An Analysis of the Accuracy of Photo-Based Plant Identification Applications on Fifty-Five Tree Species

By Ryan J. Schmidt, Brianna M. Casario, AS, Pamela C. Zipse, BS, and Jason C. Grabosky, PhD

Abstract. Background: With the creation of photo-based plant identification applications (apps), the ability to attain basic identifications of plants in the field is seemingly available to anyone who has access to a smartphone. The use of such apps as an educational tool for students and as a major identification resource for some community science projects calls into question the accuracy of the identifications they provide. We created a study based on the context of local tree species in order to offer an informed response to students asking for guidance when choosing a tool for their support in classes. Methods: This study tested 6 mobile plant identification apps on a set of 440 photographs representing the leaves and bark of 55 tree species common to the state of New Jersey (USA). Results: Of the 6 apps tested, PictureThis was the most accurate, followed by iNaturalist, with PlantSnap failing to offer consistently accurate identifications. Overall, these apps are much more accurate in identifying leaf photos as compared to bark photos, and while these apps offer accurate identifications to the genus level, there seems to be little accuracy in successfully identifying photos to the species level. Conclusions: While these apps cannot replace traditional field identification, they can be used with high confidence as a tool to assist inexperienced or unsure arborists, foresters, or ecologists by helping to refine the pool of possible species for further identification.

Keywords. Botany; Dendrology; Image Recognition; Natural Resource Management; Tree Identification.

INTRODUCTION

With the creation of photo-based plant identification applications (apps), the ability to attain basic identifications of plants in the field is no longer limited to trained botanists or studied naturalists and is seemingly available to anyone who has access to a smartphone. This presents an incredible opportunity to engage young and emerging natural scientists, particularly in community science projects, where users can upload a picture of an unknown plant and receive a suggested identification from one of these mobile apps (Joly et al. 2014; Barré et al. 2017; Bilyk et al. 2020). While the accuracy of such cellular phone apps is not inherently imperative for casual botanical observations, the use of such apps as the sole or, at least, major identification resource for community science projects calls into question the accuracy of the identifications provided by these apps (Bonney et al. 2009). We initiated a study to explore and evaluate a series of apps as tools for educational training, as supportive resources for early professionals in botanic fields, and as useful resources in volunteer training or resident engagement (Crall et al. 2011; Barré et al. 2017; Bilyk et al. 2020; Echeverria et al. 2021; Perdigones et al. 2021). We sought to provide some context with our local urban and rural tree species to offer an informed response to students asking for guidance when choosing a tool for their support in classes.

In urban tree inventories, the proper identification of trees is crucial in terms of understanding the implications, benefits, and risks associated with the urban forest from a management perspective. Similarly, understanding the species composition within an area can lend insight into the ecological effects of trees on the community as a whole. These discussions on tree community structure, diversity, and resilience within an urban forest or landscape rely upon identifying the species in place.

While accurate identification of trees is fundamental to community assessment, the precision to which
they need to be identified for sufficient understanding will likely be different depending on the goals or use of the identification information. For example, the identification of *Fraxinus* species to genus might be acceptable in order to determine which trees are susceptible to infection from emerald ash borer (*Agrilus planipennis*), while identifying maples to species might be crucial to understanding a specific tree’s susceptibility to storm damage, drawing distinctions between the sturdy *Acer saccharum* and the weak-wooded *Acer saccharinum*.

In terms of ecology, as each species has a specific set of preferred environmental conditions, understanding the species distribution within an area can help to attain a better working knowledge of the intricacies of the system being studied (Robichaud and Buell 1973; Trowbridge and Bassuk 2004). In a natural setting, the linkage between site conditions and species distribution helps to illuminate trends in hydrology and soil types across a community, and by applying these ideas to urban settings, understanding the disconnect between site conditions and species selection (Trowbridge and Bassuk 2004) can be used to guide disease and pest management decisions, as well as future planting stock selections (Laćan and McBride 2008; Scharenbroch et al. 2017).

A thorough knowledge of tree identification is needed to provide the plant-community inventory prior to making a site management plan or gaining an understanding of plant-community–site relationships. There is growing evidence that volunteers can produce valid data streams in generating urban community inventories, particularly at the genus level (Bancks et al. 2018), with the associated community stewardship benefits that come with citizen science engagement (Roman et al. 2017; Crown et al. 2018). To this end, community volunteers with varied levels of background training and, more generally, less experienced botanists and tree care professionals may use apps which offer help in identifying plants while in the field or at home from captured field images.

To use the typical app, the observer simply needs to take a close-up photograph of the tree (most frequently of the leaf, bark, flower, or fruit) and upload it to the app. Once uploaded, some apps prompt the user to specify the character being tested (again, usually either the leaf, bark, flower, or fruit) and then the app will compare the user’s photograph to photographs within its system (Joly et al. 2014; Barré et al. 2017; Bilyk et al. 2020). The output is a listing of one or more suggestions as to what the identity of the plant may be. The first listed suggestion is viewed as the primary identification for the plant and is henceforth referred to as the “Identification.” Many apps provide additional suggestions for the identity of the plant (henceforth referred to as simply “Suggestions”) in order to allow for some error in the primary identification. For a thorough review of the development and logic of plant identification apps, please refer to Wäldchen and Näder (2018).

