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Abstract. Although the industry has raised the standards of tree risk assessment considerably in recent years, the quality of judgements is still
very variable and influenced by a wide range of factors. Due to the complexity and diversity of trees and sites, collecting and verifying relevant
personal experiences takes tree assessors many years. In many countries, new tree assessors learn from a small number of experienced peers.
Artificial intelligence (Al) can be used to collect and condense scattered knowledge and deploy it in a support tool for basic tree assessment. In
this project, the application of a commercial Al decision-making system software (Dylogos) to tree assessment is tested. The software is based
on a new dynamic nonclassical logic, which combines diverse knowledge sources to an emergent system to support visual tree assessments. A
set of rules describes existing knowledge about the mostly unsharp parameters affecting the likelihood of failure and damage. The software
evaluates the data collected during a basic tree assessment and provides an estimate of the level of risk posed by the tree. The result and the rea-
sons for it are presented in plain language. Users can then examine this estimate and feed their own assessment back into the system to train it
further, so that this “white”” Al system is self-learning based on experience acquired in practical use. The use of Al in tree risk assessment not
only supports the user but can also be used to disseminate knowledge and promote the standardization of decision-making in tree assessment.
Important directions for further research and knowledge gaps related to the training of Al systems in the absence of industry-wide, agreed-upon
criteria for risk identified in this project are: how to collect sufficient quality-assured data sets to define the initial set of rules; and how to assess

the level of expertise of users training the system further.
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INTRODUCTION

Urban trees, their sites, and potentially affected tar-
gets are highly variable, and accidents caused by fail-
ing trees or parts of them are very rare (Watt and Ball
2009; Dunster 2014), so few tree risk assessors will
experience the failure of a representative number of
trees after they have assessed them. Therefore, deci-
sions of early career tree assessors are rarely based on
their own experience.

Even if tree assessors systematically collect feed-
back from felled trees or advanced assessments, few
but the most obvious criteria for hazardous trees are
universally accepted, and many aspects of tree assess-
ment still lack a rigorous scientific basis (Wagener
1963; Smiley and Fraedrich 1992; Mattheck et al. 1994;
Niklas and Spatz 2000; Kane et al. 2001; Mattheck et
al. 2002; Kane and Ryan 2003, 2004; Matheny and
Clark 2009; Rust et al. 2011; Rust 2012; Jillich et al.
2013; Spatz and Niklas 2013; Ciftci, Arwade, et al.
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2014; Ciftci, Kane, et al. 2014; Béttcher et al. 2016;
Slater 2016, 2021).

Consequently, novice tree risk assessors often rely
on skills handed down from a limited number of more
or less experienced colleagues who transfer their
intuitions to the next generation. Even amongst trained
industry professionals, there is a significant level of
variation regarding their assessment of likelihood of
impact ratings, likelihood of failure ratings, and con-
sequences of failure ratings (Stewart et al. 2013; Koeser
and Smiley 2017).

Several institutions have developed guidance and
certification programs in order to raise the standards
of training in and practice of tree assessment (Norris
and Moore 2020), e.g., ISA’s Tree Risk Assessment
Qualification (TRAQ)(Dunster et al. 2013) or FLL in
Germany (FLL 2004). Although this will almost cer-
tainly have raised the standards of tree risk assess-
ment (Koeser and Smiley 2017), the restrictions



Arboriculture & Urban Forestry 48(2): March 2022

139

outlined above still apply. Decision-support systems
can assist tree risk assessors in several ways:
* They collect knowledge from experts and make
it available to a wide range of users.
* They focus attention.
* They help to standardize the decision-making
process.

The objectives of this research are to determine
how an innovative artificial intelligence (Al)-based
approach could be applied to tree assessment and to
identify relevant knowledge gaps.

A standardized assessment of trees as living sys-
tems is difficult for various but obvious reasons. Nature
and natural systems are always dynamic and subject
to changes. The general dynamic logic (GDL) is a
logic that is formulated with axioms in natural lan-
guage rather than algorithms. It allows to build com-
prehensive causal chains consisting of variables with
associated adjectives. These adjectives bring in the
dynamic element.

