, ML algorithms will be available 
for many urban forest needs, using data from numer-
ous places to perform both user-based and machine-
based queries and actions, ranging from canopy health 
assessments across scales, to amount and timing of 
irrigation or nutrient delivery in constructed landscapes.

DISCUSSION
Considerations for Management
In the future, organizations, departments, and compa-
nies will need to decide between: (1) hiring digital 
forestry staff to perform most or all of the CACI pro-
cess; (2) hiring third parties to do most or all of the 
CACI process; or (3) some combination of the two. 
These options will require a new set of knowledge 
and skills to ensure a positive outcome from the proj-
ect. Whatever option is chosen, each choice requires 
that digital forestry staff have knowledge of RS and 
data analysis. Option (1) is a cost the organization 
must bear; option (2) is a cost the market will bear; 
for option (3) both bear the costs. 

Hiring a specialized team consisting of staff com-
petent in both plant knowledge and computer science 
may be reserved for only a few of the largest organi-
zations with the budget to fund skilled specialty teams 
and necessary office equipment. Conversely, relying 
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presumption exists for RPA deployment. Cost, legal 
constraints, and privacy are not discussed due to space 
limitations.

Disease Front Progression
With increasing global trade of goods and services, 
the opportunities for tree pests and diseases to be 
introduced and spread is increasing (Roy et al. 2014). 
For example, recent high-profile introduced pests 
such as emerald ash borer and ash dieback threaten to 
eliminate significant fractions of Fraxinus from the 
urban forest canopy on several continents if no con-
trol is found soon. 

Monitoring and managing the movement of urban 
tree pests and disease can be significantly improved 
by collecting and analyzing near-time RS data to 
make intervention decisions that can result in timely 
and responsive actions (Shojanoori and Shafri 2016). 
Current commercial satellite technology does not 
have the resolution to accurately identify individual 
pests and diseases, but airborne piloted and remotely 
piloted aircraft can carry sensor payloads that can 
resolve a small, individual tree’s health. Although it is 
not possible at this time to have a universal vegetation 
index or health index to identify stress or disease 
across species or scales (Thenkabail et al. 2018), the 
early stages of identifying specific pests and disease 
via RS analytics has begun (Näsi et al. 2018; Staley et 
al. 2019). 

Today, tracking disease fronts by collecting near-
time RS data of public and private trees can be per-
formed by contracting piloted or remotely piloted 
aircraft to carry a payload spectral sensor and visual 
camera. Some models of multispectral camera may 
be sufficient for some analyses, depending upon the 
pest and which bands are collected. Hyperspectral 
imagery can indicate tree health and help determine 
canopy extent (Jensen et al. 2012; Alonzo et al. 2016), 
as well as attempt to determine genus and often spe-
cies; several software platforms such as ENVI can 
process hyperspectral data. Large areas require 
piloted aircraft for technological and legal reasons; 
for less than a few square kilometers, RPAs are suffi-
cient. Utilizing geographical information systems (GIS) 
land cover data layers will be necessary to obtain 
property data for accurate location and tracking. 

In the near future, it likely will be possible for con-
stellations of satellites or high-altitude RPAs to image 
the earth’s surface with sufficient resolution to collect 
high-resolution, near-time spectral and visual data on 

discussed above for a new career path in digital urban 
forestry. New blood interested in trees will soon have 
another entry point via technology in addition to the 
traditional labor path. The proliferation of telework 
means that digitally focused urban forestry profes-
sionals may not have to move to continue a career path, 
or they can move and continue their career. Analysis 
work on software platforms can be done from any-
where with a good computer and reliable internet 
connection, and reports can be written anywhere.