Although these apps are often considered to be extremely helpful in species identification, there has been little done to compare the identification precision and accuracy of these apps as a whole, therefore we sought to inform our conversations with students, community volunteer groups, and beginning professionals. The lack of information beyond the details and claims produced by the developer reflects the difficulty in direct comparison in a technical sense. A challenge, as detailed by Xing et al. (2020), is that the systems do not share data sets, system training approaches, common flora, or focal plant organs, much less a comparable user interface (Cope et al. 2012; Kumar et al. 2012; Goëau et al. 2013; Wang et al. 2013; Keivani et al. 2020). Generally, apps are developed in a machine-learning environment where function improves as additional data is accumulated, an evolving “intelligence” that is based on an algorithm using a probability-based neural network in some form. Such derived code can be pressed against open-source image sets such as Flavia (Wu et al. 2007) and the Folio data set (Munisami et al. 2015), which can then be automated into an image analysis as was developed by Keivani et al. (2020). Additional data sets have been used elsewhere, such as the Swedish Leaf data set (Söderkvist 2001) or the LeafSnap image libraries used by Kumar et al. (2012). Generally speaking, the resulting code calibration yields results with incredibly high accuracy, often exceeding 95% (Kumar et al. 2012; Goëau et al. 2013; Wang et al. 2013; Keivani et al. 2020). Such accuracy cannot be assumed to predict the efficacy of the tools once beyond the code training environment, but accuracy claims would certainly flow from the initial training phase. Our study uses the tools beyond this training phase, specific to our limited purpose, with non-curated field images. Our protocol to standardize and avoid extraneous nontarget information was chosen to avoid deflation of accuracy due to the photo quality.
We set out to determine the accuracy of 6 of the most-downloaded apps (as per the Apple App Store at the start of the project, 2020 July 6) in order to better understand what trends exist in the apps’ cumulative abilities to identify different groups of trees to the genus and species levels: iNaturalist™, Pl@ntNet™ (henceforth PlantNet), LeafSnap™, PlantSnap™, PictureThis™, and Plant Identification™ (Table 1). Our choice in selection by popularity stands in contrast to a similar study conducted by Xing et al. (2020) which selected apps based on function (foliar versus floral identification). As that study points out, performance within urban forests needs to be checked, since the species profiles are different between the locally natural and the designed plant communities (Xing et al. 2020). Our evaluations were organized based on phylogenetic relatedness (i.e., trends within and between taxa), as well as morphological traits of the leaves and bark across all of the apps. We sought to understand the accuracy of each of the apps individually and determine how accurately the apps can identify trees from pictures of their leaves as opposed to their barks. We then considered their value as a teaching support for students or for early field professionals. The study differs from other work which usually considers a broader range of plant types (beyond trees) within a regional flora (Kumar et al. 2012; Jones 2020). We focused on in-field identification rather than identification from stock photos, such as used in Jones (2020) which considered several of the same apps, but on a wider range of plant types (i.e., multiple habits) and only two species within the genera of trees that we tested (i.e., Quercus robur and Acer pseudoplatanus). There have also been studies evaluating the identification ability of similar photo-based identification software as compared to the ability of botanists (of varying levels of experience) to identify the same photos. Bonnet et al. (2015) determined that while the apps did not come close to outperforming expert botanists, their identification skills were on par with somewhat-experienced botanists and even outperformed inexperienced botanists, indicating that these apps may have profound implications if they can be tactfully utilized by beginners in the field.

**MATERIALS AND METHODS**

**Study System**

Our study system was the temperate seasonal climate of the state of New Jersey, which is located within the mid-Atlantic region of the United States and can be described as spanning 5 physiographic regions, from the Highlands and Ridge and Valley systems in the northwest, through a Piedmont section and to the Inner and Outer Coastal planes in the southeast (Robichaud and Buell 1973). The northern half of the state is dominated by glacial actions along the Appalachian Rib and a transition from an upland forest with mixed hardwood assemblages of maple/beech/birch to a mixed oak/hickory forest. The southern half is

<table>
<thead>
<tr>
<th>App name</th>
<th>Cost of use (USD)*</th>
<th>Suggestions consistently offered</th>
<th>Community identifications</th>
<th>Size of plant species database from website claim</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PictureThis</td>
<td>$29.99/year</td>
<td>−</td>
<td>−</td>
<td>10,000 +</td>
<td>Glority, LLC</td>
</tr>
<tr>
<td>iNaturalist</td>
<td>N/A</td>
<td>+</td>
<td>+</td>
<td>Not stated</td>
<td>iNaturalist, LLC</td>
</tr>
<tr>
<td>PlantNet (Pl@ntNet)</td>
<td>N/A</td>
<td>+</td>
<td>+</td>
<td>26,722 world flora, 8,490 USA flora</td>
<td>plantnet-project.org</td>
</tr>
<tr>
<td>LeafSnap</td>
<td>N/A</td>
<td>+</td>
<td>−</td>
<td>All 185 tree species in the NE Forest</td>
<td>Appixi</td>
</tr>
<tr>
<td>PlantSnap</td>
<td>$2.99/month, $19.99/year</td>
<td>+</td>
<td>+</td>
<td>650,000</td>
<td>PlantSnap, Inc.</td>
</tr>
</tbody>
</table>

*Cost of use values are based on the cost at the time of the study in summer 2020.
dominated by non-glaciated sands, encompassing the New Jersey Pine Barrens, and plant communities akin to the southeast oak/pine and southeast bottomland systems (Robichaud and Buell 1973; Tedrow 1986; Collins and Anderson 1994). As a heavily urbanized state within the Northeast megalopolis, there are many introduced tree species representative of design preferences and choices from over 250 years of development. The average minimum temperature hardiness zone is listed as ranging from a −23.3 to −20.6 °C zone in the north to a −15 to −12.2 °C zone in the southern coastal and more urbanized areas proximate to New York City, New York and Philadelphia, Pennsylvania (USDA 2012).

Species Selection
To attain a general idea of the overall accuracy of the apps in terms of trees found in New Jersey forests and landscapes, a wide range of 55 species were selected for analysis (Table 2). Species were selected due to their prevalence within the state of New Jersey as common street or forest trees for both practicality and usefulness. The list included both native and introduced species. In terms of forest trees, the largest portion of the forests within New Jersey are categorized as oak/hickory forests with large percentages of loblolly/shortleaf, oak/pine, northern hardwood, and elm/ash/red maple forests (Widmann 2005; Crocker et al. 2017). Therefore, several species of oaks, hickories, pines, maples, and birches were included to attempt to represent some of the more likely species that would be encountered in the forests around the state.

Species such as *Magnolia* spp., *Gleditsia triacanthos*, *Zelkova serrata*, *Platanus* spp., *Tilia* spp., and *Pyrus calleryana* were included due to their high prevalence as street and ornamental trees (Sanders et al. 1993). Species Selection