The challenge in assessing the overall tree system
lies in the characteristics of the parameters used to
describe the system. Only a few of the parameters are
physically measurable, e.g., diameter, height, or the
occupancy rate. For some of the parameters, the effort
involved does not justify the benefit of precision
(trunk or branch diameter, crown density), while the
measurement of others vastly exceeds the time usu-
ally spent at a tree for a basic assessment (leaf area,
wind load, occupancy rate). Most characteristics used
to assess the tree and the risks it might present are
based on visual observations made by a human asses-
sor. The observations and the intuition involved will
be a direct reflection of the experience and the knowl-
edge of the assessor.

Even if every single parameter on its own indi-
cates a safe tree, the overall impression of a tree can
be different. Malcolm Gladwell stated this in his book
Blink: The Power of Thinking Without Thinking (2005).
In the first chapter, it describes how experts intui-
tively and very quickly had a doubt about the authen-
ticity of an object without being able to clearly
indicate why, the object in question being the kouros
of the Getty Museum. A detailed and long-lasting
analysis by several other experts resulted in the con-
clusion that the object was authentic. Only later, a
second identical object appeared on the market and
eventually the kouros was identified as having been
made in the 20th century. The point that the author

makes in the book is that experts with a wealth of
knowledge can trust their intuitive assessment with-
out first having to pinpoint the details of why this is.
The overall picture gave the reason for doubt while
the investigation that looked at known attributes failed.
Doubting provided reasons for looking further and
deeper to understand and to dig out the objective points.

A tree assessment system that aims to use the
knowledge and the intuition of an experienced and
knowledgeable assessor needs to be able to capture
the nonmeasurable values in a meaningful way, leav-
ing precision aside.

The mapping of these uncertainties into a mathe-
matical model that allows a standardization of the
assessment is the subject of this work and the central
core of the Al-software decision system.

In the following, dynamic logic is presented as an
innovative tool that provides a solution for bringing
together the two diverging areas of both fuzzy
descriptive parameters and a standardization of
assessment results.

THE GENERAL DYNAMIC LOGIC

The general dynamic logic (GDL) is a system of
knowledge-based modules using axiomatic linguistic
structures that are filled with specific detailed knowl-
edge. Each of the modules can be used by itself, but
they can also be combined and linked. With the mod-
ules, we build the model of our specific topic or business
case, incorporating our nonmeasurable characteristics
in the form of fuzzy sets.

Due to the axiomatic linguistic structure, all axioms
within the calculus are not formulated as mathemati-
cal formulas, but as meaningful text and thus compre-
hensible. This is the fundamental difference to neural
networks where decision-making is not directly com-
prehensible. Neural networks are therefore referred to
as “Black AIL.” The GDL with an axiomatic structure
belongs to the group of “White AL”

Fuzzy logic will not be discussed in detail here. If
desired, please refer to: Zadeh 1965, 1971; Mac Lane
1978; Dubois and Prade 1980; Mamdani and Gaines
1981; Bothe 1993; Kosko and Toms 1993.

MODELLING TREE ASSESSMENT IN
THE GENERAL DYNAMIC LOGIC
As the example of the kouros shows, a model descrip-
tion consists not only of measurable, but also of many
nonmeasurable, parameters and an overall impression.
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The overall impression in a tree assessment results
from fuzzy facts that can only be described or esti-
mated. Taking the example of wind load and its impact,
such parameters might be exposure, crown area, shape,
density, height, mechanical defects, and stress raisers.
Provided this assessment is made by an experienced
and knowledgeable person, we can assume that it has
a high probability to be true. An expert will make many
such estimates in the shortest possible time and relate
them to each other intuitively and as best as possible.

How does this work? The assessor doing a visual
assessment does not think about specific measured
values but rather considers different elements that can
only be estimated and groups them together, e.g., wind
load (site, size, and shape of the tree) and load-bearing
capacity (stem and branch dimensions, mechanical
defects, stress raisers). This process links together sup-
posedly disjunctive values and makes them available
as a basis for decision-making.

This combination of nonmeasurable elements is
done with a commercial Al software (Dylogos) that is
already used in projects in other areas using the GDL.

