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establishing the context, identifying, analysing, estimat-
ing, evaluating, treating, monitoring, and reviewing 
risk. Confusion can arise over the use of hazard and 
risk, but this paper defines hazard as being associated 
with the source of danger, such as a rotten branch, and 
risk being associated with elements of uncertainty, 
such as the likelihood of failure, the consequences of 
failure, and the time of exposure to the hazard.

In some parts of the world, local government agen-
cies may be protected from legal action by an extension 
of sovereign immunity, but even in the USA, this may 
not completely exclude actions for damages caused 
by the negligence of an agency or its employees 
(Cornell Law School 2020). In Australia, tree risk 
management occurs largely because insurers of local 

INTRODUCTION
Prior to the 1980s, with the exception of work by the 
USDA Forestry Service (USDAFS), few tree risk 
assessment methods existed (Paine 1971; Johnson 
1981; Robbins 1986). It is now commonplace for 
arborists to undertake tree risk assessments, which 
are significant elements of urban tree management, 
particularly for community-owned trees growing in 
public open spaces, such as parks, road reserves, and 
around public buildings (Koeser et al. 2016; Smiley 
et al. 2017). Based on the definitions used in Austra-
lian Standard AS/NZS 4360:2004 and adopted for 
this research, risk management is defined as: The sys-
tematic application of management policies, proce-
dures, and practices to the tasks of communicating, 
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and credible (Lowrance 1976). Any person using a risk 
assessment process should understand the limitations of 
the decision theory underpinning the particular meth-
odology, industry heuristics, and their own cognitive 
processes and biases. Since risk = likelihood × conse-
quences (Standards Australia 2004a), risk assessment 
must be undertaken in a climate of uncertainty, as 
both components are estimates and predictive. An 
assessor is in the business of uncertainty, and tree risk 
assessment systems utilise professional experience 
and judgement (Coder 1996, 2000). Risk assessment 
is a logical-step–driven decision-making process 
(Figure 1) that assists with processing data into intel-
ligence that provides the information required to 
achieve competent decisions (Haimes 1998; Tomao 
et al. 2015). A primary rationale in using a method is 
to improve the validity and repeatability of assess-
ments by reducing the potential for errors and biases 
by using defined parameters, terms, and variables.

In general risk assessment, once the consequence 
of a risk has been established, credibility will be 
affected by the technical community’s best estimate 
of magnitude, how good the technical community 
believes the estimate to be, and how far the technical 
community’s judgement can be trusted (Fischhoff 
1994). In dealing with tree risk assessment, the tech-
nical community is made up of arborists who have 
the level of professional competence to undertake 
risk assessments. The establishment of credibility 
becomes the responsibility of the arboriculture pro-
fession. While tree risk assessment potentially aligns 

governments insist that members have a formalised 
risk management system (Hewett et al. 2003; State of 
Victoria 2017; VAGO 2018). Local government to a 
degree transfers its responsibility for risk by purchasing 
insurance. The insuring bodies require a risk manage-
ment plan to minimise their exposure and therefore 
transfer some of the expense back to local govern-
ment. It is assumed that if tree risk assessments are to 
be undertaken, then the context of the possible inter-
action of the tree, people, and property has been set, 
and only the level of risk an organisation is willing to 
accept needs to be defined. This means that risk 
assessment is done on a specified tree with potential 
elements of risk identified. A ranking system based 
on an accepted risk level will allow for variation of 
risk acceptability (Koeser et al. 2016).

Some widely acknowledged tree biology underpins 
tree risk assessment and the identification of hazards 
(Table 1). While the risks to property and persons posed 
by urban trees are small (Helliwell 1990; Lonsdale 
1999, 2007; Ball and Watt 2013; Hartley and Chalk 
2019), the issues and liability arising from foresee-
ability and the resultant duty of care are significant. 
The risks associated with trees are so low that an 
exaggerated perception of these risks is likely to be 
the greater concern (Slovic 2000), but the insurers of 
local governments in Australia dedicate significant 
resources to the liability mitigation aspects of public 
tree management (Hewett et al. 2003; VAGO 2018).

A good tree risk assessment methodology should be 
complete, robust, valid, repeatable, available, usable, 

Table 1. Elements of tree biology considered in tree risk assessment.

Aspect of tree biology Considerations in risk assessment

Every tree will eventually fail. Unless the tree is removed first.
Trees are biological entities. They are variable genetically and in responding to their environment.
Trees compartmentalise. They seal off and grow over damaged tissues.
Most trees have some defects. The extent of the defects varies.
Trees are slow to react. Tree growth is “adaptive,” therefore “visualisation” within the context of a  
 longer tree time is required to understand tree actions and reactions.
Trees are regenerating systems. Trees do not heal and must develop new material to continue growing.
Trees are shedding/biological organisms. They create litter (leaves, bark, twigs, branches).
Healthy trees can drop limbs or break. They may do so naturally or during certain weather conditions.
Many defects are not visible. Technology may assist, but judgement is important.
Limited knowledge of tree biology and Experience and judgement may be important in risk assessment, particularly 
physiology may be a limitation to risk assessment.  in predicting failure or development of hazards with a greater degree of  
 certainty.
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perceiving the assessment process as dishonest. How-
ever, it is important that any method is transparent 
and legally defendable (Fischhoff 1994).

To create an outcome, tree risk assessment methods 
need to answer a series of questions, such as: “What 
can go wrong?” “What is the likelihood that it will go 
wrong?” “What are the consequences if it does go 
wrong” “How does this risk compare?” “Is the risk 
acceptable or unacceptable?” “What treatment options 
are available?” and “What is the residual risk?” 
(Haimes 1998; Standards Australia 2004a, 2004b; 
Koeser et al. 2016; Smiley et al. 2017). From an arbo-
ricultural perspective, these questions can be grouped. 
“What can go wrong?” is an assessment of identifi-
able structural defects and their severity, other non-tree 
hazards created by the tree (raised pavements, low 
branches, poisonous fruits), and an assessment of the 
existing and potential targets (Figure 2).

A second, more difficult question is composed of two 
elements: the likelihood of failure and the likelihood of 
the target being affected (a target being present when 
failure occurs). The latter can be analysed and a prob-
ability derived (possibly predefined in a method); how-
ever, the former is essentially judgement- based with a 
high degree of uncertainty. Arborists are rarely trained to 
quantify consequences of failure, which involves iden-
tifying the target, determining how often the target is in 
the vicinity of the tree, and what level of injury or damage 
might be done to the target if failure occurs. Most tree 
risk assessment methods use size of part to define con-
sequence, which often fails to reflect the likely conse-
quences well. The question of risk evaluation including 
acceptability and treatments is dependent on the ear-
lier questions. Without broadly accepted industry guide-
lines, what is considered acceptable risk will continue 
to remain in the domain of individual assessors.

Trees are currently assessed for risk under three types 
of systems:

Qualitative: where the person undertaking the 
assessment visually inspects the tree for risk and pro-
vides a written (oral) report and recommendations. 
Subjective terms tend to be used to describe the risk, 
such as high, medium, or low.

Quantitative: quantitative risk assessment (QRA) 
uses true numerical values and is common in many 
industries but rare for tree risk assessment. For tree risk 
assessment, each and every likelihood and consequence 
element of the method would be assigned a numerical 
value.

well with established general risk frameworks such as 
ANSI or Standards Australia standards, there is still a 
lack of agreed upon arboriculture industry standards, 
as the diversity of tree risk assessment methods used 
in different countries and by different organisations 
within countries attests. 

Despite the wider use of methods such as Tree 
Risk Assessment Qualification (TRAQ)(Dunster et al. 
2017) or Quantitative Tree Risk Assessment (QTRA)
(Ellison 2005a, 2005b), which provide an opportu-
nity for the standardisation of terminology and pro-
cesses, many other and often older methods are still 
in wide use. These newer methods may be used by a 
sector of the arboriculture industry, particularly those 
who are members of professional and industry asso-
ciations, but they can be expensive of both time and 
money and require users to register and to commit to 
ongoing professional development. As a result, they 
are used by a minority of those undertaking tree risk 
assessment. There is concern about the credibility 
and validity of existing methods, limited use of hard 
data, and highly judgemental and subjective inputs. 
In many industries, it is rare to find disclosure of the 
degree of judgement used in defining a risk due to the 
belief that disclosure would result in the public 
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Figure 1. Risk Assessment process derived from the AS/NZS 
4360:2004. (Note that Establishing Context and Treating Risk 
are considered risk management functions that sit outside the 
assessment process.)
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of the significance of the hazard. Several methods have 
recognised the requirement for quick assessments: 
Forbes-Laird’s (2003) Tree Hazard: Risk Evaluation 
and Treatment System (Threats) method can be used 
in an extensive mode suitable for full risk assess-
ments and in an abridged form for rapid inspections, 
and Matheny and Clark (1994) had a shortened 
“quick survey” format. The Colorado Tree Coalition 
(2004) method is 2-tiered, where a more intensive 
assessment is only triggered when certain thresholds 
are reached, and QTRA (Ellison 2005a) has a walk-
over survey category that pre-empts more extensive 
inspection.

Acceptable risk is a fundamental tenet of risk man-
agement (nothing is risk free). The likelihood of a 
non-workplace tree-related death is extremely low 
(Hartley and Chalk 2019). Trees provide value to the 
community, and a level of acceptable risk is implicit 
in the community’s desire for trees. However, the dis-
cussion of acceptable risk is largely absent from arbo-
riculture (Sreetheran et al. 2011). The degree of risk 
relating to trees is rarely qualified, and obtaining data 
is difficult (Helliwell 1990, 1991; Ellison 2005b). 
The majority of existing tree risk assessment methods 
do not discuss or quantify acceptable risk levels 
(Matheny and Clark 1994; Pokorny et al. 2003; Blo-
niarz 2004; USDA Forest Service 2007), which is a 
significant deficiency given their widespread use. 
Broad, acceptable risk guidelines exist in many areas 

Semi-quantitative/qualitative: an inspection is 
undertaken, documented, and the elements that com-
pose the likelihood and consequence components are 
assigned numerical or alphanumerical coding (typi-
cally ordinal numbers that are summed to produce a 
risk value). The output values are ordinal only (a risk 
score of 6 is greater than 3, but there is no numerical 
relationship, and it is not twice the score of 3). These 
methods suit large tree populations, where process 
speed and the advantages of coding are of high value.

A list of assessment methodology criteria that 
meets the needs of public authorities was provided by 
Hickman et al. (1989) using “hazard” for what today 
is called risk. Methods should be predictive, rapid, 
allow prioritisation and reduce liability concerns, 
address the legal issues of foreseeability, require-
ments for inspection, and record keeping, and be 
defendable while being pragmatic, cost effective, and 
easy to administer. Most modern tree risk assessment 
methods cover these criteria (Table 2). Tree inspec-
tions are a quick visit to a tree to determine if a more 
detailed assessment is required, and the majority of 
street- and park-tree inspections are free of issues 
and, to be cost effective, cannot exceed 3 to 5 minutes. 
Trees identified with more complex issues should be 
assessed separately. Ellison (2005a) promotes a target-
led approach where only trees in areas that have use 
above certain levels are assessed, based on the premise 
that in low use areas, the risk is acceptable regardless 

Figure 2. Summarised public urban tree risk management process (based on the Australian Risk Management Standard AS/NZS 4360:2004).
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The QTRA method definitively sets acceptable/
unacceptable criteria (1:10,000) but tempers this by 
stating that risk owners might adopt the 1:10,000 limit 
of acceptable risk or choose to operate to a higher or 
lower level (Ellison 2005a). Matheny and Clark (1994) 
state that ratings have a relative meaning, but that the 
greater the hazard rating, the greater the risk associ-
ated with a tree. Many methods use qualitative terms 
to describe the risk, such as Low, Slight, and Critical. 
Table 3 summarises a range of terms from different 
methods. The Australian fatality risk level for trees is less 
than 1:5 million per annum (Hartley and Chalk 2019).