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Family</strong></td>
<td><strong>Genus</strong></td>
<td><strong>Species</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
<td><strong>Identification</strong></td>
</tr>
<tr>
<td>Altingiaceae</td>
<td><em>Liquidambar</em></td>
<td><em>styraciflua</em></td>
<td>20%</td>
<td>100%</td>
<td>20%</td>
<td>100%</td>
<td>65%</td>
<td>100%</td>
<td>65%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td><em>Rhus</em></td>
<td><em>typhina</em></td>
<td>25%</td>
<td>95%</td>
<td>20%</td>
<td>65%</td>
<td>45%</td>
<td>100%</td>
<td>35%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Betulaceae</td>
<td><em>Betula</em></td>
<td><em>allegheniensis</em></td>
<td>85%</td>
<td>25%</td>
<td>35%</td>
<td>15%</td>
<td>100%</td>
<td>70%</td>
<td>45%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Betulaceae</td>
<td><em>Betula</em></td>
<td><em>lenta</em></td>
<td>75%</td>
<td>45%</td>
<td>50%</td>
<td>45%</td>
<td>95%</td>
<td>90%</td>
<td>55%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Betulaceae</td>
<td><em>Betula</em></td>
<td><em>nigra</em></td>
<td>90%</td>
<td>85%</td>
<td>65%</td>
<td>50%</td>
<td>95%</td>
<td>95%</td>
<td>100%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Betulaceae</td>
<td><em>Betula</em></td>
<td><em>populifolia</em></td>
<td>95%</td>
<td>100%</td>
<td>35%</td>
<td>40%</td>
<td>95%</td>
<td>100%</td>
<td>70%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Betulaceae</td>
<td><em>Carpinus</em></td>
<td><em>caroliniana</em></td>
<td>80%</td>
<td>80%</td>
<td>50%</td>
<td>30%</td>
<td>95%</td>
<td>100%</td>
<td>65%</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>Cornaceae</td>
<td><em>Cornus</em></td>
<td><em>florida</em></td>
<td>50%</td>
<td>95%</td>
<td>50%</td>
<td>60%</td>
<td>75%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Cupressaceae</td>
<td><em>Juniperus</em></td>
<td><em>virginiana</em></td>
<td>20%</td>
<td>100%</td>
<td>20%</td>
<td>80%</td>
<td>80%</td>
<td>100%</td>
<td>80%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Cupressaceae</td>
<td><em>Taxodium</em></td>
<td><em>distichum</em></td>
<td>50%</td>
<td>95%</td>
<td>50%</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
<td>95%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td><em>Cercis</em></td>
<td><em>canadensis</em></td>
<td>5%</td>
<td>95%</td>
<td>5%</td>
<td>90%</td>
<td>5%</td>
<td>100%</td>
<td>5%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td><em>Gleditsia</em></td>
<td><em>triaxanthos</em></td>
<td>45%</td>
<td>85%</td>
<td>45%</td>
<td>85%</td>
<td>80%</td>
<td>100%</td>
<td>80%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td><em>Robinia</em></td>
<td><em>pseudoacacia</em></td>
<td>50%</td>
<td>100%</td>
<td>50%</td>
<td>100%</td>
<td>70%</td>
<td>100%</td>
<td>70%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Castanea</em></td>
<td><em>dentata</em></td>
<td>25%</td>
<td>100%</td>
<td>25%</td>
<td>90%</td>
<td>50%</td>
<td>100%</td>
<td>50%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Fagus</em></td>
<td><em>grandifolia</em></td>
<td>90%</td>
<td>100%</td>
<td>70%</td>
<td>95%</td>
<td>100%</td>
<td>100%</td>
<td>90%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Quercus</em></td>
<td><em>alba</em></td>
<td>70%</td>
<td>100%</td>
<td>55%</td>
<td>70%</td>
<td>95%</td>
<td>100%</td>
<td>85%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Quercus</em></td>
<td><em>bicolor</em></td>
<td>10%</td>
<td>100%</td>
<td>0%</td>
<td>70%</td>
<td>55%</td>
<td>100%</td>
<td>20%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Quercus</em></td>
<td><em>coccinea</em></td>
<td>45%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>90%</td>
<td>100%</td>
<td>25%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Quercus</em></td>
<td><em>montana</em></td>
<td>75%</td>
<td>70%</td>
<td>50%</td>
<td>40%</td>
<td>90%</td>
<td>100%</td>
<td>50%</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Quercus</em></td>
<td><em>palustris</em></td>
<td>60%</td>
<td>100%</td>
<td>20%</td>
<td>85%</td>
<td>85%</td>
<td>100%</td>
<td>60%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Fagaceae</td>
<td><em>Quercus</em></td>
<td><em>rubra</em></td>
<td>55%</td>
<td>100%</td>
<td>50%</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
<td>80%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Ginkgoaceae</td>
<td><em>Ginkgo</em></td>
<td><em>biloba</em></td>
<td>5%</td>
<td>100%</td>
<td>5%</td>
<td>100%</td>
<td>35%</td>
<td>100%</td>
<td>35%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Juglandaceae</td>
<td><em>Carya</em></td>
<td><em>cordiformis</em></td>
<td>60%</td>
<td>100%</td>
<td>0%</td>
<td>10%</td>
<td>70%</td>
<td>100%</td>
<td>15%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>Juglandaceae</td>
<td><em>Carya</em></td>
<td><em>ovata</em></td>
<td>40%</td>
<td>100%</td>
<td>40%</td>
<td>10%</td>
<td>75%</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Juglandaceae</td>
<td><em>Juglans</em></td>
<td><em>nigra</em></td>
<td>40%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td>90%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Lauraceae</td>
<td><em>Sassafras</em></td>
<td><em>albidum</em></td>
<td>15%</td>
<td>100%</td>
<td>15%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td><em>Liriodendron</em></td>
<td><em>tulipifera</em></td>
<td>30%</td>
<td>100%</td>
<td>30%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td><em>Magnolia</em></td>
<td><em>soulangeana</em></td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>13%</td>
<td>25%</td>
<td>75%</td>
<td>10%</td>
<td>28%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 continued on next page
often targeted for specific studies that seek to better understand the prevalence and distribution of invasive species within an area, as well as for management efforts to control or eradicate them. Finally, the species *Castanea dentata* and *Nyssa sylvatica* were added after the beginning of the study due to the frequency that they were incorrectly suggested by the apps. Several of the planned test species were misidentified as these 2 taxa (10 times as *C. dentata* and 27 times as *N. sylvatica*). We thus included these less-common species to determine if they would be correctly identified when presented with images of the species in the field given their frequency as an incorrect suggestion for other species.

### Photo Collection

For each of the species represented in the study, a minimum of 4 photos each of bark and leaves were