It builds causal chains to form a statement. The
GDL enables this grouping through sets and the forma-
tion of a causal chain. The sets are connected by means
of operators, such as “AND” and “OR” and negation
in natural linguistic statement chains that lead to an
implication. The elements and the structuring are orig-
inally defined by the user but can be modified and
added to. The artificial intelligence will build and
optimize the causal chains and the conclusions made.
Connecting the software to an existing risk assessment
database will help build the robust expertise that
makes the conclusions reliable and facilitates the

learning process of the Al part. How individual ele-
ments are impacting the result or how the system gets
to the result is transparent at any time.

Assessing Tree Load (Simplified

and Limited Model)

Mechanical load is a key parameter for the assess-
ment of the likelihood of failure of a tree or a part of
it (Morgan and Cannell 1987; Cannell and Morgan
1989; Wessolly and Erb 1998; Bond 2011a, 2011b,
2012; Dahle et al. 2017). Unlike other outcomes of
tree assessments, it is rated on an ordinal scale, as
opposed to the logarithmic scales likelihoods are
based on. To simplify the mathematical outline of the
method further, we are limiting the description to a
small subset of characteristics used to assess the load,
which itself depends on several factors including
exposure (wind zone, terrain, site), area (foliage,
branches), and lever arm (tree height, branch length).
All have in common that they are not precisely
measurable.

Defining a Fuzzy Set
The assessment of the lever arm can be standardized
by a mathematical procedure of fuzzy set formation.
The parameter “lever arm” does not represent a
quantity with an estimated value in the sense of fuzzy
logic but rather is modelled as overlapping symmet-
ric triangular distributions of truth-values, which are
the classic representation of a fuzzy set (Figure 1).
With the help of adjectives that function as conno-
tations of the term “lever arm,” we can define its size.
The adjectives “extreme,” “long,” “medium,” and
“short” shall serve as examples.

extreme long medium short

1

0.8
<
E

T 04

0

100 68 55 0%
Lever Arm

Figure 1. Set formation of lever arm.
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Figure 1 shows the special feature of fuzzy logic
and its performance. A given lever arm, here of rela-
tive size 68%, can be affiliated with two truth-values
(here: 0.4 and 0.8). For this exemplary tree, one asses-
sor might conclude that the lever arm is just “long,”
while another might estimate that the lever arm is
rather “extreme.”

In the following, the creation of the variable “wind
exposure” in the software shall serve as an example to
illustrate the process. The variable is to be defined by
means of the set designations “protected,” “partial,”
“full,” and “wind funneling” (Figure 2).

Estimates as Quantifiable Variables

In the field of tree assessment, many variables can
only be estimated. The method of assigning an esti-
mate in the GDL to a numerical value was shown in
the previous section. In the software, the input is done
via sliders or trackbars in addition to the set labels.
Figure 3 shows this in the simplified model.

From Sets to Causal Logical Chains
The sets have a further significance. With the sets, we
build causal logical chains that imply a solution. For

Figure 2. Creation of the variable “wind exposure.”

the formation of a propositional causal chain, the
assessment of “wind exposure,” as well the other
parameters, is to be defined analogously to the lever
arm by means of fuzzy sets. These causal chains form
a decision tree. The parameter “load” in Table 1 is a
node of the decision tree from which the respective
causal chain branches off. Typical causal chains can
then be built as illustrated in Table 1.

The formation of the implication is done by the
max-min operator. When all parameters have been
similarly calculated using these max-min operators, we
can obtain the overall truth-value of an axiom. And
finally, the sum of all axioms builds the calculus that will
have a truth-value of'its own. This value may be taken
as an expression of the reliability of the statement.

The total truth-value (membership) of the calculus
is determined as the mean value of the sum of all
truth-values divided by the total number of all rules.

From Causal Chain to Conclusion
Statement

In the GDL, each variable can now be given a weight-
ing. This in turn results in a weighting of the state-
ment within the axiomatic causal chain.

©2022 International Society of Arboriculture
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Table 1. Example of a logical axiom with n parameters and m rules.