To defend due diligence, an authority needs to inspect 
trees, but at what frequency and at what standard? 
Most tree assessment methods suggest a frequency of 
between 0.5 to 3 years, with 9 of the 16 methods 
reviewed suggesting annual general inspections (Har-
ris 1983; Grey and Deneke 1986; Robbins 1986; 
Rushforth 1987; Matheny and Clark 1994; Mattheck 
and Breloer 1994; Albers et al. 1996; Fraedrich 1999; 
Lonsdale 2000; Dockter 2001; Hayes 2001; Kane et 
al. 2001; Dunster 2003; Forbes-Laird 2003; Wildlife 
Tree Committee 2003; Ellison 2005b). Such annual 
inspections are not a full risk assessment, but may 
lead to such an assessment for a subset of selected 

of public risk, but not in relation to trees, and owners 
of tree risk should develop defendable approaches to 
risk in line with national risk standards.

The level of acceptable risk depends upon site 
management objectives and management’s perceptions 
and expectations of tree performance (Coder 1996). 
The Australian risk standard AS/NSZ 4360:2004 
states that it is the function of management to set the 
context and evaluation criteria against which risk 
assessments are to be evaluated. Helliwell (1990) 
suggested that a 1:10,000 (0.0001) risk per annum 
would be a suitable figure for trees based on everyday 
risk fatality rates. Lonsdale (1999) used a United 
Kingdom Health and Safety Executive report of the 
Interdepartmental Liaison Group on Risk Assessment 
(HSE 1996) to suggest that the 1:10,000 was perhaps 
appropriate, and Ellison (2005a) supported 1:10,000 
based on the papers and reports cited by Helliwell 
(1990) and Lonsdale (1999). These reports explain 
that whilst 1:10,000 is the point where risk is totally 
unacceptable, and that an individual risk of death of 
1:1 million is a very low level of risk and should be 
considered as broadly acceptable, the area between is 
the tolerability region and subject to context and other 
considerations.
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Table 2. Examples of tree risk assessment data collection (Hickman et al. 1989; Matheny and Clark 1994; Forbes-Laird 2003; 
Hewett et al. 2003; Pokorny et al. 2003; Ellison 2005a; van Wassenaer and Richardson 2009; State of Victoria 2017).

Category Typical data collected

Assessment details Date, name of assessor, scope of works, authority to undertake work
Location data Identify site and tree within site; could include tree inventory (what species of tree and its  
 location), tree record number, owner
Site data Area use type, soil type and issues, site restrictions (utilities, paving, buildings), site history,  
 exposure to weather
Tree data Identification, history, age, physical data canopy and trunk (height, spread, DBH), physical data  
 root system (root crown exposed/damaged roots) 
Tree health data Health, vigour (or vitality), pests, or diseases 
Defects Defects (decay, cracks, lean, poor architecture, deadwood, mechanical damage), defect   
 symptoms (dieback, included bark, fungal fruiting bodies), site environment defects (low   
 branches, raised path), severity and location of defects
Target damage (consequence) Degree of damage possible, injury severity, “value” of target (children)
Target occupancy Amount of time the area is occupied and sometimes “value” factors, influence of weather
Risk rating/ranking/value Rating for various likelihood and consequence factors. Methods tend to rate size of part,   
 likelihood of failure, and target ratings, and combine these to form a risk score
Treatment/controls/management Options to mitigate risk, including accepting risk, often includes tree work recommendations
Residual risk level The level of risk remaining after the assessment’s recommendations have been undertaken  
 (this includes the “take no action” assessment)
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frequency of use. If zoning was used, it probably should 
pre-set the target value rating for the assessment or be 
removed from the assessment model.

The purpose of this research was to investigate a 
range of tree risk assessment methods using sensitivity 
analyses to determine the underlying model factors 
and their influence on the output value of risk. It was 
hypothesised that methods would differ in their treat-
ment of likelihood and consequences, their outputs, 
the availability of scores in their output ranges, and 
their tendency to rate the level of risk. Sensitivity 
analyses provide an indication for each method of the 
relative influence that the input variables exert on the 
final risk value, which makes users of a method aware 
of its strengths and weaknesses. The analyses can also 
assist in the choice of method and in determining 
which method might be most appropriate to a partic-
ular situation. Fourteen of the sixteen methods of tree 
risk assessment analysed in this research existed before 
the study commenced, and two that conformed to the 
Australian Standard on Risk Assessment AS/NZS 
4360:2004 were developed as part of the research 
(Standards Australia 2004a, 2004b). While a number 
of tree risk assessment methods exist, many are mod-
ifications of a few established methods.

MATERIALS AND METHODS 
Twenty-six tree risk methods were gathered from 
sources such as the literature, methods created for 
in-house use by local governments, and from various 
arboricultural consultants in Australia. Sixteen meth-
ods were chosen for further analysis and comparison 
(Table 4) using the selection criteria that each had to 
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trees. In inspecting large numbers of trees in public 
areas, time becomes a significant cost and resource 
limitation. In Australia, current street-tree inspections 
are being conducted at a rate of about 400 trees per 
day (50 trees per hour) with an average inspection 
time of 72 seconds, including travel time between 
trees. Longer inspection times increase costs signifi-
cantly, and few public authorities have such resources. 
Frequency of inspections is typically based on the 
need to identify defects, but the frequency of use by a 
risk target is probably a better approach.

Many Victorian councils manage about 50,000 (range 
15,500 to 106,000) street trees (Beer et al. 2001). At 
an inspection rate of 400 trees per day, an annual inspec-
tion would require 125 labour days per annum, with 
an inspection time of around 1 minute per tree. Several 
authors discuss the use of zoning districts, generally 
designated by usage levels, to prioritise areas for 
inspection (Lonsdale 2000, 2007; Pokorny et al. 2003; 
Ellison 2005a). It would also be possible to designate 
zones by tree factors, such as age, species, or size. 
Ellison (2005a) suggests that in low-use sites, the risk 
could be so low that inspections would be unneces-
sary. Zoning fits well with the variable fatality risk 
criteria that have higher requirements to provide a 
safe environment for particular land use types 
(Department of Planning NSW 1992) and with the 
“target” rating used in risk assessment methods such 
as Threats (Forbes-Laird 2006) and QTRA (Ellison 
2005b). If zoning is to be used, it may change the 
weighting on any assessment system that uses target 
rating. For example, the Matheny and Clark (1994) 
method allows a target rating of 1 to 4 depending on 

Table 3. Examples of terms used in tree risk assessment methods to describe levels of risk.

Method Acceptable risk category

Matheny and Clark (1994) None; authors suggest use “Hazard Rating” for ranking only, but provide examples.
Threats (Forbes-Laird 2006) Qualitative method that uses 7 broad categories from insignificant to extreme. Action is taken above the  
 “slight” rating.
Bartlett (Smiley et al. 2002) Qualitative method that is not specific, but uses terms such as Low, Moderate, High, and Critical Risk.
United States Department of  Several methods developed by the USDAFS are qualitative and don’t define acceptable risk levels. Most
Agriculture Forestry Service  use a numerical score similar to Matheny and Clark (1994).
(Pokorny et al. 2003) 
QTRA (Ellison 2005a; 2005b) A quantitative probabilistic method that develops a probability-based output value. Probabilities 
 < 1/10,000 per annum are unacceptable.
Colorado Tree Hazard Tree  A 2-tiered qualitative system. Once the initial risk score exceeds 36/60, or certain categories reach a
System (Colorado Tree  threshold, a second level inspection is triggered which prioritises. Fundamentally output values < 36
Coalition 2004) are deemed acceptable risk.
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be sufficiently different from other methods to offer 
valid comparisons and be sufficiently well-documented 
for thorough analysis. One method (QTRA) was 
assessed twice because an infield assessment tool (the 
wheel) had the potential to provide significantly dif-
ferent results when compared to the full QTRA 
method. Two methods—Tree Risk Evaluation Quan-
titative (TRE QT) and Tree Risk Evaluation Qualitative 
(TRE QL)—that were consistent with the risk matrix 
methodology of the Australian Standard on Risk 
Assessment AS/NZS 4360:2004 (Standards Australia 
2004a, 2004b) were developed for this research. The 
quantitative method was designed to provide a high 
level of risk quantification, and the qualitative method 
was designed for ease and speed of use in the field. 
Both allowed for ground truth testing of the 2 methods 
of sensitivity analyses and informed the interpretation 
of outcomes of the analyses for all of the methods. 

The methods not selected for further analysis 
tended to be minor modifications of Matheny and 
Clark (1994) or were too incomplete to allow full 
analysis. Six methods originated from sources in the 
United States of America, three came from the United 
Kingdom, and seven originated from Australia (includ-
ing the two methods developed for this research). 
Table 4 lists and summarises the methods used. Sev-
eral methods are titled “Private” because they were 
created by consulting arborists who asked that the 
source not be disclosed. Hence, whilst the methodol-
ogy is detailed, no reference is provided, but a copy 
of each method is available by request from the cor-
responding author of this study.

The 16 tree risk assessment methods were subject 
to 2 methods of sensitivity analysis with a goal of deter-
mining which assessment factors most influenced the 
output of each method. The sensitivity analyses are 
inherently linked to uncertainty and can identify control 
points and critical data and assist in validating a model 
(Frey and Patil 2002; Frey et al. 2004). Standards 
Australia (2004a) suggests that due to the imprecision 
of some risk estimates, sensitivity analysis should be 
used to determine the effect of uncertainty on assump-
tions and data and potentially to test the appropriateness 
and effectiveness of potential controls and risk treat-
ment options.

The more sensitive an input parameter is, arguably 
the greater the precision required to accurately estimate 
the input’s value. The basic process of sensitivity 
analysis is to change one variable at a time whilst hold-
ing the others constant and to measure the effect on 

the output rating. While 2-way sensitivity analysis is 
relatively common, typically Monte Carlo simulation 
methods are used (Thompson 2002). Sensitivity anal-
ysis is widespread in disciplines such as engineering 
and risk assessment and management (Vose 1996; 
Haimes 1998; Saltelli et al. 2000; Saltelli 2002; Patil 
and Frey 2004) but does not appear to have been widely 
used or discussed for tree risk assessment methods. 

Excel was used to create a simple ± 25% or ± 1 
rank change (depending on risk method) to the mean 
(rounded to an integer with ordinal data methods) for 
each assessment criterion; the change to the output 
score was recorded as a percentage change. Palisade’s 
@Risk software (Palisade 2002) was used to under-
take a Monte Carlo (multivariate stepwise regression 
with Latin Hypercube sampling) simulation of 5000 
iterations based on the input variables and output for-
mula, assuming a uniform distribution for each input. 
The advantage of this approach was that the entirety 
of possible input ranges was utilised, and all possible 
outputs were analysed, which identified variations 
not readily found with simpler approaches. The regres-
sion data provided a quantifiable determination of the 
variation provided by each input element and pro-
duced a theoretical output distribution for the method. 
From the simulation, multivariate stepwise regression 
was undertaken to determine the influence of each 
method’s input variables in determining the size of the 
output values. When the corresponding regression R2 
value was below 0.60, indicating a limited linear rela-
tionship, rank order correlation analysis was used to 
determine variance. While some valid probability dis-
tribution data possibly exist for the various tree risk 
assessment method inputs (defect frequency and sever-
ity), none were identified. Hence, the distribution fre-
quency used for this analysis was based on a uniform 
probability of each possible input variable occurring.