---

**Table 2. continued.**

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
<th>Bark</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnoliaceae</td>
<td><em>Magnolia</em></td>
<td><em>stellata</em></td>
<td>10%</td>
<td>25%</td>
<td>0%</td>
<td>10%</td>
<td>30%</td>
<td>55%</td>
<td>0%</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvaceae</td>
<td><em>Tilia</em></td>
<td><em>cordata</em></td>
<td>25%</td>
<td>100%</td>
<td>10%</td>
<td>90%</td>
<td>65%</td>
<td>100%</td>
<td>55%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvaceae</td>
<td><em>Tilia</em></td>
<td><em>tomentosa</em></td>
<td>10%</td>
<td>100%</td>
<td>0%</td>
<td>10%</td>
<td>60%</td>
<td>100%</td>
<td>5%</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moraceae</td>
<td><em>Maclura</em></td>
<td><em>pomifera</em></td>
<td>15%</td>
<td>55%</td>
<td>15%</td>
<td>55%</td>
<td>35%</td>
<td>90%</td>
<td>35%</td>
<td>90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyssaceae</td>
<td><em>Nyssa</em></td>
<td><em>sylvatica</em></td>
<td>5%</td>
<td>60%</td>
<td>5%</td>
<td>60%</td>
<td>35%</td>
<td>85%</td>
<td>35%</td>
<td>85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleaceae</td>
<td><em>Fraxinus</em></td>
<td><em>americana</em></td>
<td>80%</td>
<td>90%</td>
<td>75%</td>
<td>40%</td>
<td>85%</td>
<td>100%</td>
<td>80%</td>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleaceae</td>
<td><em>Fraxinus</em></td>
<td><em>pennsylvanica</em></td>
<td>45%</td>
<td>90%</td>
<td>15%</td>
<td>30%</td>
<td>75%</td>
<td>100%</td>
<td>25%</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Picea</em></td>
<td><em>abies</em></td>
<td>60%</td>
<td>90%</td>
<td>60%</td>
<td>75%</td>
<td>90%</td>
<td>95%</td>
<td>70%</td>
<td>75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Picea</em></td>
<td><em>pungens</em></td>
<td>60%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>90%</td>
<td>100%</td>
<td>35%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Pinus</em></td>
<td><em>rigida</em></td>
<td>85%</td>
<td>90%</td>
<td>15%</td>
<td>10%</td>
<td>90%</td>
<td>90%</td>
<td>75%</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Pinus</em></td>
<td><em>strobos</em></td>
<td>50%</td>
<td>100%</td>
<td>45%</td>
<td>95%</td>
<td>75%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Pinus</em></td>
<td><em>sylvestris</em></td>
<td>100%</td>
<td>90%</td>
<td>0%</td>
<td>15%</td>
<td>100%</td>
<td>90%</td>
<td>60%</td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Pseudotsuga</em></td>
<td><em>menziesii</em></td>
<td>0%</td>
<td>60%</td>
<td>0%</td>
<td>60%</td>
<td>20%</td>
<td>90%</td>
<td>20%</td>
<td>90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinaceae</td>
<td><em>Tsuga</em></td>
<td><em>canadensis</em></td>
<td>20%</td>
<td>100%</td>
<td>20%</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
<td>50%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platanaceae</td>
<td><em>Platanus</em></td>
<td><em>occidentalis</em></td>
<td>75%</td>
<td>100%</td>
<td>55%</td>
<td>100%</td>
<td>85%</td>
<td>100%</td>
<td>70%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platanaceae</td>
<td><em>Platanus</em></td>
<td>×<em>hispanica</em></td>
<td>95%</td>
<td>100%</td>
<td>38%</td>
<td>30%</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceae</td>
<td><em>Prunus</em></td>
<td><em>serotina</em></td>
<td>80%</td>
<td>90%</td>
<td>55%</td>
<td>90%</td>
<td>90%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceae</td>
<td><em>Pyrus</em></td>
<td><em>calleryana</em></td>
<td>5%</td>
<td>100%</td>
<td>0%</td>
<td>50%</td>
<td>25%</td>
<td>100%</td>
<td>10%</td>
<td>95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicaceae</td>
<td><em>Salix</em></td>
<td><em>bablyonica</em></td>
<td>55%</td>
<td>100%</td>
<td>35%</td>
<td>90%</td>
<td>65%</td>
<td>100%</td>
<td>55%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapindaceae</td>
<td><em>Acer</em></td>
<td><em>platanoides</em></td>
<td>40%</td>
<td>100%</td>
<td>35%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td>70%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapindaceae</td>
<td><em>Acer</em></td>
<td><em>rubrum</em></td>
<td>35%</td>
<td>100%</td>
<td>20%</td>
<td>100%</td>
<td>75%</td>
<td>100%</td>
<td>50%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapindaceae</td>
<td><em>Acer</em></td>
<td><em>saccharinum</em></td>
<td>40%</td>
<td>100%</td>
<td>35%</td>
<td>100%</td>
<td>70%</td>
<td>100%</td>
<td>60%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapindaceae</td>
<td><em>Acer</em></td>
<td><em>saccarum</em></td>
<td>35%</td>
<td>100%</td>
<td>35%</td>
<td>55%</td>
<td>80%</td>
<td>100%</td>
<td>50%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapindaceae</td>
<td><em>Aesculus</em></td>
<td><em>hippocastanum</em></td>
<td>15%</td>
<td>100%</td>
<td>15%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td>40%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simaroubaceae</td>
<td><em>Alantus</em></td>
<td><em>altissima</em></td>
<td>20%</td>
<td>100%</td>
<td>20%</td>
<td>100%</td>
<td>20%</td>
<td>100%</td>
<td>20%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmaceae</td>
<td><em>Ulmus</em></td>
<td><em>americana</em></td>
<td>10%</td>
<td>90%</td>
<td>10%</td>
<td>75%</td>
<td>60%</td>
<td>95%</td>
<td>60%</td>
<td>95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmaceae</td>
<td><em>Zelkova</em></td>
<td><em>serrata</em></td>
<td>45%</td>
<td>80%</td>
<td>45%</td>
<td>80%</td>
<td>50%</td>
<td>95%</td>
<td>50%</td>
<td>95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td></td>
<td></td>
<td>44.09%</td>
<td>89.64%</td>
<td>28.23%</td>
<td>65.32%</td>
<td>69.09%</td>
<td>96.64%</td>
<td>52.36%</td>
<td>85.77%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
taken from different individuals of the same species so that no 2 photos of a single character were taken from a single tree (a bark photo and a leaf photo from the same tree was, however, permissible). As the team collected images, photos from several individuals were collected and then aggregated into folders for the targeted species. Then, 4 leaf and 4 bark images were selected for each of the species being studied. When possible, leaves and bark without noticeable infection or infestation were selected (cherry leaf spot, Blumeriella jaapii [Rehm] Arx, was not feasible to exclude in Prunus serotina).

Efforts were made when possible to attain photographs representing the phenotypic variation present in the species in terms of morphology and tree age. For example, bark photos of young, mature, and old trees were included when possible, and for trees with multiple leaf shapes (e.g., Sassafras albidum), representatives of each leaf type were included. When possible, photos of each species from different locations were included in order to attempt to account for some of the ecotypic variation in the species (e.g., Pinus rigida from the pitch pine/scrub oak forests of North New Jersey and the pitch pine forests of South New Jersey). The majority of these photos were taken in Mahlon Dickerson Reservation in Morris County and on the Rutgers University–Cook/Douglass campus in New Brunswick, as well as in Medford, Moorestown, and Peninsaeken, New Jersey.

All of the photos used in this study were taken by authors of this paper, the vast majority of which were collected in the month of July 2020. Phenotypic variation between the photos of each species is therefore minimal due to the limited time of year they were collected. Photos were collected using the built-in cameras on either the Apple iPhone XS®, iPhone 11® as a 12-megapixel image, or a Samsung Galaxy S9® as a 12-megapixel image, as well as a small number from a Nikon 3100 digital camera as a 13.5-megapixel image. Bark photos were taken so that the only character visible in the frame was the bark whenever possible (i.e., avoiding leaves, fruits, and epicormic sprouts). Some space was left to the sides of the tree so that the whole trunk section could be viewed. The “zoom” feature was avoided when at all possible in order to ensure that the photo would not be distorted. Leaf photos were taken so that there would be one leaf (or possibly a few if the leaves were smaller) centered and focused in the frame with the natural surroundings around it. Efforts were made to exclude fruit and bark from the photos to ensure that they were identifying from the leaf alone. Epicormic sprouts were avoided when possible, as their form is often divergent from the typical canopy leaf. The images used in the study are freely available online via Rutgers University libraries (Schmidt et al. 2021).