Another labor consideration for changes in the 
digital future: development of data collection options 
may soon reduce staff field visits and will create flex-
ible methods to verify conditions on the ground. Not 
only will data collection have more options and be 
faster with the proliferation of devices to collect data, 
but soon people with minimal training will be able to 
visit a site and collect data with a smartphone (Trim-
ble Geospatial 2020; EcoBot Inc. 2021) or handheld 
device (Buja et al. 2021) and upload the data to the 
cloud for inclusion in the CACI process. Consider 
these digital field tasks being performed by staff 
wishing to cut hours, by staff recovering from injury, 
by summer interns, by temporary staff, by staff on 
loan, or by volunteer tree stewardship groups looking 
to expand their services (The Park People 2021). Or 
consider the implications of the current “citizen sci-
entist” trend (Nitoslawski et al. 2019) being directed 
or expanded in multiple productive directions by citi-
zens assisting in RS data collection or validation. 
This sort of flexibility in work allows more people—
new blood—to enter the urban forestry professions. Is 
an organization looking for avenues for inclusion, 
equity, and opportunity? Perhaps one solution is cre-
ating digital urban forestry options to attract people 
who love trees but may not want to start out on the 
ground behind a chipper.

EXAMPLES OF TECHNOLOGY 
APPLICATIONS: FIELD SCENARIOS

How might the technology described above be applied 
in the future? The following scenarios are either famil-
iar situations occurring today that will benefit from 
RS and Big Data in the future, or scenarios that will 
likely occur soon in an information-rich world. These 
scenarios describe use of RS technology and Big 
Data using the CACI process. Some scenarios are 
presumed to require third-party input for all but the 
largest organizations, for example, data collection by 
aircraft is presumed to be by a third-party, but no such 
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Urban forest professionals and managers will use 
these data and analytics outputs to task work crews, 
notify the public of impending conflicts with machin-
ery and property, and use outputs to notify stakeholders, 
decision makers, and citizens of findings, implica-
tions, and plans to address pest and disease impacts 
across multiple communication platforms. 

Climate Change and Urban Tree 
Species Distribution
Climate change has begun to be felt in many cities 
across the planet (Melillo et al. 2014) and is an 
impending and serious challenge for the urban forest 
professions (Roman et al. 2013; Cheng et al. 2021; 
Zhang and Brack 2021). Increasing heat in many areas 
is exacerbated by the urban heat island (UHI)(Parker 
2009; Manoli et al. 2019), addressed in a separate 
scenario below. 

Climate change may severely stress or extirpate 
some tree species not adapted to tolerate high urban 
temperatures (Brandt et al. 2016). Further causes of 
stress include changing precipitation patterns that may 
compound stress in already challenging urban envi-
ronments (Safford et al. 2013; Stagge et al. 2017). In 
the global north, temperature patterns are already shift-
ing northward (Woodall et al. 2010; Daly et al. 2012), 
and as a result, more mobile animal species are mov-
ing north (Beniston 2014), in some places faster than 
plant migration (Parker and Abatzoglou 2016), creat-
ing a phenological mismatch between trees and animals 
(Visser and Both 2005; Both et al. 2009; Scranton and 
Amarasekare 2017) which may affect tree pollination, 
pest pressure (Altermatt 2010; Lehmann et al. 2020), 
and disease life cycles (Kelly and Goulden 2008). 

A significant hurdle for the urban forestry profes-
sions to overcome will be altering urban forest species 
composition to adapt to changing climates. Challenges 
include choosing and testing climate-ready new woody 
plant species, finding test planting sites in already- 
developed cities, and obtaining experimental planting 
stock from regions likely to represent future climate 
(Fitzpatrick and Dunn 2019). Challenges not directly 
related to trees include obtaining budget resources to 
plant out experimental trees while old trees still exist, 
developing methodologies and protocols to monitor 
field experiments, and reporting progress to profes-
sionals, decision makers, and the public. 

Today, collecting RS data can be performed by 
contracting piloted or remotely piloted aircraft to 

urban tree canopy. Piloted aircraft and low-altitude 
RPAs will likely carry sensor payloads that collect 
plant health–specific spectra for targeted data collec-
tion and analyses (Figure 3). ML routines will exist to 
determine RS data collection tasking, taking weather, 
solar angles, and airspace restrictions into account. 
ML plug-ins to software analysis platforms (Agisoft 
2021) will likely be developed to run plant-specific 
sets of algorithms that will take spectral and visual 
data and identify key signatures of pest and disease 
outbreaks within and across urban tree species. Algo-
rithms will also assess an area’s degree days to predict 
insect emergence. ML routines will also likely exist to 
scrape data on cooperating individuals’ smartphone 
applications looking for tree images—these ML rou-
tines will automatically assist in pest and disease 
identification and tracking. 

