Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees

Eugenio Ferretti, Ana Luísa Soares, Leónia Nunes, Inês Marques Duarte and Susana Dias
Arboriculture & Urban Forestry (AUF) May 2025, jauf.2025.013; DOI: https://doi.org/10.48044/jauf.2025.013
Eugenio Ferretti
Dipartimento di Architettura (DIDA), Università degli Studi di Firenze UNIFI, Italy, Centre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
  • Find this author on Google Scholar
  • Search for this author on this site
Ana Luísa Soares
Centre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
  • Find this author on Google Scholar
  • Search for this author on this site
Leónia Nunes
Centre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
  • Find this author on Google Scholar
  • Search for this author on this site
Inês Marques Duarte
Centre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
  • Find this author on Google Scholar
  • Search for this author on this site
Susana Dias
Centre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Alberti M,
    2. Marzluff JM,
    3. Shulenberger E,
    4. Bradley G,
    5. Ryan C,
    6. Zumbrunnen C.
    2003. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience. 53(12):1169–1179. https://doi.org/10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Alcoforado MJ,
    2. Lopes A,
    3. Andrade H,
    4. Vasconcelos J.
    2005. Orientações climáticas para o ordenamento em Lisboa. Lisbon (Portugal): Centre for Geographical Studies of the University of Lisbon. 82 p.
  3. ↵
    1. Amini Parsa V,
    2. Salehi E,
    3. Yavari A.
    2020. Improving the provision of ecosystem services from urban forest by integrating the species’ potential environmental functions in tree selecting process. Landscape and Ecological Engineering. 16:23–37. https://doi.org/10.1007/s11355-019-00401-x
    OpenUrl
  4. ↵
    1. Amini Parsa V,
    2. Salehi E,
    3. Yavari AR,
    4. van Bodegom PM.
    2019. Analyzing temporal changes in urban forest structure and the effect on air quality improvement. Sustainable Cities and Society. 48:101548. https://doi.org/10.1016/j.scs.2019.101548
    OpenUrl
  5. ↵
    Assembleia da República. 2012. Lei no 53/2012, de 5 de setembro. Official Gazette No. 172/2012, Series 1 of 2012-09-05. p. 5124–5126. https://diariodarepublica.pt/dr/detalhe/lei/53-2012-174836
  6. ↵
    Assembleia da República. 2021. Lei no 59/2021, de 18 de agosto. Official Gazette No. 160/2021, Series 1 of 2021-08-18. p. 12–22. https://diariodarepublica.pt/dr/detalhe/lei/59-2021-169780050
  7. ↵
    1. Barron S,
    2. Dunster K,
    3. Williams NSG,
    4. Rugel E,
    5. Kozak R,
    6. Sheppard S.
    2023. A scenario process for urban forest design at the neighbourhood level. Futures. 150:103172. https://doi.org/10.1016/j.futures.2023.103172
    OpenUrlCrossRef
  8. ↵
    1. Bassuk N,
    2. Whitlow T.
    1988. Environmental stress in street trees. Arboricultural Journal. 12(2):195–201. https://doi.org/10.1080/03071375.1988.9746788
    OpenUrl
  9. ↵
    1. Bennett EM,
    2. Cramer W,
    3. Begossi A,
    4. Cundill G,
    5. Díaz S,
    6. Egoh BN,
    7. Geijzendorffer IR,
    8. Krug CB,
    9. Lavorel S,
    10. Lazos E,
    11. Lebel L,
    12. Martín-López B,
    13. Meyfroidt P,
    14. Mooney HA,
    15. Nel JL,
    16. Pascual U,
    17. Payet K,
    18. Harguindeguy NP,
    19. Peterson GD,
    20. Prieur-Richard AH,
    21. Reyers B,
    22. Roebeling P,
    23. Seppelt R,
    24. Solan M,
    25. Tschakert P,
    26. Tscharntke T,
    27. Turner BL II,
    28. Verburg PH,
    29. Viglizzo EF,
    30. White PCL,
    31. Woodward G.
    2015. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability. 14:76–85. https://doi.org/10.1016/j.cosust.2015.03.007
    OpenUrlCrossRef
  10. ↵
    1. Berland A,
    2. Shiflett SA,
    3. Shuster WD,
    4. Garmestani AS,
    5. Goddard HC,
    6. Herrmann DL,
    7. Hopton ME.
    2017. The role of trees in urban stormwater management. Landscape and Urban Planning. 162:167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017
    OpenUrl
  11. ↵
    1. Bodnaruk EW,
    2. Kroll CN,
    3. Yang Y,
    4. Hirabayashi S,
    5. Nowak DJ,
    6. Endreny TA.
    2017. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landscape and Urban Planning. 157:457–467. https://doi.org/10.1016/j.landurbplan.2016.08.016
    OpenUrl
  12. ↵
    1. Burkhard B,
    2. Maes J
    , editors. 2017. Mapping ecosystem services. Sofia (Bulgaria): Pensoft Publishers. 374 p.