Data Collection
Four bark photos and four leaf photos of each species were selected according to the above criteria and uploaded individually to each of the apps. For the sake of consistency, the photos were merely uploaded to the app and allowed to crop and focus on their own without any interference or the moving of frames. All photos were uploaded to a digital storage folder and then re-downloaded before uploading them to any of the apps so that there was no GPS data associated with the images. All apps were provided the same set of images, and all photos were uploaded to the apps within the state of New Jersey. Once a photo was uploaded, each app typically offered one or more guesses (an identification was not always made by PictureThis and Plant Identification) as to the identity of the plant. These identifications and suggestions were given in the form of a species name with a generic name and specific epithet (e.g., Acer rubrum).

For this study, only automated or system-generated suggestions for plant identification were used. We did not consider the community aspects of some apps, wherein suggestions from experts or other users could have also been considered, negating an important supplemental aspect which is available in some apps (e.g., PlantNet, PlantSnap, and iNaturalist).

In order to determine the accuracy of these identifications and suggestions to both the genus and species levels, we coded the responses by breaking the app suggestions into the genus and then the specific epithet components to segregate correct genus-level identifications. We then recorded separately if the app correctly identified the plant’s genus and specific epithet. For clarity, and since completely different species can share the same specific epithet (e.g., ‘americana’ in Ulmus americana and Tilia americana), the specific epithet identification/suggestion was not used in isolation. The results were interpreted and recorded as follows:

- Genus Identification: If the tree was identified correctly to the genus in the first suggestion, it received a score of 1 for the Genus Identification. If it was not, it received a score of 0.
Species Identification: If the tree was identified correctly to the species in the first suggestion, it received a score of 1 for the Species Identification. If it was not, it received a score of 0.
- If the tree was identified to one of the hybrids of the correct species in the first suggestion (or identified as a parent of a tested hybrid), it received a score of 0.5 for Species Identification.
- Suggested Genus/Genera: If the tree was identified correctly to the genus in the first OR any other suggestion, it received a score of 1 for the Suggested Genus. If it was not, it received a score of 0.
- Suggested Species: If the tree was identified correctly to the species in the first OR any other suggestion, it received a score of 1 for the Suggested Species. If it was not, it received a score of 0.
- If the tree was identified to a hybrid of the correct species in any suggestion (or identified as a parent of a tested hybrid), it received a score of 0.5 for Suggested Species.
- If the tree was identified to more than one hybrid of the correct species in any suggestion (or identified as both parents of a tested hybrid), it received a score of 1 for Suggested Species.
If the tree was misidentified in the first suggestion, the first proposed species was recorded.

Data were tabulated as the percentage of correct identification or suggestion across each species bark and leaf set, or across classification or app groupings. We arbitrarily defined evaluation categories of high, moderate, and low confidence (95% to 100% correct, 80% to 94% correct, and < 80% correct, respectively). Data were developed and processed from the July 2020 photo collection through the following 50 days, so any inferences from the apps that were chosen are based on their program and algorithm development as of summer 2020. In order to ensure that the data collected would be consistent through multiple runs, all photos of 4 selected species (Quercus alba, Betula lenta, Acer rubrum, and Pinus rigida) were run through all 6 apps for a second time several days after the first run, but before any updates were allowed to occur on any of the apps, as this could have influenced the accuracy of the apps (Jones 2020). Then, a chi-squared ($\chi^2$) test was run in order to determine if there was a statistically significant difference between the outcomes of the multiple runs.

Finally, for interpretation of the results, species were categorized into groupings by bark characteristics as detailed in Wojtech (2011) to look for patterns in the app-response results: Peeling Horizontally, Lenticels Visible, Smooth Unbroken, Vertical Cracks or Seams in Otherwise Smooth Bark, Broken into Vertical Strips, Broken into Scales or Plates, or With Ridges and Furrows. For species with different bark types at different life stages or in different forms (e.g., the many bark types of Acer rubrum), the species was placed into each group (e.g., Acer rubrum being listed under Smooth Unbroken, Vertical Cracks or Seams, and Vertical Strips). When a taxon was not explicitly mentioned within Wojtech (2011), species were categorized according to the text descriptions for each category.

RESULTS
Chi-squared values of $\chi^2 = 0.1296$ and $\chi^2 = 0.0106$ were determined for identifications and suggestions, respectively. Their corresponding $P$ values ($P = 0.7188$ and $P = 0.9179$, respectively) both fail to reject the null hypothesis that there is no difference in the accuracy of the apps’ identifications of the same photographs on 2 different days with a significance level of 0.05.

PlantSnap was able to correctly identify a comparable percentage of the tested leaf photos, however, the percentage of correct bark identifications was exceedingly low across all taxa. Due to the low levels of accuracy in the identification of North American trees by bark characteristics, the data collected from the PlantSnap app was excluded from consideration when looking for general trends across all apps as sorted by taxonomic order, family, genus, or species (Tables 2, 3, and 4).

Across all apps, leaf photos always outperformed bark photos by a large margin. In terms of bark images alone, none of the tested apps provided an overall accuracy of over 70% in identifications and none over 80% in overall suggestions. We observed a moderate confidence in Genus Identifications for leaf photos across our selected taxa in all but 2 cases: PlantSnap provided a low confidence, and PictureThis provided a high confidence. Species Identifications for leaf images across all taxa were only moderately confident for PictureThis and showed low confidence for all other apps tested. For Genus Suggestions and Species Suggestions, scores generally increased
some taxa exhibited moderately confident (80% to 94%) species-level identifications of leaf photos (namely the Cupressaceae, Fabaceae, and Sapindaceae groups and the genera Acer and Picea), all species-level bark identifications were wholly unreliable. The apps consistently offered correct leaf identifications to the genus level for some genera (namely Acer, Carya, Picea, Platanus, Quercus, and Tilia) with an accuracy of 95% or above. However, the apps all failed to offer consistently accurate identifications for any of the Magnolia spp. for either bark or leaf photos (5.00% and 37.50%, respectively).

Many of the same points made above for the broader taxonomic divisions (Table 4) can also be seen exemplified at the species level (Table 2). Again, genus-level identifications are much more reliable than species-level identifications, and besides the members of the Betulaceae and several unrelated species (namely Fagus grandifolia, Pinus sylvestris, and Platanus × hispanica), bark remains mostly unreliable at any level.