If Conclusion
Parameter 1 Parameter 2 Parameter 3 Parameter n
Rule 1 Wind exposure  AND  Surface area AND Lever arm AND THEN  Load
(protected) (normal) (short/pruned) (low)
Rule 2 Wind exposure ~ AND  Surface area AND Lever arm AND THEN  Load
(partial) (low) (normal) (medium)
Rule 3 Wind exposure  AND  Surface area AND Lever arm AND THEN  Load
(full) (high) (long) (extreme)
Rule 4 tom AND AND AND THEN  Load

Figure 3. Assessment of tree load with trackbars, based on Bond 2011b.

A truth-value of 1 would correspond to a 100%
result, which means that the statement is always true.
In practice, it is common knowledge that results with
a plausibility of 95% are accurate.

LEARNING FROM
PLAUSIBILITY/METASYSTEM

Initial Set of Rules

©2022 International Society of Arboriculture

First, the system supports users by applying the axioms
defined by its developers, based on their experience and
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Figure 4. Learning mode.

further valuable sources of information, like tree failure
databases (Matheny et al. 2006; Hartley and Chalk
2019) and compilations (Lonsdale 1999), which can be
used to derive species profiles to aid the assessment.
Clearly, further scientific work with industry orga-
nizations and experts is needed to build the standard
from which the system will start. We propose three
ways to collect this knowledge:
« evaluation of data sets containing basic and
advanced assessments of the same tree
 workshops with experienced tree assessors
assessing defined sets of trees
* questionnaires

Learning
During its use, the system is capable of learning. In
all the characteristics that are highly reliant on the
knowledge and experience of the assessor, we find
two sets of fuzziness: that of the assessed characteris-
tic and that of the assessor’s quality. Each user will be
ranked in a range from absolute beginner to expert.
This point is important. The system must only learn
from an expert and not only support, but also guide,
the nonexpert.
The GDL provides an acceptance threshold below
which the learning mode is activated (Figure 4).

Learning takes place in interaction with the user. At
this point, we come back to the human factor. A low
truth-value, like the accuracy rate from a confusion
matrix of the calculus, is the equivalent of a result that
has a low trustworthiness.

Earlier, we referred to the differences in knowl-
edge of individuals that may be using the system.
Who should be allowed to train the system? The
problem behind this question is the way the system
learns. Because of the interactive way in which the
system learns through the user, there is a danger that
the system will dilute knowledge acquired, for exam-
ple, when used by a layperson. The system should
only learn from users who have proven that they are
qualified to ensure the quality of the data that will in
turn provide the support a less experienced person
may need to get the second opinion.

Here, we are getting to a point that is critical and
still unsolved in the Al science in general. The discus-
sion is just beginning. Different approaches are think-
able. In our case, users could be considered qualified
based on their professional qualifications, on years of
practical work experience, and/or on a test to be per-
formed when starting to use the application.

In addition to the learning from the usage, the soft-
ware contains an additional meta-level. This meta-level
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is needed to organize optimization tasks, as well as
error handling. A complex set of rules can and will be
error-prone. The metasystem contains general state-
ments on how to deal with such errors.

The metasystem contains axiomatic statements
that can lead to the creation of axioms in the execu-
tion layer, as well as their optimization. The formal
languages used are independent of each other, which
means that statements of the metasystem only affect
the execution layer and not the solution space. Con-
versely, the implications of the axiomatic causal
chains have no influence on the metasystem.

CONCLUSIONS

In the risk assessment of a complex living organism,
such as a tree, few measurable and many nonmeasurable
parameters interact. In the case of nonmeasurable
parameters, the impact of the expert’s intuition is
high. Therefore, the assessment can lack robustness,
credibility, and repeatability, 3 of 8 criteria for the effec-
tiveness of risk assessment methods identified in ear-
lier studies (Norris 2007). By splitting up larger problems
into sets of smaller problems, the system presented
guides the user’s attention, making them aware of
otherwise implicit assumptions, and thus increasing
robustness and credibility.

By forming fuzzy sets, statements relating to non-
measurable fuzzy parameters of intuition are mathe-
matically standardized to increase repeatability.