  13. ↵
    1. Cabral FC.
    2003. Fundamentos da Arquitectura Paisagista. 2nd Ed. Lisbon (Portugal): Instituto da Conservação da Natureza. 220 p.
  14. ↵
    Câmara Municipal de Lisboa. 2017. Estratégia municipal de adaptação às alterações climáticas de Lisboa. EMAAC. 243 p. https://www.lisboa.pt/fileadmin/cidade_temas/ambiente/qualidade_ambiental/EMMAC/EMAAC_2017.pdf
  15. ↵
    1. Clark JR,
    2. Matheny NP,
    3. Cross G,
    4. Wake V.
    1997. A model of urban forest sustainability. Journal of Arboriculture. 23(1): 17–30. https://doi.org/10.48044/jauf.1997.003
    OpenUrl
  16. ↵
    1. Collins JP,
    2. Kinzig A,
    3. Grimm N,
    4. Fagan W,
    5. Hope D,
    6. Wu J,
    7. Borer E.
    2003. A new urban ecology: Modeling human communities as integral parts of ecosystems poses special problems for the development and testing of ecological theory. American Scientist. 88(5):416–425. https://doi.org/10.1511/2000.35.416
    OpenUrl
  17. ↵
    1. Cunha AR,
    2. Soares AL,
    3. Dias S,
    4. Duarte I,
    5. Nunes L,
    6. Gaião D,
    7. Brilhante M,
    8. Vasconcelos T,
    9. Forte P,
    10. Romeiras MM,
    11. Rego FC.
    2022. Árvores em Números: O património arbóreo da cidade de Lisboa. In: Pinto MA, Silva ME, Azevedo JC, Sequeira M, Ribeiro N, Fernandes P, Mateus P, Dias S, editors. Livro de resumos do 9o Congresso Florestal Nacional. 9th National Forestry Congress; 2022 October 10–14; Funchal, Madeira, Portugal. Lisbon (Portugal): ISAPress. p. 103. https://www.isa.ulisboa.pt/ceabn/uploads/docs/projectos/lxtree/Cunha_et_al_2022_Proceedings_-_9_Congresso_Florestal_Nacional_2022.pdf
  18. ↵
    1. de Castro Neto M,
    2. Sarmento P.
    2019. Assessing Lisbon trees’ carbon storage quantity, density, and value using open data and allometric equations. Information. 10(4):133. https://doi.org/10.3390/info10040133
    OpenUrl
  19. ↵
    1. Dias D.
    2022. Lisboa: Choveu num dia quase tanto como o que costuma chover em Dezembro inteiro. PÚBLICO. https://www.publico.pt/2022/12/14/azul/foto-legenda/lisboa-choveu-dia-quase-tanto-costuma-chover-dezembro-inteiro-2031400
  20. ↵
    1. Dias S,
    2. Soares AL,
    3. Nunes L,
    4. Duarte IM,
    5. Gaião D,
    6. Rego FC.
    2022. As árvores de arruamento ao serviço do ecossistema urbano. Lisbon (Portugal): CEABN-ISA. https://www.isa.ulisboa.pt/ceabn/uploads/docs/projectos/lxtree/Jornadas_Cientificas-LXTREE__SDias_CEABN_ISA.pdf
  21. ↵
    1. Donovan GH.
    2017. Including public-health benefits of trees in urban-forestry decision making. Urban Forestry & Urban Greening. 22:120–123. https://doi.org/10.1016/j.ufug.2017.02.010
    OpenUrl
  22. ↵
    1. dos Santos HP.
    2010. Do tempo e da paisagem: Manual para leitura de paisagens. 1st Ed. Cascais (Portugal): Princípia. 85 p.
  23. ↵
    1. Escobedo FJ,
    2. Kroeger T,
    3. Wagner JE.
    2011. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution. 159(8-9):2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010
    OpenUrlCrossRefPubMedWeb of Science
  24. ↵
    1. Ferretti E.
    2023. Data tree contribution to urban forest planning—Composition and ecosystem services forecast, for Lisbon case studies [masters thesis]. Lisbon (Portugal): Instituto Superior de Agronomia, Universidade de Lisboa.