In Table 2 it can be seen that there is a very high probability that the correct genus will be listed across all apps (some to a greater extent than others), excepting PictureThis, which does not usually provide suggestions beyond the initial identification. The only exception to this was for 1 leaf photo of Taxodium distichum, which it misidentified as Taxodium mucronatum. When uploaded to PictureThis, the app indicated that this tree was similar to T. distichum and that “it is not easy to distinguish them with just one photo,” much like the suggestion descriptions on other apps. The iNaturalist app was observed to suggest the correct species 95.91% of the time for leaf photos, which is indicative of high confidence that one can narrow an observation to at least a correct species complex, if not a singular species. PictureThis failed to offer an identification of 1 image (bark of Pseudotsuga menziesii), while Plant Identification failed to make an identification in 47 of the uploaded images.
Table 4 illustrates the nuances between the identification rates of closely related taxa such as those of *Magnolia* spp. and *Liriodendron tulipifera*. While identification rates for the members of the Magnoliaceae in Table 4 can be seen to be very low (as would be expected due to the low percent accuracy for the *Magnolia* species), Table 2 shows that *Liriodendron tulipifera* (also in the Magnoliaceae) had an impressive species-level identification rate of 100% for leaf photos. This helps to exemplify how species with more iconic characteristics may be more consistently identified correctly, even within typically underperforming taxa.

Table 4 also illustrates the identification rates of closely related taxa such as those of *Magnolia* spp. and *Liriodendron tulipifera*. While identification rates for the members of the Magnoliaceae in Table 4 can be seen to be very low (as would be expected due to the low percent accuracy for the *Magnolia* species), Table 2 shows that *Liriodendron tulipifera* (also in the Magnoliaceae) had an impressive species-level identification rate of 100% for leaf photos. This helps to exemplify how species with more iconic characteristics may be more consistently identified correctly, even within typically underperforming taxa.

©2022 International Society of Arboriculture
DISCUSSION

We stress that this study was, by nature, limited in its scope (isolated to 55 species of trees commonly found in New Jersey urban and natural landscapes) and cannot be used as an accurate evaluation of these apps across all plant habits, taxa, and morphologies. Therefore, it should be understood that the following observations are meant to guide users who are likely to encounter the same taxa in their activities. This study also does not take into consideration the power of community and expert identifications available on some apps (Table 1); it only evaluates the suggestions given by the apps for immediate identification in the field. We acknowledge that the loss of a GPS coordinate may well influence output in some apps. The cosmopolitan species diversity of our regional urban plant community may negate the GPS value, or it could influence the aptness of the tool and its success in a forest inventory when considering a choice. Indeed, LeafSnap was initially conceived for and focuses on the tree species of the Northeastern forest community (Kumar et al. 2012), but our study sample extended to species in southern New Jersey beyond that database. Furthermore, we chose the apps for this study based on their download frequency and availability of use. It is important to note that the apps are meant to engage larger aspects of the flora in total, and each app represents a different database, which can range from thousands to hundreds of thousands of species, as well as different algorithm learning trajectories for their own development for accuracy (Table 1). These various apps host vastly different scales of species range and type, with iNaturalist spanning beyond the plant kingdom (including animals, fungi, and protists) as a community of experts and novices.

The chi-squared test suggested repeatability in the output for constancy of identifications and suggestions, but as observed in general, there are limits to what can be expected as a tool to aid in tree species identification. That said, we fully expect that such outcomes would improve, as any specific app evolves with increased data process. The fact that an experienced observer can locate and define multiple traits much faster than can be accomplished with a phone camera enforces the use of such tools in support in training and confirmation.

Across all apps, there was a general trend of higher percent accuracy in correctly identifying leaf photographs as opposed to bark photographs. This is not surprising, since the process in developing such tools has focused on image pattern recognition using shape, edge pattern, venation, and similar characteristics consistent with foliar morphology (Cope et al. 2012; Goéau et al. 2013; Wang et al. 2013; Wang et al. 2014; Zhao C et al. 2015; Zhao ZQ et al. 2015; Keivani et al. 2020). Our results highlight the general difficulty of using bark characteristics alone for traditional tree identification due to the effects of convergent bark appearances across taxa, as well as the effects of the environment on bark texture and qualities. For the identification of trees in forested areas (where twigs and leaves are not easily observed) and the identification of deciduous trees during the winter, the use of bark can become a very reliable characteristic deserving greater attention.

It would be reasonable to suggest that some ubiquitous species that have more data within an AI network, and those interesting species with iconic bark or leaf characters or aesthetically charismatic leaf form, would in general provide a higher confidence in either identifying or suggesting against a new image (e.g., the high genus-level identification rate for leaf photos of members of the Sapindaceae, including the easily recognizable Acer and Aesculus leaves). For PlantSnap in particular, while the percent of correct leaf identifications was only slightly below the percentages for the other apps, the percent identifications for bark were exceedingly small, with only 1.36% identification to genus and 0.00% identification to species.

The app with the highest percentage of correctly identified photographs was PictureThis, with a combined leaf and bark correct identification percentage of 81.36% to genus and 67.84% to species. This app also boasts a 97.27% identification rate to genus and an 83.86% identification rate to species for leaf photos, as well as a 65.45% identification rate to genus and a 51.82% identification rate to species for bark photos. With such a high percent accuracy for identification of leaf photos to genus, we will likely suggest this app for our purposes with students if and when they feel they want to pay for such a tool as a confirmation to their own field identifications.

The PictureThis app always offered only one species identification for each photo uploaded in all but one taxon tested. That exception was with Taxodium distichum and Taxodium mucronatum, which were listed as difficult to distinguish from photographs and
misidentified in 1 of 4 leaf images. PictureThis also failed to offer an identification for 1 photo: the bark of *Pseudotsuga menziesii*. While this might seem to be a drawback that the app might not make any identification at all, this failure to offer an identification when unsure indicates that when the app is not confident, it will not make a potentially faulty identification. Ultimately, PictureThis, and arguably the iNaturalist app, offered identifications with a high confidence to genus that might be deployed in a number of practical approaches, particularly in early training or educational situations, or as an early support for emerging professionals.

For situations in which only a broad context of community is desired, identification to genus might be acceptable. For example, a study which seeks to determine the number of tree families or genera present in a patch of woods or a portion of a community might only require such identifications for useful data. Use of an app can help to attain large amounts of broad data in a short amount of time (and with inexperienced naturalists), which could then be refined by more experienced foresters as needed. This could be in the form of successively working through genera until all have been identified to a finer degree or to target desired genera for more specific detail.

These apps can also assist inexperienced or unsure arborists, foresters, or ecologists who are not confident in their identifications by narrowing down their observations to the genus or species level. For example, the user could take a picture of the leaf of a palmately lobed tree to use the app to distinguish *Acer* from *Platanus* and *Liquidambar* with high confidence. The user could then utilize a more specific key or more refined section of a reference guide to distinguish between species within a genus. Such apps could be used by foresters or ecologists who simply want a second opinion on identifications to prevent potential consistent misidentifications. Apps could also be used as an educational tool in preparation for credentialling or licensure exams to practice leaf identifications to the genus.

PictureThis is, however, a paid app, which may reduce its accessibility for those without the resources (or long-term need) to purchase the app. This therefore might make the standardized use of this app less probable, especially for students and volunteers. The investment might be worthwhile for beginning foresters or ecologists to help in validating their identifications and to expose any biases they might have in their identifications.