Due to differences in input variables, mathematics, 
scaling, and other factors, it was not possible to directly 
compare methods, and so descriptive statistics were 
used that summarise the range of values created by 
each method. The data were based on ordinal inputs, no 
assumption of normality was made, and non-parametric 
approaches were used as applicable. To permit inter-
method comparisons, three approaches were used: 
output data were transformed quantitatively via rank 
ordering, standardised scores (z-scores) were created, 
and a scale range from 1 to 10 was assigned qualita-
tively based on guidelines or thresholds provided by 
each method. A scale range from 1 to 10 was assigned 
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Table 4. Brief descriptions of the 16 tree risk assessment methods analysed (full explanations are available by request from 
the corresponding author).

Name of method
(Reference)
(Country)
(Coding) 

Bartlett Tree Experts 
(Smiley et al. 2002) 
(USA)
(Bartlett)

Colorado Tree Coalition 
(Colorado Tree Coalition 2004)
(USA) 
(CTC)

Hume City Council 
(Hume City Council, nd) 
(Australia)
(HCC)

Matheny and Clark 
(Matheny and Clark 1994) 
(USA)
(MandC)

Kenyon 1993 
(Kenyon 1993)
(Australia)
(Kenyon)

Private 1 
(no reference)
(Australia)
(Private 1)

Private 2 
(no reference)
(Australia)
(Private 2) 

Brief description and derivation of method

Bartlett was a 2-assessment–category summation model (“Failure Potential/Defect Severity” and “Con-
sequence of Failure”) using ordinal ranked values. The assessment criteria varied in range and number 
of values. The risk rating scores ranged from 2 to 15. Reasonably strong descriptors for each criterion 
were provided that relied on the assessor being suitably qualified and experienced. The final risk rating 
score was quantified with scores being aligned to 4 categories: < 7 = Low Risk, 7 to 9 = Moderate Risk, 
10 to 12 = High Risk, and 13 to 15 = Critical Risk. Bartlett withdrew the method after Tree Risk 
Assessment Qualification (TRAQ) was endorsed by the International Society of Arboriculture (ISA).

A qualitative method from the USA with 2 tiers of assessment and several base criteria that can trigger 
a second tier inspection. For this research, only the initial risk assessment was analysed. Three fields, each 
with different ranges (“Tree Species,” “Potential Target,” and “Defects Present”), were multiplied to create 
a risk score. The output scores ranged from 1 to 60. A unique element was the “Tree Species Index” 
category, where species were allocated to one of 5 groups ranging from Very Low (1) to Very High (5) 
Hazard. The authors suggested such groupings be developed from local consensus. The total rating (output 
score) was grouped into 3 predefined ratings: Low (1 to 14), Medium (15 to 35), and High (36 to 60).

A version of the Matheny and Clark (1994) method, highly modified by a Melbourne (Australia) local 
government authority and 2 consulting arborists. It was a complex model with 5 assessment criteria and 
a final risk score created by a combination of addition and multiplication. The assessment criteria were 
“Failure Potential,” “Failure Size,” “Target Usage,” “Target Value,” and “Damage Probability.” The 
first 4 were evenly scored (5 values from 0.5 to 4), whilst the “Damage Probability” criterion was 
scored in 5 values from 0.2 to 1. Risk output values ranged from 3 to 64. No definitions or quantifica-
tion of the output score values were provided.

This 3-category summation model is one of the older published urban tree risk methods. “Failure Potential,” 
“Size of Part,” and “Target Rating” were each scored from 1 to 4 and summed to derive a “Hazard Rating.” 
The method was superseded by the TRAQ training program endorsed by the ISA (Matheny and Clark 
2007, 2009; Dunster et al. 2017). However, it is probably the most widely used method in Australasia 
and in North America by those not affiliated with the ISA who have not undertaken the fee-for-service 
TRAQ program. The output scores ranged from 3 to 12. No definition or quantification of the output 
score values was provided.

An early quantitative method that attempted to quantify risk rather than the more common approach of 
ordinal ranked values: at the time a novel tree risk assessment. It multiplied 4 fields, the “Probability of 
Failure,” “Target Value” (in dollars), “Target Risk Time,” and a “Damage Factor” to give a dollar value. 
Two of the fields with predefined ranges and outputs were expressed financially ranging from $0 to 
more than AUD $4.5 million. No definition or quantification of the output score values was provided.

A qualitative method developed by an arboricultural business in Melbourne, Australia. The method was 
provided confidentially and used 3 assessment criteria. The final risk score was created by (Likelihood 
of Failure × Likelihood of Impact)/2 × Consequences. The assessment criteria were discontinuous ordinal 
ranked numbers, and the Likelihood of Failure criterion had a different scale (1, 2, 4, 6, 8, and 10) to 
the others (1, 4, 6, 8, and 10). The final risk output values ranged from 1 to 500. The levels of risk were 
defined: 1 to 125 points = Very Low Risk, 125 to 250 points = Low Risk, 250 to 375 points = Medium 
Risk, 375 to 500 points = High Risk.

A modification of the Matheny and Clark method. The method was provided confidentially and had 6 
assessment fields; each field was summed to create a “Hazard Rating” of 6 to 24. This method’s novelty 
was the inclusion of 3 categories: “Wind Alignment,” “Defect Height,” and “Remediation.” The “Hazard 
Rating” scores are quantified: 5 to 10 = Low Risk, 10 to 16 = Moderate Risk, 16 to 20 = High Risk, 
20 to 24 = Extreme Risk. (Table 4 continued on next page)
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Name of method
(Reference)
(Country)
(Coding) 

Private 3 
(no reference)
(Australia)
(Private 3) 

QTRA – Full 
(Ellison 2005a, 2005b)
(United Kingdom)
(QTRA) 

QTRA – Wheel Version 
(Ellison 2005a, 2005b)
(United Kingdom)
(QTRA W) 

Threats 
(Forbes-Laird 2006)
(United Kingdom)
(Threats) 

Tree Risk Evaluation (TRE) 
   Quantitative
(Standards Australia 
   2004a, 2004b) 
(Australia)
(TRE QT) 

TRE Qualitative 
(Standards Australia 
   2004a, 2004b) 
(Australia)
(TRE QL) 

US Department of Agriculture 
   Forestry Service Method 1 
(Pokorny et al.  2003)
(USA)
(USDAFS 1) 

Brief description and derivation of method

This method based on the Australian Risk Standard matrix (AS/NZS 4360:2004) was provided confiden-
tially as a simple risk matrix composed of 5 values each for the “Likelihood” and “Consequence” cate-
gories. Descriptors provided guidelines for each category. The 2 scores were multiplied to produce a risk 
score. The risk score ranged from 1 to 25. The meaning of these scores was quantified: 1 to 6 = Low Risk, 
7 to 10 = Medium Risk, 11 to 12 = Significant Risk, 15 to 20 = High Risk, > 21 = Immediate Risk.

Quantified Tree Risk Assessment was a probabilistic method which multiplied 3 assessment criteria to 
derive an output risk score. The assessment criteria were “Probability of Failure,” “Size of Part” (Impact 
Potential), and “Target.” The assessor was required to quantify category data inputs, such as probability 
of the defect failing within the inspection period, estimated number of people passing the tree, number of 
vehicles per day, and size of part based on fractionising the estimated dry weight of a 600-mm-diameter 
tree using data derived from an allometric equation. With this method, the risk score was usually reported 
as the inverse of the decimal (a ratio) and termed Risk of Harm (RoH). The risk output values are expressed 
as a probability from 0 to 1, expressed as a ratio ranging from 1:1 to > 1:1000 billion (infinite). Acceptable 
risk was a RoH above 1:10,000.

A field tool for calculating QTRA risk levels, but values used in the various categories were not equal, and 
the RoH values differed from the full QTRA method. The changes effectively lowered the “Probability 
of Failure” input by one order of magnitude. Wheels were produced in 2005 and 2007, and this analysis 
was of the 2007 version, which had changes to the probability of failure range and to the vehicle use 
ranges within the “Target” category.

A qualitative United Kingdom method, Threats used 3 assessment categories (“Likelihood of Failure,” 
“Target Score,” and “Impact Score”) that were multiplied to create a risk score. This method could create 
a zero score.  The “Hazard Ratings” ranged from 0 to 20,000, and are quantified: 0 to 49 = Insignificant, 
50 to 159 = Minimal, 160 to 349 = Slight, 350 to 999 = Moderate, 1000 to 2000 = Significant, 2001 to 
3999 = Serious, and 4000+ = Extreme.

A probabilistically based quantitative method developed for this research aligning with the Australian 
Standard of Risk Management (AS/NZS 4360:2004). Three categories, “Probability of Failure” (Pf), 
“Probability of Impact” (Pi), and “Consequences” (Co), were assigned a probability (or ratio). “Conse-
quences” was fractionised based on the maximum value of a statistical life developed from data used in 
Australia and indexed by consumer price index. These categories were multiplied to create a risk score 
expressed as a probability, ratio, or a financial value. At scores below 1:10,000 risk was unacceptable; for 
risk scores from 1:10,000 to 1:100,000 the risk should be reduced if practicable; risk scores > 1:100,000 were 
considered acceptable.

A method designed for quick field application, which was developed for this research, based on the same 
principles as TRE QT. A user interface was created with assessment categories of 5 to 7 values; the assess-
ment values were summable by converting them to logarithmic scales. Risk scores from 3 to 300 were 
possible and could be converted to probabilities. At scores of 200 to 300 (> 1:10,000), risk was unac-
ceptable; for risk scores 170 to 199 (1:10,000 to 1:100,000), risk should be reduced if practicable; scores 
below 170 (< 1:100,000) were considered acceptable.

One of several qualitative methods developed by the USDAFS. This method summed the values from 
4 assessment criteria: “Probability of Failure,” “Size of Part,” “Probability of Impact,” and “Other Risk 
Factors.” These categories had differing ranges, and the “Other Risk Factors” category could be used 
“if professional judgement suggested the need to increase the risk rating.” The output risk rating ranges 
from 3 to 12. No definition or quantification of the output score values was provided.

Table 4. continued
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to the different methods to allow comparison of their 
risk ratings (Table 5). If clear guidelines on the mean-
ing of the output were not provided, the rating was 
based on the width of the method’s risk scaling. For 
example, a Matheny and Clark score of 4/12 was des-
ignated a risk scale rank of 3 or lower (because it was 
only 1 above the minimum possible score), while a 
score of 7/12 was designated a risk scale rank of 6 (or 
medium/moderate). For wholly verbal or ordinal meth-
ods such as TRAQ, points were assigned to the verbal 
descriptions provided to allow analysis. The results 
were directly compared using descriptive statistics 
and correlation analysis.

The “standardised score” is a method permitting 
comparisons amongst different methods’ outputs. The 
conversion of raw scores to units of standard deviation 
is often termed “z-scores” (Urdan 2005). Minitab™ 
(Minitab 2006) was used to generate the standardised 
scores using the default “subtract mean from raw value 
and divide by standard deviation” method:

where X is the raw score, µ is the mean, and ϭ the 
standard deviation.

Positive values are those above the mean, and neg-
ative values those below the mean. The standardised 
score represents the number of standard deviations. 
Hence, a standardised score of −1 is 1 standard deviation 

below the mean. Whilst all of the qualitative methods 
passed this test for normality (p > 0.05), the 4 proba-
bilistic methods failed (p < 0.05) due to their inherent 
logarithmic nature. The raw output values from these 
methods were log-transformed and then passed the 
test for normality.