  25. ↵
    Gestor Geodados. 2018. Corredor verde [dataset]. Lisbon (Portugal): Câmara Municipal de Lisboa. [Updated 2025 February 14]. https://geodados-cml.hub.arcgis.com/datasets/CML::corredor-verde/explore
  26. ↵
    1. Graça M,
    2. Alves P,
    3. Gonçalves J,
    4. Nowak DJ,
    5. Hoehn R,
    6. Farinha-Marques P,
    7. Cunha M.
    2018. Assessing how green space types affect ecosystem services delivery in Porto, Portugal. Landscape and Urban Planning. 170:195–208. https://doi.org/10.1016/j.landurbplan.2017.10.007
    OpenUrl
  27. ↵
    1. Konijnendijk C,
    2. Devkota D,
    3. Mansourian S,
    4. Wildburger C
    , editors. 2023. Forests and trees for human health: Pathways, impacts, challenges and response options. World Series Vol. 41. Vienna (Austria): IUFRO. 232 p.
    OpenUrl
  28. ↵
    1. Kroll L.
    2001. Ecologie urbane. Cavallari L, editor. 1st Ed. Milan (Italy): FrancoAngeli. 144 p.
  29. ↵
    1. Le Roux DS,
    2. Ikin K,
    3. Lindenmayer DB,
    4. Manning AD,
    5. Gibbons P.
    2014. The future of large old trees in urban landscapes. PLoS ONE. 9(6):e99403. https://doi.org/10.1371/journal.pone.0099403
    OpenUrlCrossRefPubMed
  30. ↵
    1. McPherson EG.
    2010. Selecting reference cities for i-Tree streets. Arboriculture & Urban Forestry. 36(5):230–240. https://doi.org/10.48044/jauf.2010.031
    OpenUrl
  31. ↵
    1. McPherson EG,
    2. Nowak D,
    3. Heisler G,
    4. Grimmond S,
    5. Souch C,
    6. Grant R,
    7. Rowntree R.
    1997. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban Ecosystems. 1:49–61. https://doi.org/10.1023/A:1014350822458
    OpenUrlCrossRef
  32. ↵
    Metropolitano de Lisboa. 2022. Linha vermelha. https://projetos.metrolisboa.pt/expansao/linha-vermelha
  33. ↵
    1. Metta A.
    2022. Il paesaggio è un mostro: Città selvatiche e nature ibride. Rome (Italy): DeriveApprodi. 224 p.
  34. ↵
    1. Nowak DJ.
    2008. Species selector application: Tools for assessing and managing community forests. Syracuse (NY, USA): i-Tree, USDA Forest Service. 55 p. https://www.itreetools.org/documents/407/SpeciesSelectorMethod.pdf
  35. ↵
    1. Nowak DJ,
    2. Crane DE.
    2000. The Urban Forest Effects (UFORE) model: Quantifying urban forest structure and functions. In: Hansen M, Burk T, editors. Integrated tools for natural resources inventories in the 21st century. St. Paul (MN, USA): USDA Forest Service, North Central Forest Experiment Station. General Technical Report NC-212. p. 714–720. https://research.fs.usda.gov/treesearch/18420
  36. ↵
    1. Nowak DJ,
    2. Crane DE.
    2002. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution. 116(3): 381–389. https://doi.org/10.1016/S0269-7491(01)00214-7
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Nowak DJ,
    2. Crane DE,
    3. Stevens JC.
    2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening. 4(3-4):115–123. https://doi.org/10.1016/j.ufug.2006.01.007
    OpenUrl
  38. ↵
    1. Nowak DJ,
    2. Crane DE,
    3. Stevens JC,
    4. Hoehn RE,
    5. Walton JT,
    6. Bond J.
    2008. A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture & Urban Forestry. 34(6):347–358. https://doi.org/10.48044/jauf.2008.048
    OpenUrl
  39. ↵
    1. Odum EP,
    2. Barrett GW.
    2005. Fundamentals of ecology. 5th Ed. Boston (MA, USA): Thomson Brooks/Cole. 598 p.
  40. ↵
    1. Peterson GD,
    2. Cumming GS,
    3. Carpenter SR.
    2003. Scenario planning: A tool for conservation in an uncertain world. Conservation Biology. 17(2):358–366. https://doi.org/10.1046/j.1523-1739.2003.01491.x
    OpenUrlCrossRefWeb of Science
  41. ↵
    1. Pino J,
    2. Florido F,
    3. O’Driscoll C,
    4. Doimo I,
    5. Konijnendijk C.
    2022. EU Innovation Blueprint: Analysing factors influencing innovation within Urban Forestry. Erasmus+ project Uforest Deliverable 3.3: EU Urban Forestry Blueprint. 77 p. https://www.uforest.eu/wp-content/uploads/2022/08/Uforest_report-3.3.pdf
  42. ↵
    1. Ramos AP,
    2. Maia F,
    3. Ferreira B,
    4. Valada T,
    5. Soares P,
    6. Caetano MF,
    7. Fabião A.
    2017. Risk assessment of Celtis australis affected by Inonotus rickii in Lisbon town. Acta Horticulturae. 1189:411–414. https://doi.org/10.17660/ActaHortic.2017.1189.79
    OpenUrl
  43. ↵
    1. Salbitano F,
    2. Borelli S,
    3. Conigliaro M,
    4. Chen Y.
    2016. Guidelines on urban and peri-urban forestry. Rome (Italy): Food and Agriculture Organization of the United Nations. FAO Forestry Paper. 172 p.