Furthermore, the results obtained via the fuzzy sets
can be connected via a calculus that incorporates the
expert’s knowledge. By using the GDL as an Al sys-
tem, the quality of stored knowledge is constantly
checked and improved when using the system. The
experience of many tree assessors gained over years
is made available to support novice tree assessors.

In this project, we provide a proof of concept of an
Al system for tree risk assessment. The gaps in our
knowledge identified here, especially the lack of uni-
versally accepted and scientifically proven rules, are
not limited to the use of artificial intelligence, but are
relevant to tree assessment at large. A broad discus-
sion of the rules that would be accepted in Al systems
will also improve conventional tree assessment.
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Résumé. Bien que I’industrie ait considérablement rehaussé les
normes d’évaluation des risques liés aux arbres au cours des der-
nieres années, la qualité des jugements est encore tres variable et
demeure influencée par un large éventail de facteurs. Du fait de la
complexité et de la multiplicité des arbres et des sites, I’apprentis-
sage et la validation des expériences personnelles pertinentes
prennent de nombreuses années aux évaluateurs d’arbres. Dans
plusieurs pays, les évaluateurs débutants apprennent aupres d’un
petit nombre de pairs expérimentés. L’intelligence artificielle
(IA) peut étre mise a contribution afin de rassembler et concentrer
des connaissances éparses et les déployer dans un outil d’aide a
I’évaluation élémentaire des arbres. Dans ce projet, I’application
d’un logiciel commercial décisionnel d’IA (Dylogos) a I’évalua-
tion des arbres a été mise a I’essai. Le logiciel repose sur une
nouvelle logique dynamique non classique, combinant diverses
sources de connaissances en un systéme émergent afin de soutenir
I’évaluation visuelle des arbres. Une série de regles décrit les connais-
sances existantes sur les paramétres, pour la plupart imprécis, qui
influent sur la probabilité de défaillance et de dommages. Le logiciel
évalue les données recueillies lors d’une évaluation fondamentale
de I’arbre et génére une estimation du niveau de risque que I’arbre
présente. Le résultat et les justifications qui I’expliquent sont pré-
sentés en langage clair. Les usagers peuvent alors analyser cette
estimation et intégrer leur propre évaluation dans le systéme pour
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le parfaire davantage, de sorte que ce systéme d’IA “blanc” est un
systeme d’auto-apprentissage basé sur I’expérience acquise dans
la pratique. L’utilisation de I’IA dans I’évaluation des risques liés
aux arbres ne soutient pas seulement I’usager, mais peut égale-
ment servir & généraliser les connaissances et a promouvoir la
normalisation dans la prise de décision lors de I’évaluation des
arbres. Les pistes importantes pour la poursuite des recherches et
des lacunes dans le savoir li¢ a la formation des systeémes d’1A, en
I’absence de critéres de risque convenus a I’échelle de I’industrie,
identifiées dans ce projet sont les suivantes: comment recueillir
des groupes de données d’une qualité suffisante afin d’établir la
série initiale de regles et comment évaluer le niveau d’expertise
des utilisateurs qui alimentent le systeme.