As an alternative to a paid app, the second most accurate app, iNaturalist, offers many of the same values as PictureThis and includes some community-based assistance, which can help to attain more confident identifications. iNaturalist had an observed 92.27% identification rate to genus and a 69.55% identification rate to species for leaf photos, as well as a 48.18% identification rate to genus and a 31.82% identification rate to species for bark photos. With a percent leaf identification to genus of over 90.00%, iNaturalist can be used in a similar manner as stated for PictureThis, however, with only moderate confidence.

In contrast to the singular identification provided by PictureThis, iNaturalist provided many suggestions as possible species. This can be useful for individuals with some knowledge of tree identification who can look through the list and reject some of the suggestions due to previous knowledge (e.g., rejecting trees with similar leaves that have widely different barks than the unknown specimen). This could result in a relatively short list of species to sort through and turn an almost unmanageable list of possibilities into one that can be used to quickly narrow the scope of a field guide, such as when guided as a “quest” (Kingsley and Grabner-Hagen 2015). iNaturalist offered higher level identifications if the software was confident in its identification, such as being “pretty sure” for different families and genera. Of all of the photos which received a listing of “pretty sure” to a specific family, 90.03% of them were correct, and identifications listed as “pretty sure” to a specific genus were correct 95.83% of the time across both bark and leaf pictures. Even when the identified broader taxon is not correct, there is a 99.17% chance that the correct genus will be listed in the suggestions and a 95.83% chance that the correct species will be in the suggestions.

The iNaturalist app also utilizes community and expert verification on photos submitted through the app. Other apps such as PlantNet and PlantSnap also offer a community support function with their tool. While this may pose a challenge for large-scale identification efforts, such as comprehensive tree inventories, in smaller projects where time is not as much of a limiting factor, it can help to ensure higher accuracy. A community support function can also be helpful to identify a species (or at least get a second opinion on a specimen) that is particularly difficult to identify or
foreign to the naturalist or ecologist. As a teaching tool, the power of linking an interested person to a larger, more professionally adept community is an invaluable asset (Pollock et al. 2015). There is a potential for questing or gamification (Kingsley and Grabner-Hagen 2015) of early natural resource management or natural sciences students in the tactical use of these apps (Struwe et al. 2014).

In order to better understand the limitations of these apps and in turn how to best utilize them to attain the most confident data possible, we set out to explore the effects that different morphological features had on the ability of the apps to correctly identify a tree. Starting with the broadest morphological comparison, there seems to be a relatively small difference between the ability of the apps to successfully identify broadleaf species and needle/scale-bearing species by leaf to genus (89.24% and 91.67%, respectively) and to species (65.60% and 63.89%, respectively). This is slightly surprising due to the apparent visual similarities between the leaves of needle-bearing trees. From a practical perspective, this could be a very important piece of information for community science projects and tree inventories, as it is a common issue that many novices believe all needle evergreen trees belong to the genus Pinus (Bancks et al. 2018). The use of these apps can help to ensure that needle-bearing trees can be more often identified correctly to at least the genus.

When just considering broadleaf species, there are several morphological characteristics that offer an important insight into the success of these apps. Across all runs, the apps seem to have a higher percent of correct identifications to the genus for trees with compound leaves than for simple leaves (96.00% as opposed to 87.36%). This is likely in large part due to the greater number of genera within the region containing a majority of simple leaves, as opposed to compound leaves.

In terms of the lobation of simple leaves, a similar trend seems to exist in regard to lobed leaves vs. unlobed leaves, with the seemingly more numerous unlobed genera having a lower percent correct identification than the lobed leaves. When, however, the type of lobation (palmately or pinnately) is distinguished, an interesting trend becomes apparent: when considering the identification of palmately lobed leaves, there was a staggering 100% correct identification rate to genus. This is particularly important as we, the authors, find there to be a propensity for individuals new to tree identification to misidentify Platanus species as Acer species and vice versa, unless there is a specific training emphasis in this area. This distinction was addressed by Roman et al. (2017) when completing a brief training session with beginner tree inventory volunteers, which resulted in a high level of accuracy. With such a high percentage of proper identifications for this leaf type, the use of these apps seems to offer the ability of even inexperienced naturalists to confidently distinguish genera of trees with palmately lobed leaves when a similar type of training is not feasible.

Taking a cue from the success of the apps with the bark of Betula species, it would be interesting to include only photos with bark containing visible lenticels (e.g., young Prunus serotina, Pinus strobus, and Quercus rubra) in order to determine if there is a correlation between bark with visible lenticels and a higher percent identification, or if the Betula species are merely skewing the data. It is important to note that for deciduous species, a leafless condition or unreliable access to expanded leaves can occur in New Jersey from November to April, or 6 months of every year, which can put more pressure on attempting to attain accurate identifications from bark (or bud) characteristics. Given the extremely low accuracy of these apps in identifying trees by bark images, however, such apps did not seem to offer an adequate solution to this problem at the time of our study. From a managerial perspective, this is an area in which targeted software development would greatly improve the apps’ utility in the field.

The taxonomy of tree species has the potential to illuminate helpful trends in species characteristics that can help divide the list of possible species into more manageable groups. If a potential user is able to identify the taxonomic order, family, or genus to which a particular specimen belongs, it can be very helpful to understand the reliability of the identification that the apps tend to provide. For example, if a tree with a nut is found, it can be predicted that a photograph of the leaves will correctly identify the tree to genus 87.81% of the time. If the tree can even be narrowed down to the walnut family or the beech family, the confidence in correct identification to genus can increase even further to 100.00% and 96.25% for leaf photos, respectively. To take it even further, if a tree can be identified as an oak, there is an 83.06% chance...
that the leaf can be used to correctly identify the taxonomic section to which it belongs (sections Quercus and Lobatae of the subgenus Quercus were tested). However, it is very likely that volunteer training could yield similar results without an app (Kosmala et al. 2016; Roman et al. 2017; Bancks et al. 2018).

While taxonomic section-level identification of the tree is often not specific enough to properly manage or understand the implications of the tree on the site (and conversely the site on the tree), it can help to sufficiently reduce the number of potential candidates and make further identification markedly easier. In addition to the Fagaceae and the Juglandaceae, trees in the Platanaceae, Sapindaceae, Malvaceae, and Cupressaceae all have a highly confident identification to genus (above 95.00%).

On the other end of this spectrum, it is important to note that certain taxonomic groups can be seen as chronic underperformers, and therefore their identifications should not be inherently trusted. Species in the Betulaceae (and specifically the genus Betula) collectively have some of the lowest identification percentages by leaf photos, but conversely have one of the highest identification percentages by bark (85.00%). The lowest percent accuracy determined through this study was in regard to the genus Magnolia, which had only a 37.50% accuracy to genus with leaf photos and a meager 5.00% accuracy to genus with bark photos. While not inherently surprising given the difficulty even for trained foresters to distinguish Magnolia species without specific characteristics, it is clear that these apps do not seem to offer any reliability for this taxon in particular. This is likely due, in part, to the inability for any of the apps to utilize any other sensory characteristics in their identifications (e.g., the presence and quality of trichomes, smell of crushed leaves, and sound of snapping needles); all characteristics which are often relied on heavily in the training of professionals in the field.