Figure 3. RPA image resolution and plant health. Proprietary 
early machine learning–derived plant health algorithm at 
neighborhood scale overlaid with visual imagery. Flight level: 
120 m above ground level. The resolution of tree crowns less 
than 1-m diameter is detectable. Location: Denver, Colorado, 
USA.
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in land surfaces, the heat storing properties of build-
ing materials, and waste heat of human activity 
(Akbari et al. 2015; Mohajerani et al. 2017). Urban 
heat disasters are increasing in frequency due to 
urbanization and increasing temperatures from cli-
mate change (Corburn 2009). Now, disaster manage-
ment professionals across the world have plans for 
urban heat events that include urban greening strate-
gies (Wong et al. 2021), because urban forests are 
recognized as an important component of mitigating 
the UHI. Urban heat event disaster management 
plans (hereafter both combined as “UHI plans”) are 
dependent upon urban forest management plans and 
thus are closely aligned with UHI plans.

Today, collecting modern technology data for UHI 
plans is straightforward. Inventory data that comprise 
data that include digitized tree crowns, species, loca-
tion, and condition are an excellent start for UHI 
managers. Having digitized data of empty and avail-
able planting spaces, growth and change over time, 
and species distribution change are important UHI 
plan components as well (Li 2020). At a minimum, 
having medium- to high-resolution visual satellite data 
(Duan et al. 2019) integrated with traditional inven-
tory data is an excellent UHI plan component. Tools 
exist today to extract total canopy cover from satellite 
images (PlanIT Geo 2021). Collecting high-resolution 
spectral data from aircraft or RPAs over multiple 
years can assist urban foresters in predicting future 
urban heat event severity for UHI forecasters by having 
a better mortality model to predict areas of increasing 
heat. Creating good collaboration and sharing net-
works today is essential to the success of UHI plans, 
which are complicated logistically and are for, cur-
rently, rare events.

In the near future, ML algorithms that model can-
opy growth and decline based on plant health—
obtained from spectral and visual data and canopy 
crown extent over time—will be used by UHI man-
agers and forecasters to manage assets and resources 
to prepare for urban heat events. High-resolution 
visual and spectral satellite images used by urban for-
est managers will also be used by UHI managers in 
their short-term plans. New methods of measuring 
temperature (Allen et al. 2018) that benefit urban for-
est managers and UHI plans will produce fine-grained 
data that can be mined by ML algorithms tracking 
microclimates for tree growth (as in the climate 
change scenario above). Simple coordination and 
data sharing by forestry and disaster management 

carry a payload of a spectral sensor and visual cam-
era; collecting spectral data to analyze baseline tree 
health and classify land cover; and visual data for 
mapping and as a visual aid for stakeholders. Utiliz-
ing existing GIS land cover data will be necessary to 
age the inventory and precisely locate sites for test 
planting (Boucher 2016). Google Earth View or 
Street View imagery can be accessed and analyzed 
externally (Meunpong et al. 2019) using basic ML 
algorithms (Li 2020) or analyzed in the Google Earth 
Enterprise (Google Earth Engine 2021) to estimate 
parameters such as DBH class and identify suitable 
planting sites (Li et al. 2015; Boucher 2016; Berland 
and Lange 2017), as well as obtain tree leaf imagery 
to assist in verifying species. An early example of this 
effort is Google Earth Enterprise and AI creating a 
Los Angeles, California, USA Tree Canopy visual-
ization tool in 2020 for public use and engagement 
(Calma 2020). 