Zusammenfassung. Obwohl die Branche in den letzten Jah-
ren die Standards fur Baumrisikobewertungen erheblich angeho-
ben hat, ist die Qualitdt der Beurteilungen immer noch sehr
unterschiedlich und wird von einer Vielzahl von Faktoren beein-
flusst. Aufgrund der Komplexitit und Vielfalt von Baumen und
Standorten bendtigen Baumgutachter viele Jahre, um einschlé-
gige personliche Erfahrungen zu sammeln und zu tiberpriifen. In
vielen Landern lernen neue Baumgutachter von einer kleinen
Anzahl erfahrener Kollegen. Kiinstliche Intelligenz (KI) kann
eingesetzt werden, um verstreutes Wissen zu sammeln und zu
verdichten und es in einem Hilfsmittel fir die grundlegende
Baumbewertung einzusetzen. In diesem Projekt wird die Anwen-
dung einer kommerziellen KI-Entscheidungssystemsoftware
(Dylogos) fiir die Baumbewertung getestet. Die Software basiert
auf einer neuen dynamischen, nicht-klassischen Logik, die ver-
schiedene Wissensquellen zu einem emergenten System zur
Unterstiitzung  visueller Baumbewertungen kombiniert. Ein
Regelwerk beschreibt das vorhandene Wissen iiber die meist
unscharfen Parameter, die die Ausfall- und Schadenswahrschein-
lichkeit beeinflussen. Die Software wertet die bei einer grundle-
genden Baumbeurteilung gesammelten Daten aus und liefert eine
Einschitzung des Risikogrades, den der Baum darstellt. Das
Ergebnis und die Griinde daftir werden in verstandlicher Sprache
dargestellt. Die Nutzer konnen diese Einschitzung iiberpriifen
und ihre eigene Einschitzung in das System einspeisen, um es
weiter zu trainieren, so dass dieses “weifle” KI-System auf der
Grundlage der in der Praxis gewonnenen Erfahrungen selbstler-
nend ist. Der Einsatz von KI bei der Risikobewertung von Béu-
men unterstiitzt nicht nur den Benutzer, sondern kann auch zur
Verbreitung von Wissen und zur Férderung der Standardisierung
der Entscheidungsfindung bei der Baumbewertung genutzt wer-
den. In Anbetracht des Fehlens branchenweit vereinbarter Risi-
kokriterien wurden in diesem Projekt folgende wichtige
Richtungen fiir die weitere Forschung und Wissensliicken im
Zusammenhang mit der Schulung von KI-Systemen ermittelt:
Wie konnen ausreichende qualitétsgesicherte Datensétze gesam-
melt werden, um die anfinglichen Regeln festzulegen, und wie
kann der Kenntnisstand der Benutzer, die das System weiter
schulen, bewertet werden?

Resumen. Aunque la industria ha elevado considerablemente
los estandares de evaluacion del riesgo de los arboles en los Glti-
mos afios, la calidad de los juicios sigue siendo muy variable e
influenciada por una amplia gama de factores. Debido a la com-
plejidad y diversidad de arboles y sitios, recopilar y verificar
experiencias personales relevantes lleva muchos afios a los
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evaluadores de arboles. En muchos paises, los nuevos evalua-
dores de arboles aprenden de un pequefio niimero de pares exper-
imentados. La inteligencia artificial (IA) se puede utilizar para
recopilar y condensar conocimiento disperso y desplegarlo en
una herramienta de apoyo para la evaluacion basica de arboles.
En este proyecto, se prueba la aplicacion de un software comer-
cial de sistema de toma de decisiones de IA (Dylogos) a la evalu-
acion de arboles. El software se basa en una nueva logica
dindmica no clésica, que combina diversas fuentes de cono-
cimiento en un sistema emergente para apoyar las evaluaciones
de arboles visuales. Un conjunto de reglas describe el cono-
cimiento existente sobre los pardmetros en su mayoria poco niti-
dos que afectan la probabilidad de falla y dafio. El software
evalla los datos recopilados durante una evaluacion basica del
arbol y proporciona una estimacion del nivel de riesgo que repre-
senta el arbol. El resultado y las razones para ello se presentan en
un lenguaje sencillo. Luego, los usuarios pueden examinar esta
estimacion y alimentar su propia evaluacion en el sistema para
entrenarlo atin mas, de modo que este sistema de IA “blanco” sea
de autoaprendizaje basado en la experiencia adquirida en el uso
practico. El uso de la IA en la evaluacion de riesgos de arboles no
solo apoya al usuario, sino que también se puede utilizar para
difundir conocimientos y promover la estandarizacion de la toma
de decisiones en la evaluacion de arboles. Las direcciones impor-
tantes para futuras brechas de investigacion y conocimiento rela-
cionadas con la capacitacion de sistemas de IA en ausencia de
criterios de riesgo acordados en toda la industria identificados en
este proyecto son: como recopilar suficientes conjuntos de datos
de calidad garantizada para definir el conjunto inicial de reglas; y
como evaluar el nivel de conocimientos especializados de los
usuarios que siguen capacitando al sistema.