RESULTS
The results are presented in two parts. The first pres-
ents data on the general outcomes of the 2 sensitivity 
analyses for all methods, while the second part pres-
ents the data on the analysis of each method separately.

Comparison of Sensitivity Analyses 
for All Methods
The 1 rank or 25% change produced a range of out-
comes that readily identified inputs that had a significant 
influence on outcomes. This approach can be extended 
by undertaking a 2 rank or 50% change to each input. 
A limitation occurs with methods that do not use an 
even range across the input scales (e.g., 1, 2, 3, and 4 
versus 1, 3, 7, and 10). The second sensitivity approach 
(@Risk multivariate stepwise regression) more suc-
cessfully identifies the range of variations found with 
methods. Matched input scales, such as MandC or 
probabilistic methods using true probabilities such as 
QTRA, rather than scaled probabilities, such as Kenyon 
and QTRA W, will produce even changes.

©2020 International Society of Arboriculture

Brief description and derivation of method

The second USDAFS used 2 categories, “Targets” and “Defects” (each covers a different range), which 
were multiplied to create a “Hazard Rating.” This method can produce a zero score, and the “Hazard 
Rating” ranged from 0 to 6. No definition or quantification of the output score values was provided.

This method endorsed by the ISA is wholly verbal or ordinal in the description of risk and has 3 assess-
ment criteria. To allow analysis, scores were allocated for the “Likelihood” components (“Impact” and 
“Failure”), ranging from 1 to 4, which were multiplied. The product was then re-ranked, with scores of 
2 to 6 being unlikely and re-ranked as 1, while scores > 12 were very likely and re-ranked as 4. These 
were then multiplied by the “Consequences” factor, again scored from 1 to 4, giving a Risk Rating (RR) 
range from 1 to 16. In both multiplications, it is impossible to obtain scores of 5, 7, 10, 11, 13, 14, or 15. 
The final risk rating scores were quantified and aligned to 4 categories: 1 to 4 = Low, 6 to 8 = Moderate, 
9 to 12 = High, and > 12 = Extreme.

Name of method
(Reference)
(Country)
(Coding) 

USDAFS Method 2 
(Pokorny et al. 2003)
(USA) 
(USDAFS 2)

Tree Risk Assessment 
   Qualification (TRAQ) 
(Dunster et al. 2017) 
(USA)
(TRAQ)

Table 4. continued
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Consequently, individual input analysis for meth-
ods such as MandC, Private 2, QTRA, and TRE QT 
identified that each input produced the same influ-
ence on the output value. Probabilistic methods 
recorded a percentage change that reflected the input 
change, where a 25% change to an input modified the 
output value by 25%. For qualitative methods using 
ordinal ranks such as MandC, Private 1, and Private 2, 
the percentage change to the output values varied sig-
nificantly. For MandC, a 1 rank change from the mean 
modified the output value by 17%; for Private 2, the 
change was 8%. Private 3 recorded a 33% change to 
the output value, and for TRAQ, a 1 rank change to 
impact or failure moved the risk rating 1 step, but a 
change to consequences did not alter the risk rating.

Of the methods reviewed, 8 were designed such 
that each input category exhibited a different influ-
ence on the their respective output value, and due to 
category scaling differences, a 1 rank change in dif-
ferent directions could create a large change in the 
output values. For example, QTRA W, due to its log-
arithmic nature, exhibited extreme intra-category 
variation (a + 1 rank change increased the output by 
900%, whilst a 1 rank decrease reduced the output 
value by 81%). Methods such as USDAFS 2, Threats, 

and Kenyon exhibit very large movements in both 
inter- and intra-category values for simple 1 rank 
changes (Table 6).

The 1 rank or 25% change sensitivity analysis clearly 
and simply demonstrated that different risk assess-
ment methods approached the input weighting and 
scaling differently and combined them mathemati-
cally differently. Hence, a change to 1 input value could 
create a wide range of changes to the output values 
and hence risk rating. Only the QTRA and the 2 TRE 
methods provided an explanation for the range and 
scaling of inputs, weighting of categories, or combi-
nation mathematics, which makes working with other 
methods more difficult and less certain.

The Monte Carlo simulation for the 16 methods 
aligned with the simpler rank-change analysis (Table 
6). Simple linear models that sum the inputs, such as 
MandC, TRE QL, USDAFS 1, and Private 2, pro-
duced distributions that approximated normal distri-
bution curves, with the majority of outputs towards 
the centre of the distribution. The 2 QTRA approaches 
and TRE QT are mathematically probabilistic and 
hence produce logarithmic distributions. These methods 
produced output scores over a wide and sometimes 
extreme range, where, for example, the lowest value 

Table 5. Qualitative risk score scaling assigned to tree risk assessment methods to allow comparison of the different outputs 
and risk ratings for use in Minitab™.

Risk scale 1 2 3 4 5 6 7 8 9 10
rank 

Risk	 Insignificant	 Very	low	 Low	 Minor/	 Median	 Medium/	 Moderate	 Somewhat	 High	 Extreme
descriptor	 	 	 	 slight		 	 moderate		 	 high	

Bartlett 2 3 5 6 - 7 9 10 13 15
CTC 1 - - 14 15 - 35 36 60 N/A
HCC 3 - - - - - - - 64 N/A
MandC - - 4 - - 7 - - 12 N/A
Kenyon < $100 - - - $10,000 - - - - > $1m
Private 1 1 - 125 250 - 375 - - 375 500
Private 2 - 5 10 - 10 - 16 - 20 24
Private 3 - 1 6 - 7 - 10 12 15 21
QTRA > 1:1m - - < 1:10k - - - - - N/A
QTRA W > 1:1m - - < 1:10k - - - - - N/A
Threats > 50 159 160 349 350 - 999 1000 2000 4000
TRE QT - - > 1:100k - - - - < 1:10k - N/A
TRE QL - - > 1:100k - - - - < 1:10k - N/A
USDAFS 1 - - 3 - - 7 - - 12 N/A
USDAFS 2 0 1 2 3 - 4 - - 6 N/A
TRAQ 1 2 3 4 6 8 - 9 12 16 

Note. For some methods, the highest risk rating was extreme and for others high. For clarity and simplicity, this table only shows method scores that directly 
match the 10 point scale and/or the verbal descriptor of risk.
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Table 6. Summarised results of sensitivity analysis and combined consequence (Co) and likelihood (Li) weightings and ratios 
for 16 tree assessment methods.

Method Change to output Change to output of Fitted distribution curve Combined
 of 1 rank or Monte Carlo simulation and projected mean consequence and
 25% change stepwise regression  likelihood weighting
    and ratio

Bartlett 43% change to Failure/Defect  Failure/Defect 80% variance Even spread of scores.  Co = 19%
 29% change to Consequence 19% Consequence Projected mean 8.5. Li = 80%
   Some output values Co:Li = 0.24
   cannot be produced. 

CTC 13% each category Species 38% variance Strong tendency to Co = 23%
 Changed with 2 rank variation Defects 33% generate lower end scores. Li = 58%
  Target 26% Projected mean 15.1. Co:Li = 0.40

HCC 25% change with 4 categories Damage 31% variance Tends to produce lower Co = 57%
 Damage 33% All others 13% end score. Projected Li = 26%
   mean 10.5. Co:Li = 2.19

MandC 17% each category 33% variance all categories Generated scores towards  Co = 33%
  (linear model)  the centre. Projected Li = 66%
   mean 7.5.  Co:Li = 0.5

Kenyon Target Time and Damage 46% of the variance Tendency to generate Co = 56%
 Target Value 25% Failure 13% lower end scores— Li = 21%
	 Damage	−60%	+	60%	 Other	categories	10%	 logarithmic	distribution.	 Co:Li	=	2.66
	 Failure	−57%	+	14%	 	 Projected	mean	$276,000.

Private 1 33% each category  Failure 30% variance Strong tendency to Co = 28%
	 except	Failure	where		 Remaining	fields	for	 generate	lower	end	 Li	=	59%
	 a	+	1	rank	change	results		 23%	of	the	variance	 scores.	Projected	 Co:Li	=	0.47
 in a 67% increase  mean 87.

Private 2 8% each category 16% all categories Generates scores towards Co = 34%
   the centre. Projected  Li = 49%
   mean 15.  Co:Li = 0.69

Private 3 33% each category 45% each category Generates scores towards  Co = 0%
   lower to median. Projected Li = 92%
   mean 9.  Co:Li = 0.00

QTRA 25% each category 25% each category Generates lower end Co = 25%
   scores—logarithmic Li = 49%
   distribution. Projected  Co:Li = 0.51
   mean 0.125 equal to a
   1:8 ratio.

QTRA W Size	−81%	+	900%	 Target	45%	 See	QTRA	W	section	 Co	=	4%
	 Failure	−77%	+	852%	 Size	21%	 for	discussion.	 Li	=	58%
	 Target	–72%	+	900%	 Failure	31%	 	 Co:Li	=	0.07

Threats Impact	−33%	+	67%	 Failure	51%	 Generates	scores	towards	 Co	=	3%
 Target ± 25% Target 20% the lower end of the range. Li = 72%
	 Failure	−75%	+	525%	 Impact	3%	 Projected	mean	1100.	 Co:Li	=	0.04

TRE QL 17% each category 32% each category Generates scores towards the Co = 32%
   centre. Projected mean 150.  Li = 64%
    Co:Li = 0.5

(Table 6 continued on next page)
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Table 6. continued

Method Change to output Change to output of Fitted distribution curve Combined
 of 1 rank or Monte Carlo simulation and projected mean consequence and
 25% change stepwise regression  likelihood weighting
    and ratio

TRE QT 25% each category 25% each category Generates lower end Co = 25%
   scores—logarithmic  Li = 49%
   distribution. Projected  Co:Li = 0.51
   mean 0.125 equal to a
   1:8 ratio.

USDAFS 1 14% each category Failure 39% Generates centre range Co = 21%
  20% all others scores skewed slightly Li = 59%
   towards high. Projected  Co:Li = 0.36
   mean 7.5.

USDAFS 2 Defect ± 50% Defect 77% of variation Tends to generate risk Co = 0%
	 Target	−0%	+	100%	 Target	15%	 score	outputs	of	0	and	2.		 Li	=	92%
   Projected mean 2.6.  Co:Li = 0.00

TRAQ One	rank	change	to	failure	 Failure	or	Impact	 Strong	tendency	to	 Co	=	40%
	 or	impact	moved	risk	rating	 increase	80%	variance,	 generate	lower	end	scores.	 Li	=	60%
	 one	step.	One	rank	increase	 decrease	60%	variance	 Projected	mean	4.06.	 Co:Li	=	0.66
	 to	Co	did	not	change	RR	from	 Consequence	increase	 Some	output	values	cannot
	 Moderate.	One	rank	decrease		 80%	variance,	 be	produced.
 to Co changed RR from Moderate decrease 24% variance
 to Low.

©2020	International	Society	of	Arboriculture
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lower	correlation	due	to	the	zero-risk	values	that	influ-
enced the standardised values.
The	outputs	from	MandC	did	not	exhibit	strong	cor-

relations with methods that other authors claimed were 
derived	from	its	methodology,	such	as	HCC	(0.21)	and	
Private	2	(0.43).	The	3	probabilistic	methods,	Kenyon,	
QTRA,	and	TRE,	have	strong	relationships	with	each	
other;	given	that	the	QTRA	and	the	QTRA	W	methods	
and	the	TRE	QT	and	TRE	QL	methods	are	respectively	
direct	analogues,	this	high	correlation	was	to	be	expected.