The taxonomic groups listed in Table 4 were limited in order to attempt to ensure that the data would not be completely unrepresentative of the group. For instance, including percentages for a group such as the Lamiales, for which our study only considered Fraxinus species, would not be indicative of the apps’ abilities to identify any species within the Lamiales, but instead just indicate their ability to identify Fraxinus species: it is unknown whether the inclusion of species in the genera Olea and Syringa (also within the Lamiales) would have greatly changed the total percentages for the entire order. Similarly, all genera with only 1 tested species were excluded, as the app’s ability to identify 1 species is not necessarily indicative of its ability to identify another species within the same genus.

Some attention should also be paid to those species that were offered incorrectly as the primary identification very frequently throughout the study: Carya glabra (identified incorrectly 45 times), Fraxinus americana (39 times), Betula pendula (34 times), Liquidambar styraciflua (32 times), and Acer platanoides (29 times) were all erroneously offered very frequently. While these misidentifications were mostly due to incorrect identifications of bark photos, it is important to understand which species are frequently suggested so that it is understood that even though some species might have extremely high correct identification percentages, not every identification can be trusted. For example, Acer platanoides has an impressive correct identification rate to species of 100.00% for leaf photos, however, 9 additional leaf photos (all of Acer saccharum) were incorrectly identified as Acer platanoides. The apps also frequently identified species that are not native to North America and are almost exclusively found in the planted landscape, such as Betula pendula (34 times), Carpinus betulus (27 times), and Quercus robur (27 times), which can often be excluded quickly by form or site conditions if working in the natural landscape, especially those of European origins. Again, compared to earlier training studies such as Jones (2020) and the occurrences of Q. robur as a suggestion, there is an artifact of training and a rationality to consider with choice of application, which has to be balanced with the varied selections of urban landscapes. The unfortunate point to be made, however, is that we can make these observations from a vantage point of already possessing a positive identification before using the apps. The person needing or using the apps cannot be expected to know in such detail what to trust or avoid, otherwise they would not be likely to use the app in the first place (unless they were, for example, in a supervised training event with an expert to guide the process as a teaching tool).

**CONCLUSION**

For our purposes, the use of PictureThis would most likely offer the most accurate identifications for
immediate responses to photo uploads from the field. This app could be considered if sufficient funds are available or the need for accuracy is of the utmost importance. If funds are limited, iNaturalist seems to be the closest to PictureThis in terms of identification ability and also offers a community-based feature within the app that can help to gain a second (and often expert) opinion on a troublesome identification if time is not a factor. This feature might also be very helpful from an educational or training support perspective by providing feedback on a user’s identification. Of course, over time and with different flora and context of use, other apps would possibly be preferred for other audiences.

These identification apps also seem to have areas of weakness that are not limited to an individual app, such as the identification of unlobed leaves (79.69% vs. 98.13% for lobed leaves) and bark photos as a whole, in addition to relatively low identification rates for Betula leaves as well as the bark and leaves of Magnolia species. While currently problematic, this illuminates a very promising area for future, more targeted software development in order to better address these shared shortcomings.

In general, despite the perception that these apps can be used to correctly identify plants to the species level, it is clear that these apps can, as a whole, only be expected to provide consistent and accurate identifications of Northeastern trees to the genus level at best. While this level of identification may be very helpful in reducing the potential species pool for identification within a genus, it is clear that in their current form, they do not consistently possess the accuracy needed to replace traditional identification tools or experienced professionals.

LITERATURE CITED


Acknowledgments
Funding for this work was provided by the John and Eleanor Kuser faculty endowment for Urban and Community Forestry; the USDA McIntire-Stennis program: Project NJ17318, Building an Urban Context for Modelling Efforts to Describe and Inform Urban Tree Growth for Services and Management; and the USDA Forest Service and New Jersey Department of Environmental Protection Forestry program: Project Urban Forestry Support 827994. Supplementary images used in this analysis are available online via Rutgers University: https://doi.org/10.7282/fp8k-cg20

Ryan J. Schmidt
Rutgers Urban Forestry Program
Department of Ecology, Evolution and Natural Resources
Rutgers, The State University of New Jersey
New Brunswick, NJ, USA

Brianna M. Casario, AS
Rutgers Urban Forestry Program
Department of Ecology, Evolution and Natural Resources
Rutgers, The State University of New Jersey
New Brunswick, NJ, USA

Pamela C. Zipse, BS
Rutgers Urban Forestry Program
Department of Ecology, Evolution and Natural Resources
Rutgers, The State University of New Jersey
New Brunswick, NJ, USA

Jason C. Grabosky, PhD (corresponding author)
Rutgers Urban Forestry Program
Department of Ecology, Evolution and Natural Resources
Rutgers, The State University of New Jersey
14 College Farm Road
New Brunswick, NJ, USA
848-932-0050
grabosky@sebs.rutgers.edu

Conflicts of Interest:
The authors reported no conflicts of interest.

©2022 International Society of Arboriculture
Resumen. Antecedentes: con la creación de aplicaciones de identificación de plantas basadas en fotos, la capacidad de lograr identificaciones básicas de plantas en el campo aparentemente está disponible para cualquier persona que tenga acceso a un teléfono inteligente. El uso de tales aplicaciones como una herramienta educativa para los estudiantes y como un importante recurso de identificación para algunos proyectos de ciencia comunitaria pone en duda la precisión de las identificaciones que proporcionan. Creamos un estudio basado en el contexto de las especies arbóreas locales con el fin de ofrecer una respuesta informada a los estudiantes que solicitan orientación al elegir una herramienta para su apoyo en las clases. Métodos: Este estudio probó 6 aplicaciones móviles de identificación de plantas en un conjunto de 440 fotografías que representan las hojas y la corteza de 55 especies de árboles comunes al estado de Nueva Jersey (USA). Resultados: de las 6 aplicaciones probadas, PictureThis fue la más precisa, seguida de iNaturalist, con PlantSnap fallando en ofrecer identificaciones consistentemente precisas. En general, estas aplicaciones son mucho más precisas en la identificación de fotos de hojas en comparación con las fotos de corteza, y aunque estas aplicaciones ofrecen identificaciones precisas a nivel de género, parece haber poca precisión en la identificación exitosa de fotos a nivel de especie. Conclusiones: si bien estas aplicaciones no pueden reemplazar la identificación de campo tradicional, se pueden usar con gran confianza como una herramienta para ayudar a arboristas, silvicultores o ecologistas inexpertos o inseguros a ayudar a refinar el grupo de posibles especies para una mayor identificación.