  44. ↵
    1. Sharifi A,
    2. Khavarian-Garmsir AR.
    2020. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Science of the Total Environment. 749:142391. https://doi.org/10.1016/j.scitotenv.2020.142391
    OpenUrlPubMed
  45. ↵
    1. Sijmons DF,
    2. Feddes Y,
    3. Luiten E,
    4. Feddes F,
    5. Nolden M.
    2017. Room for the river: Safe and attractive landscapes. Ede (Netherlands): Blauwdruk. 320 p.
  46. ↵
    1. Soares AL
    , editor. 2021. O arvoredo, os jardins e parques públicos de Lisboa (1755–1965), trê séculos de um património botânico, paisagístico e cultural. Lisbon (Portugal): Câmara Municipal de Lisboa.
  47. ↵
    1. Soares AL,
    2. Nunes L,
    3. Duarte I,
    4. Gaião D,
    5. Rego FC,
    6. Dias S.
    2022. Serviços dos ecossistemas das árvores de arruamento da cidade de Lisboa: Relatório técnico. Lisbon (Portugal): Centro de Ecologia Aplicada “Prof. Baeta Neves” (CEABN-InBIO) Instituto Superior de Agronomia, Universidade de Lisboa (ULisboa). 127 p. https://www.isa.ulisboa.pt/ceabn/uploads/docs/projectos/lxtree/Lx-Tree_RELATORIO_SERVICOS_ECOSSISTEMA_CEABN_ISA_NOV2022.pdf
  48. ↵
    1. Soares AL,
    2. Rego FC,
    3. McPherson EG,
    4. Simpson JR,
    5. Peper PJ,
    6. Xiao Q.
    2011. Benefits and costs of street trees in Lisbon, Portugal. Urban Forestry & Urban Greening. 10(2):69–78. https://doi.org/10.1016/j.ufug.2010.12.001
    OpenUrl
  49. ↵
    1. Telles GR.
    1992. A paisagem global da Região de Lisboa. Agros. Revista Da Associação de Estudantes Do Instituto Superior de Agronomia. A. 75(2):5–9.
    OpenUrl
  50. ↵
    1. Telles GR.
    1997. Plano verde de Lisboa. Famões (Odivelas, Portugal): Edições Colibri. 197 p.
  51. ↵
    1. Turner-Skoff JB,
    2. Cavender N.
    2019. The benefits of trees for livable and sustainable communities. Plants, People, Planet. 1(4):323–335. https://doi.org/10.1002/ppp3.39
    OpenUrl
  52. ↵
    United Nations. 2017. New urban agenda. Habitat III. United Nations Conference on Housing and Sustainable Urban Development; 2016 October 17–20; Nairobi, Kenya. 66 p. https://www.habitat3.org/wp-content/uploads/NUA-English.pdf
  53. ↵
    United Nations Economic Commission for Europe. 2022. Sustainable urban and peri-urban forestry: An integrative and inclusive nature-based solution for green recovery and sustainable, healthy and resilient cities. In: Eightieth session of the ECE Committee on Forests and the Forest Industry; 2022 November 2–4; Geneva, Switzerland. Bern (Switzerland): Federal Office for the Environment of the Government of Switzerland. 27 p. https://unece.org/forestry-timber/documents/2022/08/working-documents/sustainable-urban-and-peri-urban-forestry
  54. ↵
    USDA. 2023. i-Tree Eco v6 [computer software]. https://www.itreetools.org/tools/i-tree-eco
  55. ↵
    1. Zar JH.
    2009. Biostatistical analysis. 5th Ed. Hoboken (NJ, USA): Prentice Hall. 960 p.
Previous
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (3)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 3
May 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
Eugenio Ferretti, Ana Luísa Soares, Leónia Nunes, Inês Marques Duarte, Susana Dias
Arboriculture & Urban Forestry (AUF) May 2025, jauf.2025.013; DOI: 10.48044/jauf.2025.013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
Eugenio Ferretti, Ana Luísa Soares, Leónia Nunes, Inês Marques Duarte, Susana Dias
Arboriculture & Urban Forestry (AUF) May 2025, jauf.2025.013; DOI: 10.48044/jauf.2025.013
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Acknowledgements
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Energy Potential of Urban Tree Pruning Waste
Show more Articles

Similar Articles

Keywords

  • Environmental Benefits
  • Tree Biodiversity
  • Tree Health Management
  • Urban Forestry
  • Urban Green Spaces

© 2025 International Society of Arboriculture

Powered by HighWire