An Abridged Summary of Sensitivity 
Analysis of Each Method
The full data set for the individual analysis of all 
methods	 is	 very	 lengthy,	 and	 for	 each	method,	 the	
summary	 included	 figures	 for	 a	 sensitivity	 1	 rank	
(sometimes	also	a	2)	change,	 regression	sensitivity,	
combined consequences and likelihood regression 
sensitivity,	 and	 @Risk	 Monte	 Carlo	 distribution.	
There	are	nearly	60	figures	in	total,	and	so	only	2	for	
each	method	are	included	here,	but	all	of	them	with	
relevant	text	are	available	by	request	from	the	corre-
sponding	author	of	this	study.

created	on	the	QTRA	W	is	1:3,000	billion	(3	×	10-12).	
Hence	a	distribution	chart	would	be	difficult	to	interpret.	
The distribution charts for other methods illustrated a 
wide	range	of	results:	Kenyon	and	Threats	appeared	
logarithmic,	while	TRAQ,	HCC,	and	Private	1	appeared	
to	generate	the	majority	of	their	output	scores	towards	
the	lower	end	of	their	respective	potential	ranges,	as	
would	be	expected	from	methods	that	multiply	inputs.	
The	CTC	method	generated	a	large	number	of	output	
ratings towards the lower end of its scaling and had a 
significant	number	of	gaps	over	its	range.
A	 consequence:likelihood	 ratio	 (Co:Li)	was	 cre-

ated	by	dividing	the	respective	weightings	of	conse-
quence	and	likelihood	(Table	6),	with	values	greater	
than	0	representing	methods	that	favour	consequence,	
and	values	less	than	0	representing	methods	that	favour	
likelihood;	the	closer	to	1	the	ratio,	the	more	balanced	
the	method.	Some	methods	had	a	Co:Li	=	0.00;	only	
consequence or likelihood was measured by those 
methods	(Figure	3;	Table	6).
The	correlations	(Figure	4)	between	the	ranked	values	

and	standardised	scores	were	very	high	(mean	0.89).	
Only	 the	 Threats	 method	 produced	 a	 significantly	
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Figure 3. Comparison of weighting given by each method to likelihood (Li) and consequence (Co) elements of the risk assessment.

Figure 4. Correlations between ranked and standardised scored raw data for the 16 methods of tree assessment.
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Bartlett Tree Experts (Smiley et al. 2002) 
The assessment criteria varied in range and number 
of values, and risk rating scores ranged from 2 to 15. 
As a 2-assessment–category summation model (“Fail-
ure Potential/Defect Severity” and “Consequence of 
Failure”) using ordinal ranked values and uneven 
input scaling, a simple 1 rank change (±) to the “Fail-
ure Potential/Defect Severity” input resulted in a 43% 
change to the output value, whilst the same change to 
the “Consequence of Failure” inputs resulted in a 29% 
change to the output value.

@Risk’s stepwise regression also identified this 
trait (Figure 5), with the “Failure Potential/Defect 
Severity” input accounting for some 80% (0.896) of the 
variation in the outputs, whilst the “Consequence of 
Failure” input only accounted for 19% (0.436). The 
method used 2 inputs that fit within the Risk = Li × Co 
definition. The likelihood elements of an assessment 
rated more strongly than consequences elements 
based on regression analysis (R2 = 0.99), as conse-
quence accounted for 19% and likelihood 80% of the 
variation. As illustrated in the distribution chart (Fig-
ure 6), the Bartlett method produces a uniform distri-
bution, except for 2 values (3 and 14) that cannot be 

produced. Bartlett produces 12 output values from its 
range of 2 to 15.

Colorado Tree Coalition (CTC)(2004)
Three inputs, “Tree Species,” “Potential Target,” and 
“Defects Present,” were multiplied to create a risk 
output score. Each of the 3 assessment categories had 
different ranges (scaling). The “Total Rating” (output 
score) was grouped into 3 predefined ratings: Low 
(1 to 14), Medium (15 to 35), and High (36 to 60).

The 1 rank change confirmed that each input vari-
able had an equal effect on the output (a 13% change), 
but a 2 rank change showed this was not constant 
throughout the input ranges. The regression sensitiv-
ity (Figure 7) reflected this variation within the model 
created by each element at “Tree Species” (38%), 
“Defects Present” (33%), and “Potential Target” (26%). 
Combining the various inputs into 2 categories (con-
sequences and likelihood) resulted in CTC signifi-
cantly favouring the inputs that affect likelihood over 
consequences, with consequences accounting for 
23% (0.48) of the variation in the method and likeli-
hood 58% (0.76). The Monte Carlo distribution (5000 
iterations) suggested that this method would produce 
far more values at the lower end of the risk scale 

Figure 5. Bartlett regression sensitivity.

Figure 6. Bartlett @Risk Monte Carlo distribution.

Figure 7. CTC regression sensitivity.

Figure 8. CTC @Risk Monte Carlo distribution.
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on the output. The “Damage Probability” input is a 
multiplier applied at the end of the method and had 
the strongest influence on the output values. The regres-
sion sensitivity identified that each of the 4 same scale 
inputs accounted for 13% of the output variability, 
whilst the “Damage Probability” element accounted 
for some 31% of the output.

Combining the various inputs into 2 categories 
(consequences and likelihood) resulted in HCC signif
icantly favouring the inputs that affected consequences 
over likelihood, with consequences accounting for 
some 57% (0.76) of the variation in the method and 
likelihood accounting for 26% (0.51). This consequence 
weighting was different to most other methods. The 
Monte Carlo distribution (5000 iterations) suggested 
that this method would typically produce far more 
values at the lower end of the risk scale, with a mean 
value of 10.5 (Figure 10).
Matheny and Clark (MandC)(1994) 
A photographic guide to the evaluation of hazard trees 
in urban areas (Matheny and Clark 1994), MandC is 
a 3category summation method. “Failure Potential,” 
“Size of Part,” and “Target Rating” were each scored 
from 1 to 4 and summed to derive a “Hazard Rating.” 
Output scores range from 3 to 12, with no definitions 
or quantifications of the output values provided. 
MandC stated the output as a ranking and provided 
only a relative meaning.

All of the inputs were scaled and mathematically 
combined the same. As illustrated by both the 1 rank 
change and the regression sensitivity (Figure 11), out-
puts changed by the same amount for each changed 
input. In the regression sensitivity, each of the 3 same 
scaled inputs accounted for 33% of the output vari-
ability. Combining the various inputs into 2 catego-
ries (consequences and likelihood) resulted in MandC 
significantly favouring the inputs that affect likeli-
hood over consequences. Consequence factors accounted 
for some 33% (0.57) of the variation in the method, 
and likelihood accounted for 66% (0.81). Given that 
“Size of Part” is the only factor that accounts for con-
sequences, this outcome was logical. The Monte Carlo 
distribution (5000 iterations) suggested that this 
method will typically produce a “normal” distribution 
with most values towards the centre (Figure 12).
Kenyon (1993) 
Kenyon was a probabilistic method that multiplied 4 
fields, the “Probability of Failure,” “Target Value” (in 
dollars), “Target Risk Time,” and a “Damage Factor,” 

(Figure 8), with a mean value of 15 (lowest end of the 
method’s definition of “medium risk”). The CTC 
approach is more complex than modelled in the analy-
ses, as it requires the species to have predefined ratings 
set, and if either the “Potential Target” or “Defects 
Present” rating has a rating of “3” or the overall out-
put is ≥ 36, then the second level of the assessment is 
triggered. This analysis was limited by these addi-
tional factors.

Hume City Council (HCC)(nd)
This method was a modified version of Matheny and 
Clark (1994) that had 5 assessment criteria and a final 
risk score created by a combination of addition and 
multiplication. The assessment criteria were “Failure 
Potential,” “Failure Size,” “Target Usage,” “Target 
Value,” and “Damage Probability.” The first 4 were 
evenly scored (5 values from 0.5 to 4), whilst the 
“Damage Probability” criterion had 5 values from 0.2 
to 1. No definitions or quantification of the resultant 
output ratings were provided by the Hume Method.

Four of the five inputs were scaled and mathemat-
ically combined identically, as illustrated by both the 
1 rank change and the regression sensitivity (Figure 
9). Any change to these inputs had the same influence 

Figure 9. HCC regression sensitivity. 

Figure 10. HCC @Risk Monte Carlo distribution.
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to express the Monte Carlo modelling. Similar to the 
± 1 rank, changing the “Damage Factor” had a very 
significant influence on this method’s output values 
(46%). Combining the various inputs into conse-
quences and likelihood resulted in Kenyon signifi-
cantly favouring the inputs that affect consequences 
over likelihood, with consequences accounting for 
some 56% (0.75) of the variation in the method and 
likelihood 21% (0.46). The Monte Carlo distribution 
(5000 iterations) illustrated the logarithmic nature of 
any probabilistic approach (Figure 14).

Private 1 
Private 1 used 3 assessment criteria and the risk score 
was created by (Likelihood of Failure × Likelihood 
of Impact)/2 × Consequences. The assessment crite-
ria were ordinal ranked numbers, but not continuous, 
and the Likelihood of Failure criterion was a different 
scale (1, 2, 4, 6, 8, and 10) to the other two (1, 4, 6, 8, 
10). The final risk score could range from 1 to 500. 
The levels of risk these scores represent were defined: 
1 to 125 points = Very Low Risk Tree; 125 to 250 
points = Low Risk Tree; 250 to 375 points = Medium 
Risk Tree; 375 to 500 points = High Risk Tree. A 1 rank 
change illustrated the difference that the different 

to give risk quantification as financial values. No defini-
tions or quantification of the output score values were 
provided. Due to the mixed scaling and probabilistic 
nature of this method, both the ± 1 rank and ± 25% 
were used. This method was more complex than most: 
the “Probability of Failure” and “Damage Factor” 
inputs were based on scaled ranges from 0.05 to 1 and 
0.001 to 1, respectively; “Target Risk Time” was 
based on the number of minutes of exposure per 
week, and hence was scaled from 0.0059 to 1; whilst 
“Target Value” was the value of damage from $0 to 
$4.5 million (AUD). Therefore, the 1 rank change 
and the correlation sensitivity (Figure 13) showed that 
different inputs had differing influences on the output.

The ± 25% or 1 rank changes produced predictable 
outcomes for the “Target Risk Time” and “Target 
Value” elements, because these were probabilities. 
The “Damage Factor” and “Probability of Failure” 
categories were scaled; a 1 rank change to the “Dam-
age Factor” resulted in a ± 60% change to the output 
value, whilst the “Probability of Failure” element 
produced an uneven result due to the very uneven 
scaling of the input. Because the regression R2 was 
below 0.6 (0.55), correlation coefficients were used 

Figure 11. MandC @Risk regression sensitivity.

Figure 12. MandC @Risk Monte Carlo distribution.

Figure 13. Kenyon @Risk regression sensitivity.

Figure 14. Kenyon @Risk Monte Carlo distribution.
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The “Hazard Rating” scores were quantified: 6 to 10 = 
Low Risk, 10 to 16 = Moderate, 16 to 20 = High, 20 
to 24 = Extreme Risk. This method used the same 
approach as MandC, with 3 additional input catego-
ries, and had the same sensitivities. Because each cat-
egory was scaled the same, each provided the same 
weighting to the output. The difference to MandC is 
that the additional 3 categories effectively halved the 
influence any single input had on the method. A 1 rank 
change produced only an 8% change to the subse-
quent output value. The regression sensitivity (R2 = 1.0) 
showed that each input affected the variability in the 
model by 16% (Figure 17). This represented 8% in 
each direction.