In the near future, to analyze tree health and prog-
ress of species tests, ML routines and analytics will 
be available to run preprogrammed sets of algorithms 
to collect appropriate data to assist in the analysis of 
urban forests and climate adaptation. ML routines 
will take any number of data sets and determine tree 
or canopy health without human intervention. ML 
algorithms will access hyper- or multispectral data 
and determine the optimal bands for a particular anal-
ysis to save computing time and reduce errors. ML 
routines will be used in Google Earth Engine that can 
look for any visual tree parameters necessary for 
analysis: DBH, open sites, leaf shapes, flowers, even 
visual health assessment cues. Weather and agricul-
tural data will be mined for trends, as will construc-
tion permits and other sources the ML algorithms 
deem necessary. 

Urban forest professionals and managers will use 
these data and analysis outputs to notify stakeholders, 
decision makers, and citizens of findings, implica-
tions, and plans to remedy climate change impacts. 
New analysis outputs can be used to make compel-
ling visual images to help stakeholders understand 
and act, and savvy communicators will utilize avail-
able communication platforms to disseminate infor-
mation about threats to the urban forest and measures 
being taken to adapt to these threats. 

Urban Heat Island Mitigation
The urban heat island (UHI) is a phenomenon of 
increased heat in urban environments due to changes 
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data collection. To better view near-ground urban 
vegetation, instead of the current method of always 
looking down from above through layers of vegetation 
and urban obstructions, Sideways-Aimed Spectral 
Sensors (SASS) for driverless transport networks will 
be mounted on both fixed infrastructure and selected 
vehicles. SASS devices will produce output in a ver-
tical orientation rather than the typical horizontal 
image. Software analytics must be developed to ana-
lyze vertical imagery at scale—and at extremely high 
resolution—as data will be imaged at a distance of a 
few meters from target vegetation instead of hun-
dreds or thousands of meters above the surface. Com-
bined with data from standard LiDAR and visual 
sensors for driverless vehicle guidance, SASS will 
result in a rich, high-resolution, information-dense 
environment near ground level that very accurately 
assesses urban vegetation near transport corridors. 
Collecting additional data from security sensors, stra-
tegically mounted environmental monitoring sensors, 
and handheld devices will result in a potentially 
immense amount of information. 

Lastly, querying, analyzing, and managing vast 
amounts of varied types of data collected in near-
ground environments will necessitate specially con-
figured, secure, and purpose-built ML algorithms. 
These ML algorithms will sift through terabytes of 
data to analyze, monitor, and notify of any changes in 
near-ground plant environments. These changes will 
not only include plant growth, but sudden changes in 
plant orientation such as damage occurring from 
events such as accidents, vandalism, and weather 
events that can risk safety or signal disruption. 

Other Brief Scenarios for Applied 
Technology Development
Other likely future scenarios for urban forests using 
the CACI model described above include: projects 
requiring the creation of very high-resolution 3D 
spectral and visual modeling of historic trees for pres-
ervation or construction mitigation; calculating annual 
changes in biomass across scales for measurement of 
carbon sequestration by using LiDAR payloads 
mounted on an RPA or an autonomous delivery vehi-
cle; performing construction site monitoring in real or 
near time for permit violations or vegetation stress by 
using a tasked RPA or data from a small satellite 
tasked nearby or during a defined period; collecting 
RS data on tree species, health, pest presence, and 

agencies are easy ways to ensure both interests are 
served. 

Roadside Infrastructure Design for 
Driverless Vehicles 
Driverless vehicles likely will soon be a common fea-
ture of urban transport (Compostella et al. 2020). 
Driverless vehicles are highly connected and require 
active sensory and communication inputs to move 
safely (Ha et al. 2020). Near-ground urban vegetation 
that improves and cools urban environments but 
grows into driverless vehicle communication lines of 
sight has the potential to conflict with transport com-
munication and risk safety; thus, near-ground urban 
vegetation will likely need to be more actively, coop-
eratively, and effectively managed in the future. 
Roadside designs will likely change to accommodate 
driverless deliveries and human transport (Freemark 
et al. 2019), but it is not known at this time whether 
tree cover will be reduced overall with these design 
changes (Chapin et al. 2017).