Combining the various inputs into 2 categories 
(consequences and likelihood) was not possible with 
this method, because 1 assessment input did not align 
with these categories (“Remediation”), but the 
method favoured likelihood (0.70, 49% of the varia-
tion) over consequences (0.58, 34% of the variation). 
The Monte Carlo distribution illustrated that this 
method would tend to produce the vast majority of its 
outputs in the form of a normal distribution curve 
(Figure 18) with a mean of 15 (method range 4 to 24).

scaling in the Likelihood of Failure category created. 
A single change to any input created significant 
changes to the output and a large change in the Like-
lihood of Failure category. The effect of the failure cri-
terion was more objectively seen in the Monte Carlo 
regression (R2 = 0.74), where the Likelihood of Fail-
ure category accounted for 29.7% of the method’s 
variation, whilst the remaining categories accounted 
for some 22% each (Figure 15).

Combining the various inputs into 2 categories 
(consequences and likelihood) resulted in Private 1 
significantly favouring the inputs that affect likeli-
hood over consequences, with consequences account-
ing for some 28% (0.53) of the variation in the method 
and likelihood 59% (0.77). The Monte Carlo distribu-
tion illustrated that this method would produce the 
majority of its outputs at the lower end of the scale 
(mean 86.7), with 88% below the 250 level termed 
Low Risk Tree and 72% below 125 defined as a Very 
Low Risk Tree (Figure 16).

Private 2
Private 2 was a significantly modified version of the 
MandC method that had 6 assessment inputs, each 
summed to create a “Hazard Rating” range from 6 to 24. 

Figure 15. Private 1 @Risk regression sensitivity.

Figure 16. Private 1 @Risk Monte Carlo distribution.

Figure 17. Private 2 @Risk regression sensitivity.

Figure 18. Private 2 @Risk Monte Carlo distribution.
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harm or potential damage. In effect, this method did 
not measure consequence. The Monte Carlo distribu-
tion illustrated that the method tended to produce 
most values towards the lower end of the scale 
because the method cannot mathematically produce 9 
of the integers between 10 and 25 (Figure 20).

QTRA (Ellison 2005a, 2005b) 
QTRA was a probabilistic method, which multiplied 
inputs from the 3 assessment categories to derive an 
output risk score. The input categories were “Proba-
bility of Failure,” “Size of Part” (Impact Potential), 
and “Target.” With this method, the risk score was 
usually reported as the inverse of the decimal (a ratio) 
termed Risk of Harm (RoH). The range of output rat-
ings was infinite (depending on the inputs), and a 
range of 0 to > 1 billion was feasible. QTRA stated 
acceptable risk was below a RoH of 1:10,000 (e.g., 
1:20,000). Being a probabilistic method with all 
inputs ranging between 0 and 1, both the ± 25% and 
regression sensitivity confirmed that each input influ-
enced the output equally (Figure 21).

Combining the various inputs into 2 categories 
(consequences and likelihood) was interesting with 
this method, because the input categories changed 

Private 3 
Private 3 was a method based on the Australian Risk 
Standard risk matrix (AS/NZS 4360:2004) composed 
of 5 values in each of the likelihood and consequence 
categories. A range of descriptors provided guide-
lines for each category. The 2 scores were multiplied 
to derive a risk score. The risk score could range from 
1 to 25. The meaning of these scores was quantified: 
1 to 6 = Low Risk, 7 to 10 = Medium Risk, 11 to 14 = 
Significant Risk, 15 to 20 = High Risk, > 21 = Imme-
diate Risk. Given the 5 × 5 matrix and equal scaling 
of the input values, this method exhibited identical 
changes for each input, shown by both the 1 rank 
change method and the Monte Carlo regression analy-
sis. A 1 rank change to any of the risk inputs created a 
33% change to the output. The Monte Carlo regression 
(R2 = 0.90) identified that each category accounted 
for 45% of the method’s variation (Figure 19).

This method used 2 input categories termed “Like-
lihood” and “Consequence.” However, this method’s 
matrix inputs only considered the likelihood of a fail-
ure (the “Likelihood” input) and the likelihood of it 
impacting a risk target (termed “Consequence” by the 
authors). It did not attempt to quantify the degree of 

Norris and Moore: How Tree Risk Assessment Methods Work

Figure 19. Private 3 @Risk regression sensitivity.

Figure 20. Private 3 @Risk Monte Carlo distribution.

Figure 21. QTRA @Risk regression sensitivity.

Figure 22. QTRA @Risk Monte Carlo distribution.
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As with the full QTRA version, the likelihood and 
consequences categories changed depending on the 
risk target. For people and vehicles, the method more 
strongly weighted likelihood (49%) over conse-
quences (25%); whereas when assessing for struc-
tures, the method reversed the weightings. The 
distribution curve generated from the Monte Carlo 
simulation showed an extreme logarithmic curve 
(Figure 24); with output values based in the 10-9 scale 
(billions). The Monte Carlo mean value was 2.5 × 
10-9. This extreme value occurred because the wheel 
generated values from 1:1 to 3 × 10-12 using two 
5-scaled ranges and one 6-scaled range; and these 
were expressed over a 150-point range. Due to scal-
ing and limited categories, the QTRA W produced 
different outputs to the full version of QTRA, and 
users should be aware of the differences between the 
two approaches.

Threats (Forbes-Laird 2006) 
Threats was a qualitative method with 3 assessment 
categories, “Likelihood of Failure,” “Target Score,” 
and “Impact Score.” Threats used differing ranks and 
scale ranges for each input, hence the significantly 
differing effects of the various inputs. The 1 rank 
change showed the large variation within each input 
category and between the 3 inputs, with a 1 rank 
increase in the “Likelihood of Failure” category mod-
ifying the output value by 525%. The @Risk Monte 
Carlo simulation and subsequent regression produced 
an R2 of 0.53, hence correlations coefficients are 
reported. Figure 25 confirmed that the “Likelihood of 
Failure” input category had the greatest influence on 
the outputs but was the input with the greatest uncer-
tainty. The “Likelihood of Failure” category accounted 
for some 51% of the variation, whilst “Target Score” 
and “Impact Score” accounted for 20% and 3%, 
respectively.

Combining the various inputs into consequences 
and likelihood indicated a significant favouring of 
inputs that affect likelihood over consequences, due 
to the strong influence of the “Likelihood of Failure” 
category, with likelihood accounting for some 72% of 
the variation in the method and consequences a mere 
3%. The Monte Carlo distribution showed that the 
method produced many more values at the lower end 
of the risk scale (Figure 26). However, whilst the 
Threats risk output scale ranges from 0 to 20,000, the 
maximum risk level was reached at an output of 4000. 
Based on this simulation, Threats would produce 

depending on the risk target. For people and vehicles, 
the method more strongly weighted likelihood (49%) 
over consequences (25%), but when assessing struc-
tures it reversed the weightings. The distribution curve 
generated from the Monte Carlo simulation showed 
the logarithmic curve expected from the mathematics 
(Figure 22); the mean is 0.126, which equated to a 
risk value of 1:8, which was very high given the level 
of acceptable risk is deemed to be 1:10,000.

QTRA W Version (Ellison 2005a, 2005b) 
QTRA W was a simple tool for calculating quick 
in-field QTRA risk levels that could generate differ-
ent RoH values to the full QTRA assessment method. 
The most striking variation was that an increase of 1 
rank changed the output by 852% to 900%, whereas 
a reduction in 1 rank only changed the output by 72% 
to 81%. The QTRA W produced a low R2 value when 
regression was applied (R2 = 0.14), hence correlation 
coefficients were used; as shown in Figure 23, the 
various inputs differed in their influence on the output 
values, with “Target” influencing 45% of variation, 
“Probability of Failure” influencing 31%, and “Size 
of Part” influencing 21%.

Figure 23. QTRA W @Risk ranked correlation sensitivity.

Figure 24. QTRA W @Risk Monte Carlo distribution.
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Combining the inputs into 2 categories (conse-
quences and likelihood) resulted in TRE QT favour-
ing likelihood over consequences, with consequences 
accounting for 25% of the method’s variation and 
likelihood 49%. The Monte Carlo simulation distri-
bution was a logarithmic curve as expected (Figure 
28). The mean was 0.123, giving a risk value of 1:8, 
which is very high. The distribution was identical to 
that of QTRA.

TRE Qualitative (TRE QL)
TRE Qualitative was a simplified quantitative method 
designed for quick field application based on the 
same principles as TRE QT. A “user interface” was 
developed using the 3 categories of TRE QT, with 
five 7-value ranges, and making the assessment val-
ues summable by converting them to logarithmic 
scales. Risk scores from 3 to 300 were possible. 
These could be converted to probabilities. At risk 
scores of 200 to 300, risk was considered unaccept-
able; for risk scores 170 to 199, risk should be reduced 
if practicable; and risk scores below 170 were consid-
ered acceptable.

As TRE QL was based on log-converted values from 
the TRE QT method, both the 1 rank and regression 

69% of its output values below the defined risk level 
of “slight” (350) and 80% below the level of “moder-
ate” (1000); as shown in Figure 26, there were few 
values above 1000. The mean value was 1100, cate-
gorised as “significant” (range 1000 to 2000).

TRE Quantitative (TRE QT)
TRE Quantitative was a quantitative method aligned 
with the Australian Standard of Risk Management 
definition Risk = Likelihood × Consequences (AS/
NZS 4360:2004) and had 3 categories: “Probability 
of Failure” (Pf), “Probability of Impact” (Pi), and 
“Consequences” (Co). These categories were multi-
plied to create a risk score expressed as a probability, 
ratio, or financial value. Acceptable risk was divided 
into 2 categories: at risk scores above 1:10,000, risk 
was unacceptable, and for risk scores from 1:10,000 
to 1:100,000, risk should be reduced if practicable; 
risk scores > 1:100,000 were considered broadly 
acceptable. A probabilistic method with all inputs 
between 0 to 1 and multiplied together, TRE QT had 
a logical consistency, as a 25% change to any input 
changed the output by 25%, as confirmed by the 
regression sensitivity (Figure 27) where each input 
influenced the output by the same amount (25%).

Norris and Moore: How Tree Risk Assessment Methods Work

Figure 25. Threats @Risk correlation sensitivity. 

Figure 26. Threats @Risk Monte Carlo distribution.

Figure 27. TRE QT @Risk regression sensitivity.

Figure 28. TRE QT @Risk Monte Carlo distribution.
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input values in the “Probability of Failure” category, 
and hence the greater influence on the outputs. Each 
input influenced 20% of the output, except the “Prob-
ability of Failure” category that influenced some 39% 
of the variability in the method.

Combining the various inputs into 2 categories 
(consequences and likelihood) was not possible with 
this method because the “Other Risk Factors” cate-
gory allows an assessor to add up to 2 extra points for 
any reason. Hence, 3 categories are shown, as with 
the majority of methods; the likelihood elements had 
the strongest influence on this method, accounting for 
some 59% of the variation, whilst consequences 
accounted for 21%. The “Other Risk Factors” cate-
gory had a significant potential effect on the risk out-
put values. The distribution curve (Figure 32) was 
typical of a linear method; the mean of 7.5 was higher 
than a method using matched scaling. Nevertheless, 
as expected, the majority of this method’s output val-
ues were mid-range.

USDAFS 2 (Pokorny et al. 2003) 
USDAFS 2 used 2 categories, “Targets” and “Defects,” 
to create a “Hazard Rating.” The influences of the dif-
fering input ranges in this method were obvious in 

sensitivities (Figure 29) illustrated that each input 
variable influenced the output identically. The com-
bined consequences and likelihood values were simi-
lar to the TRE QT values; however, due to the linear 
rather than logarithmic nature of the method, the 
regression relationship was stronger, with the likeli-
hood elements providing 64% of the variation and 
consequences 32%. Figure 30 illustrated the expected 
distribution curve, which was typical of the shape 
expected for a strong linear model. The mean was 
154 (as expected from a normal distribution curve 
with a range of 0 to 300), indicating that given a full 
range of input values, this method generated values 
towards the mean.