This scenario anticipates driverless network devel-
opment along the current trajectory at the time of this 
writing. As of this writing, few firm physical urban 
plans have been published to guide design develop-
ment, so it is difficult to anticipate specific opportuni-
ties for design intervention or improvement for this 
scenario, although general statements can be made.

Maintaining connectivity with vehicles and networks 
will be an important factor in driverless transport 
(Association of Metropolitan Planning Organizations 
2019). Vegetation attenuating or disrupting connected 
vehicle communication will be viewed unfavorably, 
but urban greenery will be necessary for city design 
for human comfort, including ameliorating future 
urban heat, so connected networks and vegetation 
must coexist (Rouse et al. 2018). 

Today, it is difficult to develop an autonomous 
transport vegetation management system using exist-
ing hardware and software technology, which does 
not exist at a scale that can perform the needed tasks. 

In the future, both aerial and near-ground fixed and 
mobile spectral sensors will be utilized to assess veg-
etation health, because near-ground vegetation may 
be obscured by trees, infrastructure, and buildings, thus 
near-ground sensors likely will be a necessary com-
ponent for monitoring and management.

There likely will be a future need for a different 
sensor array design than what exists today for RS 
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LiDAR point clouds? Similarly, what are appropriate 
visualizations to depict the new species and changes 
to the urban forest in 50 years, how the neighborhood 
will look with new climate-resilient species, and how 
using RS outputs can assist user understanding? 

Lastly, explaining to the public what all these new 
data and analyses represent and mean for the urban 
forest across scales will be of increasing importance 
and will be a required skill for some urban foresters. 
Clear explanations must lead to calls for action, and 
action requires planning across diverse groups. How 
will digital foresters of the future explain what is hap-
pening or tell the stories of what is needed for the 
urban forest, and what tools can assist them in a Big 
Data world? Urban forestry professionals always 
have been prepared with appropriate data for the time 
and have always had a passion for trees that helps tell 
a compelling story. New data and new stories are nec-
essary. The urban forest professions still have time 
and passion to get ready to lead the way forward, pre-
pared with new digital tools for the trees.
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émergentes afin de continuer à fournir les bénéfices de la forêt 
urbaine aux résidents de la canopée. Les systèmes actuels de télé-
détection, le paradigme des données massives et les plateformes 
de collecte et d’analyse sont examinés et des scénarios pertinents 
sont proposés afin de générer un aperçu de la gestion des forêts 
dans une perspective rajeunie en utilisant le matériel et les logi-
ciels de télédétection. Conclusions: Les villes modernes vont 
nécessiter une gestion de la foresterie urbaine qui soit numérique 
et moderne et les professionnels actuels et futurs doivent être en 
mesure d’avoir accès et d’utiliser la technologie, les capteurs et 
les données massives afin d’effectuer efficacement les tâches de 
gestion de la végétation et de communication. Cet article détaille 
le cadre d’une nouvelle ère de gestion moderne des forêts 
urbaines dans des villes hautement connectées et résilientes.