USDAFS 1 (Pokorny et al. 2003) 
USDAFS 1 sums the values from 4 assessment crite-
ria, “Probability of Failure,” “Size of Part,” “Proba-
bility of Impact,” and “Other Risk Factors.” The 
output “Risk Rating” ranged from 3 to 12. No defini-
tions or quantification of the output score values were 
provided. The 1 rank change suggested a linear model, 
with 14% to the output from any 1 rank change; how-
ever, the regression chart (Figure 31) reflected the 
wider range and higher possible value of available 

Figure 29. TRE QL @Risk regression sensitivity.

Figure 30. TRE QL @Risk Monte Carlo distribution.

Figure 31. USDAFS 1 @Risk regression sensitivity.

Figure 32. USDAFS 1 @Risk Monte Carlo distribution.
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TRAQ (Dunster et al. 2017)
The TRAQ method used wholly verbal, ordinal assess-
ment criteria, and to allow analyses, scores were 
assigned to “Likelihood of Impact,” “Likelihood of 
Failure,” and “Consequences” (ranges 1 to 4). The 
assigned scores, however, work exactly as the words 
do in assigning a risk rating. A 1 rank change for 
“Likelihood of Impact” and “Likelihood of Failure” 
change the risk rating equally by 50%, but the same 
change for “Consequences” only changed the rating 
by 33% (Figure 35). Combining the various inputs 
into 2 categories (consequences and likelihood) 
resulted in TRAQ favouring the inputs that affect 
likelihood over consequences. Given that size of part 
was the only factor accounting for consequences, this 
outcome was logical. 

The Monte Carlo distribution suggested that this 
method would produce far more values at the lower 
end of the risk scale, with a mean value of 4.06 

both the 1 rank change and the regression (Figure 33). 
The limit of only 2 input categories and choice of 
only the values 1 or 2 for the “Targets” rating versus 
a range from 0 to 4 for the “Defects” category, plus 
the multiplication method employed to calculate the 
output values, produced large variability. A single 
rank change to the target value could make zero dif-
ference to the output or increase it by 100%. The 
regression indicated that “Defects” account for some 
77% of the variation in the method, whilst “Targets” 
account for 15%.

The limitations of the method became apparent 
when an attempt was made to combine the inputs into 
the 2 categories of consequences and likelihood. This 
method does not account for consequences in the 
inputs. The “Targets” category merely considered 
likelihood. Hence, the regression suggested that like-
lihood factors accounted for some 92% of the varia-
tion and consequences 0%. The distribution curve 
(Figure 34) reflected the somewhat different nature of 
this method, with the outputs 0 and 2 dominating 
(50% of the available frequencies), whilst it was not 
possible to create an output value of 5. The mean pre-
dicted value was 2.26.

Norris and Moore: How Tree Risk Assessment Methods Work

Figure 33. USDAFS 2 @Risk regression sensitivity.

Figure 34. USDAFS 2 @Risk Monte Carlo distribution.

Figure 35. TRAQ @Risk regression sensitivity.

Figure 36. TRAQ @Risk Monte Carlo distribution.
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different methods, creating quite different risk ratings 
for the same scenario.

The output distributions created from the Monte 
Carlo simulation highlighted that significant differ-
ences existed between the tree risk assessments and 
indicated that different methods created dissimilar 
risk values due to the differing input ranges, scales, 
and methods of mathematically combining the inputs. 
Modelled distributions were used to indicate how a 
method was likely to operate in the real world and 
where various strengths and weaknesses existed. For 
simple, linear methods with constant scaling and 
ranges for each of the input categories, such as 
MandC, Private 2, and TRE QL, the regression model 
proportionally identified the same changes to outputs 
and influence of variables. The full probabilistic 
methods, such as QTRA and TRE QT, displayed 
identical changes and percentage variation. Methods 
with differing inter- or intra-category ranges or scales 
yielded differing percentage variations from that of 
the 1 rank or 25% sensitivity analysis. This was gen-
erally due to the multivariate stepwise regression 
using the full range of available input values, which 
more accurately represented the overall performance 
of each method.

The Monte Carlo simulation produced theoretical 
or predicted distribution profiles and tended to be 
more conservative, because a uniform distribution 
was used for the modelling (all inputs were equally 
likely), whereas for most managed tree populations, 
the number of high-risk trees would be lower than 
low-risk trees. The Monte Carlo simulation identified 
that some methods tended to produce larger frequen-
cies of particular output values; few methods pro-
duced flat or even output distributions; and several 
methods, including TRAQ, could not produce a full 
range of the assigned output values (representing 
word combinations) due to the scales, ranges, and 
mathematics used. 

Ten methods had input categories with differing 
input values, ranges, or scaling. With these methods, 
the designers had apportioned differential weightings 
to each input category, so that each influenced the 
output differently. Some methods appeared to apply a 
disproportionate weighting to a single input variable. 
In Bartlett, the “Failure Potential/Defect Severity” 
category accounted for 80% of the method’s variance, 
whilst the USDAFS 2 “Defects” category accounted 
for 77% of the variance. In contrast, the Threats input 

(Figure 36). The distribution clearly shows the impact 
of the impossibility of obtaining risk ratings of 5, 7, 
10, 11, 13, 14, or 15 in the method. The Best Manage-
ment Guide that accompanies the TRAQ program 
presented and explained the various risk inputs and 
the meaning of the outputs well.

DISCUSSION
Sensitivity analyses demonstrated that most methods 
placed too great an emphasis on limited aspects of a 
risk assessment, and in most instances, tree risk assess-
ment methods strongly focus on the likelihood of fail-
ure or defect aspect of a risk assessment. This is not 
surprising, given that much of the literature focuses 
strongly on identification of tree defects, in many cases 
downplaying the importance or relevance of target 
usage and particularly consequences in the assessment 
of tree risk. Both methods of sensitivity analysis iden-
tified significant differences between the methods tri-
alled. Failure to understand the influence of inputs on 
the subsequent risk rating can make it easy to unfairly 
question the validity of a method. Some methods 
exhibited very large output changes with little move-
ment of an input, and in many cases this was different 
for each of a method’s input categories. This was due 
to different scaling and/or ranges used for the inputs 
and the combination mathematics. 

It was surprising to find that 2 methods did not 
measure consequences, therefore failing to measure 
risk as it is commonly defined. Most methods placed 
more emphasis on the likelihood inputs than those 
influencing consequences, having in most instances 2 
likelihood inputs but only 1 measure of consequences. 
What the ratio should be has not been defined, but in 
13 of the methods, likelihood outweighed conse-
quences by a factor of at least 2. If equal likelihood 
and consequences factor ratios were used, then both 
components would be reflected in the risk score, 
which would more accurately represent the real level 
of risk as it is defined. Having a better balance 
between likelihood and consequences in tree risk 
assessment would result in lower risk ratings in most 
cases, which would be more in line with the very low 
actual tree-related injury and death rates. The empha-
sis on likelihood and the associated higher risk rating 
is likely to result in unnecessary tree removals. Most 
tree risk assessment methods focus more on the tree 
than on the target and the real risk that the tree might 
pose to the target. Such weightings could result in 
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range from 1 to 16. Two methods had the possibility 
of producing a zero risk output, which raised the 
question as to whether it is possible to rate any tree
related risk as zero. Given the size, age, and context 
of trees that are subjected to risk assessment, it would 
seem probable that there is always some element of 
risk, no matter how small that risk might be, especially 
for trees growing in public spaces.

In analysing the sensitivity data, while each method 
was unique and different from the others, they could 
be placed into 3 broad groups (Table 7): 

• Group 1 methods produced a normal distribution 
with most values around the mean.

• Group 2 methods produced outputs at the lower 
end of the risk scale.

• Group 3 methods produced outputs evenly, if not 
continuously, across the risk scale (with Private 3 
producing outputs at the lower end of the risk 
scale as in Group 2).

This grouping shows that the method chosen to 
risk assess a tree can impact the score derived. For 
example, Group 2 methods will usually provide a 
lower risk rating, while Group 1 methods will tend to 
provide a score closer to the mean for the range of 
possible scores, and Group 3 methods provide scores 
evenly across their range. The variations identified 
between methods in both the ranked order and stan
dardised score approaches strongly aligned, suggest
ing that both approaches identified similar aspects of 
each method.

This research defined risk as a variant of R = Li × Co, 
and methods were assessed in relation to the formula. 
Using the data generated from the multivariate regres
sion analysis, the various inputs for each method 
were placed into the consequences or likelihood cate
gories. There is no reason that the weightings for like
lihood and consequences should be equal; and this 
did not apply in any instance (Figure 3). The closest 
to balanced methods were QTRA (Co:Li = 0.51), 
TRE QT (Co:Li = 0.51), and TRAQ (Co:Li = 0.66). 
Private 2 (Co:Li = 0.69) was mathematically the clos
est to balanced, but its “Other” category weakened 
the effect of other inputs. USDAFS 2 (Co:Li = 0.00), 
Private 3 (Co:Li = 0.00), Threats (Co:Li = 0.04), and 
QTRA W (Co:Li = 0.07) were very strongly weighted 
to the likelihood inputs. For 14 of the 16 methods, the 
weighting favoured likelihood over consequence 
inputs, and only HCC (Co:Li = 2.19) and Kenyon 
(Co:Li = 2.66) favoured consequences, with both 
using a “damage factor” as a final modifier. Some 

category “Impact Score” appeared to only influence 
the output by 3%, which raised questions as to the 
value of this input. The analysis showed that the 
QTRA W method applied different weightings to its 
inputs to the full QTRA method, with “Target” 
accounting for 45%, “Probability of Failure” account
ing for 31%, and “Size of Part” accounting for 21% 
of the variance, indicating that in many instances, dif
ferent risk ratings under the same circumstances 
would be produced, depending on the method (full or 
wheel) used. 

Whilst most tree risk assessment methods used 
similar input categories, the multivariate stepwise 
regression of the Monte Carlo simulation demon
strated that significant differences existed between 
methods because of scaling, range of input catego
ries, and the mathematics. With the exception of the 
full version of QTRA, TRE, and TRAQ, no method 
provided an explanation of its weighting, scaling, or 
mathematics. Risk assessors often assume that out
puts of methods provide a full range of possibilities 
and that all output scores are equally likely, but the 
analyses show this is not the case. Few of the method 
authors clearly discussed the reasons behind the 
range, weighting, and mathematics of their methods, 
but TRAQ and QTRA do it better than most. It 
seemed that few, if any, authors of the assessment 
methods had analysed the effects of the inputs on the 
subsequent measurement of risk. Fair and reasonable 
explanations may exist, but in failing to provide them, 
many methods lack transparency, which could leave 
them open to legal criticism or challenge. 

The Monte Carlo simulation permitted the cre
ation of probability distribution profiles. The purpose 
of the distribution profiles was to determine the range 
of values generated by the input ranges, scaling, and 
underlying mathematics, and the probable frequency 
of these output values, in order to represent these as a 
probability distribution curve. The distribution output 
charts presented in each method’s summary indicated 
that some methods tend to produce larger frequencies 
of particular output values, that few methods pro
duced flat or even output distributions, and that in 
some instances, methods could not produce a full 
range of output values. For instance, USDAFS 2 had 
a theoretical output range of 0 to 6; however, because 
of the mathematics used, this method cannot produce 
the output value 5, and generated the numbers 2 and 
0 at 2.5 times the frequency of other values. TRAQ 
could not generate 7 of the outputs in its assigned 
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foundation standard of what is considered to be accept-
able tree-related risk. It is important that users of tree 
risk assessment methods understand the relationship 
between consequence and likelihood, and the influ-
ence that range, weighting, scaling, and number of 
input variables have on distribution curves and output 
values.