Zusammenfassung. Hintergrund: Mit der zunehmenden Ver-
städterung der Bevölkerung nimmt die Ausdehnung der städti-
schen Wälder in vielen Gebieten ab, was auf verschiedene 
Ursachen zurückzuführen ist, darunter neue Schädlinge und 
Krankheiten, der Klimawandel und eine veränderte Landnut-
zung. Methoden: Es wurde ein Überblick über die Fernerkun-
dungs-, Computer- und Umweltliteratur erstellt, um einen 
Überblick über die aktuellen technologischen Möglichkeiten zu 
geben und eine Agenda für eine moderne Herangehensweise an 
die Herausforderungen der städtischen Forstwirtschaft aufzustel-
len. Außerdem wurde untersucht, wie heutige und künftige Fach-
leute auf die Erfassung und Analyse von “Big Data” vorbereitet 
werden können, wie die Ergebnisse umgesetzt werden können 
und welche Kommunikationsfähigkeiten in einer modernen Welt 
erforderlich sind, um belastbare städtische Wälder in einer ver-
netzten Zukunft zu schaffen. Ergebnisse: Dieses Papier skizziert 
eine Agenda dafür, wie die Berufsgruppe der städtischen Forst-
wirtschaft aufkommende Störungen erkennen, analysieren und 
bewältigen kann, um den Bewohnern in ihrem Umfeld weiterhin 
die Vorteile des städtischen Waldes bieten zu können. Es werden 
aktuelle Fernerkundungssysteme, das Paradigma von Big Data 
sowie Erfassungs- und Analyseplattformen diskutiert und rele-
vante Szenarien vorgestellt, die einen Einblick in die Bewirt-
schaftung von Wäldern mit einer verjüngten Perspektive unter 
Verwendung von Fernerkundungshardware und -software 
ermöglichen. Schlussfolgerungen: Moderne Städte erfordern ein 
modernes digitales urbanes Forstmanagement, und heutige und 
künftige Fachleute müssen in der Lage sein, auf Technologie, 
Sensoren und Big Data zuzugreifen und diese zu nutzen, um 
Vegetationsmanagement- und Kommunikationsaufgaben effek-
tiv durchzuführen. Dieser Artikel beschreibt den Rahmen für eine 
neue Ära des modernen städtischen Forstmanagements in hoch-
gradig vernetzten, widerstandsfähigen Städten.

Resumen. Antecedentes: A medida que las poblaciones humanas 
se urbanizan, los bosques urbanos en muchas áreas están dis-
minuyendo en extensión del dosel debido a las interrupciones en 
varios frentes, incluidas las nuevas plagas y enfermedades, el 
cambio climático y los cambios en los usos de la tierra. Métodos: 
Se realizó una revisión de la literatura de teledetección, com-
putación y medio ambiente para proporcionar una visión general 
de las capacidades tecnológicas actuales y detallar una agenda 
para un enfoque moderno de los desafíos de la silvicultura urbana. 
También se revisó cómo preparar a los profesionales actuales y 
futuros para recopilar y analizar “Big Data”, cómo implementar 
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Résumé. Contexte: À mesure que les populations humaines s’ur-
banisent, la canopée des forêts urbaines diminue dans de nom-
breuses régions en raison de multiples perturbations, notamment 
les nouveaux ravageurs et maladies, les changements climatiques 
et les modifications d’affectation des sols. Méthodes: Une revue 
de littérature sur la télédétection, l’informatique et l’environne-
ment a été réalisée afin de produire un aperçu des capacités tech-
nologiques actuelles et d’élaborer un programme pour une 
approche moderne des enjeux de la foresterie urbaine. Les parti-
cipants ont également passé en revue la manière de préparer les 
professionnels actuels et futurs à rassembler et à analyser les 
“données massives,” la manière d’appliquer les résultats et 
l’identification des compétences nécessaires en communication 
dans un monde moderne afin d’assurer la résilience des forêts 
urbaines dans un avenir branché. Résultats: Ce document définit 
un programme sur la manière dont les professionnels de la fores-
terie urbaine peuvent identifier, analyser et gérer les perturbations 
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comprensión de la gestión de los bosques con una perspectiva 
rejuvenecida utilizando hardware y software de teledetección. 
Conclusiones: Las ciudades modernas requerirán una gestión for-
estal urbana digital moderna y los profesionales actuales y futuros 
deben poder acceder y utilizar tecnología, sensores y Big Data 
para realizar de manera efectiva tareas de gestión de la vegetación 
y comunicación. Este documento detalla el marco para una nueva 
era de gestión forestal urbana moderna en ciudades altamente 
conectadas y resilientes.

resultados y qué habilidades de comunicación se necesitan en un 
mundo moderno para proporcionar bosques urbanos resilientes 
conectado en el futuro. Resultados: Este documento describe una 
agenda sobre cómo los profesionales forestales urbanos pueden 
identificar, analizar y manejar las interrupciones emergentes para 
continuar brindando beneficios forestales urbanos a los residentes 
en su sombra. Se discuten los sistemas actuales de teledetección, 
el paradigma de Big Data y las plataformas de recopilación y 
análisis y se proporcionan escenarios relevantes para guiar la 
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