In general it can be concluded:
Risk methods varied in how they measured risk 

and will give different results. The choice of tree risk 
assessment method will influence assessed risk lev-
els, so assessors should be aware of the influence that 
the method they use may have on risk ratings.

If it is accepted that risk is defined as R = Li × Co, 
then methods that better balance the 2 components, 
such as TRAQ and QTRA, better express the risk than 
methods which do not, such as USDAFS 2, QTRA W, 
or Threats.

Methods that do not balance likelihood and conse-
quence tend toward higher tree risk outputs, which 
could lead to unnecessary tree removals.

Methods that utilise a full range of risk ratings will 
be superior to those with gaps in the range of outputs, 
such as TRAQ, Bartlett, Private 1, Private 3, Threats, 
and USDAFS 2. Gaps are easily seen in the outputs 
of numeric methods, but they can occur in methods 
using ordinal outputs, as the assigning of numeric 
values for analysis revealed.

Methods where there is a clear, balanced, and log-
ical relationship between input and output values will 
be more defensible than those methods with inconsis-
tent inputs, ranges, and mathematics. MandC, QTRA, 
TRAQ, TRE QT, and TRE QL, with balanced rela-
tionships between input values, will be more defensi-
ble than other methods. Private 2 is similar to MandC 
upon which it is based. Private 3 has balanced inputs 
for likelihood, but does not consider consequences, 
and CTC, HCC, Private 1, and USDAFS 1 have most 
but not all of their inputs balanced.

inputs provided a significantly stronger influence on 
the output than other inputs. This is demonstrated by 
comparing the two versions of QTRA. QTRA equally 
weighted each input category (a probability between 
0 and 1), and so each input provided the same influ-
ence on the output value; but QTRA W weighted the 
3 input categories differently (Target = 45%, Size of 
Part = 21%, and Failure = 31%).

The tendency to more strongly favour likelihood 
inputs can be partly explained by the mathematics of 
most methods. Most methods use 3 inputs, 2 of which 
were typically a likelihood of failure and a probabil-
ity of impact, which are likelihood factors, but used 
only a single measure of consequence (typically size 
of part). Therefore, for simple, equally scaled sum-
mation methods, this resulted in a 2:1 ratio favouring 
likelihood over consequence. While multiplication 
complicated the process, the skewed weighting remains. 
Methods that had the reverse weighting typically 
have a “damage factor” modifier in the final equation. 
For QTRA, the weighting changed depending on 
what was being assessed.

CONCLUSION
Most of the tree risk assessment methods analysed 
would be suitable for managing large urban tree pop-
ulations, provided the user understands their strengths 
and weaknesses. The better methods have a balanced 
set of inputs that consider both likelihood and conse-
quence and produce a full and even range of output 
values. Whether they meet the criteria of complete-
ness, credibility, reliability, repeatability, robustness, 
and validity was not tested by the sensitivity analyses 
and so remains in question. However, methods that 
explain the meaning of inputs and outputs and which 
train users in their procedures are more likely to be 
reliable and repeatable. Furthermore, in arboriculture, 
widely recognised, acceptable risk levels do not exist, 
and so an industry-based approach should form the 

Table 7. Grouping of methods with similar characteristics. Group 1 methods produce a normal distribution with most values 
around the mean; group 2 methods produce outputs at the lower end of the risk scale; and group 3 methods produce outputs 
evenly across the risk scale.

 Risk assessment methods

Group 1 MandC Private 2 USDAFS 1 Tre QL    
Group 2 QTRA/QTRA W Private 1 Threats Tre QT Kenyon CTC HCC TRAQ
Group 3 Bartlett  Private 3 USDAFS 2
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process and express risk. Hence, it is not surprising 
that methods will perform differently in different cir-
cumstances and will express risk levels differently.
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Résumé. Seize méthodes d’évaluation des risques liés aux arbres 
ont été soumises à une analyse de sensibilité afin de déterminer 
les facteurs ayant le plus influencé le résultat de chaque méthode. 
Les analyses ont établi l’influence relative que les variables d’en-
trée exercent sur la valeur finale du risque. Un tableau Excel a été 
utilisé pour créer une simple variation de rang de ± 25% ou ± 1 
(selon la méthode) pour chaque critère, la variation de la sortie 
étant enregistrée en pourcentage. Le logiciel Palisade’s @Risk fut 
utilisé afin d’effectuer une simulation de type Monte Carlo (avec 
échantillonnage Hypercube latin) de 5000 itérations basées sur 
les variables d’entrée et la formule de sortie. À partir de la 
simulation, une régression graduelle multivariée fut entreprise afin 
de déterminer l’influence des variables d’entrée de chacune des 
méthodes dans l’établissement des valeurs de sortie. Les résultats 
de l’analyse de sensibilité montrèrent des différences nettes et 
marquées parmi les 16 méthodes,  reflétant le fait que les mathé-
matiques sous-jacentes, les catégories d’entrée, les écarts et l’échelle 
influencent la manière dont les différentes méthodes traitent et 
expriment le risque. Il n’est pas étonnant que les méthodes fonc-
tionnent différemment selon les circonstances et expriment ainsi 
différemment le niveau de risque.  Les analyses ont démontré que 
la plupart des méthodes mettaient trop l’accent sur des aspects 
limités de l’évaluation des risques. La plupart des méthodes sont 
fortement axées sur les aspects de l’évaluation liés aux dangers 
ou aux défauts et sur la probabilité de bris plutôt que sur l’aspect 
des conséquences d’une évaluation. Bien que les méthodes soient 
bien distinctes, il était possible de les regrouper en trois grandes 
catégories : les méthodes du Groupe 1 généraient une distribution 
normale avec la plupart des valeurs avoisinant la moyenne; les 
méthodes du Groupe 2 ont produit des résultats situés dans la par-
tie basse de l’échelle des risques;  et les méthodes du Groupe 3 ont 
généré des résultats répartis de manière uniforme, voire continue, 
sur l’échelle des risques. Les utilisateurs de l’évaluation des risques 
liés aux arbres doivent comprendre les forces et les faiblesses de 
toute méthode utilisée, car il pourrait être relativement facile de 
contester les résultats d’une évaluation des risques en se fondant 
sur les limitations inhérentes à la méthodologie sous-jacente.

Zusammenfassung. Sechzehn Methoden zur Risikobewer-
tung von Bäumen wurden einer Sensitivitätsanalyse unterzogen, 
um festzustellen, welche Faktoren die Ergebnisse der einzelnen 
Methoden am stärksten beeinflussten. Die Analysen zeigen den 
relativen Einfluss, den die Eingangsvariablen auf den endgültigen 
Risikowert ausüben. Mit Hilfe von Excel wurde eine einfache 
Rangänderung von ± 25% oder ± 1 (je nach Methode) für jedes 
Kriterium erstellt, wobei die Änderung des Ausgangs als Prozentsatz 
erfasst wurde. Die @Risk-Software von Palisade wurde verwen-
det, um eine Monte-Carlo-Simulation (mit Latin-Hypercube -
Stichprobenziehung, LHS) von 5000 Iterationen auf der 
Grundlage der Eingabevariablen und der Ausgabeformel 
durchzuführen. Anhand der Simulation wurde eine multivariate 
schrittweise Regression durchgeführt, um den Einfluss der Eing-
abevariablen jeder Methode auf die Bestimmung der Ausgabew-
erte zu bestimmen. Die Ergebnisse der Sensitivitätsanalyse 
weisen auf einige klare und starke Unterschiede zwischen den 16 
Methoden hin, was darauf hinweist, dass die zugrunde liegende 
Mathematik, die Eingangskategorien, die Messbereiche und die 
Skalierung die Art und Weise beeinflussen, wie die verschie-
denen Methoden das Risiko verarbeiten und ausdrücken. Es ist 
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nicht überraschend, dass die Methoden unter verschiedenen 
Umständen unterschiedlich arbeiten und das Risikoniveau unter-
schiedlich ausdrücken. Die Analysen zeigten, dass die meisten 
Methoden einen zu großen Schwerpunkt auf begrenzte Aspekte 
der Risikobewertung legen. Die meisten Methoden konzentrier-
ten sich stark auf die Gefahren- oder Fehleraspekte der Bewer-
tung und die Wahrscheinlichkeit eines Fehlschlags und weniger 
auf den Aspekt der Folgen einer Bewertung. Die Methoden unter-
schieden sich zwar in einzigartiger Weise, konnten aber in drei 
große Gruppen eingeteilt werden: Methoden der Gruppe 1 erga-
ben eine Normalverteilung mit den meisten Werten um den Mit-
telwert; Methoden der Gruppe 2 erbrachten Ergebnisse am 
unteren Ende der Risikoskala; und Methoden der Gruppe 3 
erbrachten Ergebnisse, die gleichmäßig, wenn auch nicht kon-
tinuierlich über die gesamte Risikoskala verteilt waren. Benutzer 
von Baum-Risikobewertungen sollten die Stärken und 
Schwächen jeder verwendeten Methode verstehen, da es relativ 
einfach sein könnte, die Ergebnisse einer Risikobewertung aufgr-
und der der zugrundeliegenden Methode eigenen Einschränkun-
gen in Frage zu stellen.

Resumen. Se sometieron dieciséis métodos de evaluación del 
riesgo de árboles a análisis de sensibilidad para determinar cuáles 
factores influyen más en cada método. Los análisis indican la 
influencia relativa que las variables de entrada ejercen sobre el 
valor final de riesgo. Se utilizó Excel para crear un cambio de 
rango simple de 25% o 1 (dependiendo del método) para cada cri-
terio; con el cambio en la salida registrado como un porcentaje. El 
software @Risk de Palisade se utilizó para llevar a cabo una sim-
ulación de Monte Carlo (con muestreo de Latin Hypercube) de 
5000 iteraciones basadas en las variables de entrada y la fórmula 
de salida. A partir de la simulación, se llevó a cabo una regresión 
escalonada multivariante para determinar la influencia de las 
variables de entrada de cada método en la determinación de los 
valores de salida. Los resultados del análisis de sensibilidad indi-
can algunas diferencias claras y fuertes entre los 16 métodos, lo 
que refleja que las matemáticas subyacentes, las categorías de 
entrada, los rangos y la escala influyen en la forma en que los dif-
erentes métodos procesan y expresan el riesgo. No es de extrañar 
que los métodos funcionen de manera diferente en diferentes cir-
cunstancias y expresen un nivel de riesgo diferente. Los análisis 
demostraron que la mayoría de los métodos ponen demasiado 
énfasis en aspectos limitados de la evaluación del riesgo. La may-
oría de los métodos se centraron fuertemente en los aspectos de 
daños o defectos de la evaluación y la probabilidad de falla en 
lugar del aspecto de consecuencia de una evaluación.  Si bien los 
métodos eran únicos, podían colocarse en 3 grupos amplios: los 
métodos del Grupo 1 producían una distribución normal con la 
mayoría de los valores alrededor de la media; los métodos del 
Grupo 2 dieron resultados en el extremo inferior de la escala de 
riesgo; y los métodos del Grupo 3 produjeron salidas uniformes si 
no continuamente a través de la escala de riesgo. Los usuarios de 
la evaluación del riesgo de los árboles deben comprender las for-
talezas y debilidades de cualquier método utilizado, ya que podría 
ser relativamente sencillo cuestionar los resultados de una evalu-
ación del riesgo basada en limitaciones inherentes a la metod-
ología subyacente.
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