Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Linking Urban Greening and Community Engagement with Heat-Related Health Outcomes: A Scoping Review of the Literature

Olivia J. Keenan, Aalayna Rae Green, Alexander R. Young, Daniel S.W. Katz, Qi Li, Wenna Xi, David L. Miller, Chris Williams, Emily Nobel Maxwell, Glenn L. McMillan, Sr., Julia Gohlke, Nathan Ashe, Sarah Wozniak, Michelle R. Demetres, Laila Gad and Arnab K. Ghosh
Arboriculture & Urban Forestry (AUF) July 2025, 51 (4) 379-415; DOI: https://doi.org/10.48044/jauf.2025.017
Olivia J. Keenan
Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, 420 E 70th St, New York, NY, USA
BA
  • Find this author on Google Scholar
  • Search for this author on this site
Aalayna Rae Green
Department of Natural Resources and the Environment, Cornell University, 111 Fernow Hall, Ithaca, NY, USA,
BS
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Alexander R. Young
Earth Systems Research Center, University of New Hampshire, 8 College Road, Durham, NH, USA,
MS
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Daniel S.W. Katz
School of Integrative Plant Science, Cornell University, 306 Tower Rd., Ithaca, NY, USA,
PhD
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Qi Li
Cornell Engineering, Cornell University, 313 Campus Rd, Ithaca, NY, USA,
PhD, MS
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Wenna Xi
Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, 402 E 67th St, New York, NY, USA,
PhD, MS
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
David L. Miller
School of Integrative Plant Science, Cornell University, 306 Tower Rd, Ithaca, NY, USA,
PhD
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Chris Williams
Greater Zion Hill Baptist Church, 2365 Frederick Douglass Blvd, New York, NY, USA,
D.Min, MA
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Emily Nobel Maxwell
P.O. Box 302, Jay, NY, USA,
MS
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Glenn L. McMillan Sr.
Columbia University Center for Community Health, 610 W 130th St, New York, NY, USA,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Julia Gohlke
Environmental Defense Fund, 1875 Connecticut Ave NW Ste 600, Washington, DC, USA, Department of Population Health Sciences, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA, USA,
PhD
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Nathan Ashe
Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA,
PhD
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Sarah Wozniak
Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA, [email protected]
MPH
  • Find this author on Google Scholar
  • Search for this author on this site
Michelle R. Demetres
Samuel J. Wood Library and C.V. Starr Biomedical, Information Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, USA,
MLIS
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Laila Gad
Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, 420 E 70th St, New York, NY, USA,
BA
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Arnab K. Ghosh
Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, 420 E 70th St, New York, NY, USA,
MD, MSc, MA
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Amorim-Maia AT,
    2. Anguelovski I,
    3. Chu E,
    4. Connolly J.
    2022. Intersectional climate justice: A conceptual pathway for bridging adaptation planning, transformative action, and social equity. Urban Climate. 41:101053. https://doi.org/10.1016/j.uclim.2021.101053
    OpenUrl
  2. ↵
    1. Anguelovski I,
    2. Connolly JJT,
    3. Cole H,
    4. Garcia-Lamarca M,
    5. Triguero-Mas M,
    6. Baró F,
    7. Martin N,
    8. Conesa D,
    9. Shokry G,
    10. del Pulgar CP,
    11. Ramos LA,
    12. Matheney A,
    13. Gallez E,
    14. Oscilowicz E,
    15. Máñez JL,
    16. Sarzo B,
    17. Beltrán MA,
    18. Minaya JM.
    2022. Green gentrification in European and North American cities. Nature Communications. 13:3816. https://doi.org/10.1038/s41467-022-31572-1
    OpenUrlPubMed
    1. Arifwidodo SD,
    2. Chandrasiri O.
    2020. Urban heat stress and human health in Bangkok, Thailand. Environmental Research. 185:109398. https://doi.org/10.1016/j.envres.2020.109398
    OpenUrl
  3. ↵
    1. Bai L, Cirendunzhu, Pengcuociren, Dawa,
    2. Woodward W,
    3. Liu X, Baimaciwang, Dazhen,
    4. Sang S,
    5. Wan F,
    6. Zhou L,
    7. Xu J,
    8. Li X,
    9. Wu H,
    10. Yu B, Xiraoruodeng,
    11. Liu Q.
    2013. Rapid warming in Tibet, China: Public perception, response and coping resources in urban Lhasa. Environmental Health. 12:71. https://doi.org/10.1186/1476-069X-12-71
    OpenUrlPubMed
  4. ↵
    1. Barbuti A.
    2023. Residents baffled as trees found planted in middle of sidewalks all over Queens: ‘Holy crap, it’s real’. New York Post. [Published 2023 December 30; Accessed 2024 January 4]. https://nypost.com/2023/12/30/metro/residents-baffled-after-trees-put-in-middle-of-nyc-sidewalk
  5. ↵
    1. Berland A,
    2. Shiflett SA,
    3. Shuster WD,
    4. Garmestani AS,
    5. Goddard HC,
    6. Herrmann DL,
    7. Hopton ME.
    2017. The role of trees in urban stormwater management. Landscape and Urban Planning. 162:167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017
    OpenUrl
  6. ↵
    1. Bhandari R.
    2023. Building social cohesion through urban design: The efficacy of public space design to promote place attachment and social connections among culturally diverse users within urban parks [PhD dissertation]. Raleigh (NC, USA): North Carolina State University. 208 p. https://www.lib.ncsu.edu/resolver/1840.20/41290
    1. Callejas IJA,
    2. Krüger E.
    2022. Microclimate and thermal perception in courtyards located in a tropical savannah climate. International Journal of Biometeorology. 66:1877–1890. https://doi.org/10.1007/s00484-022-02329-8
    OpenUrlPubMed
  7. ↵
    1. Cannon CEB.
    2020. Towards convergence: How to do transdisciplinary environmental health disparities research. International Journal of Environmental Research and Public Health. 17(7):2303. https://doi.org/10.3390/ijerphT7072303
    OpenUrl
  8. ↵
    1. Chelak K,
    2. Chakole S.
    2023. The role of social determinants of health in promoting health equality: A narrative review. Cureus. 15(1):e33425. https://doi.org/10.7759/cureus.33425
    OpenUrl
  9. ↵
    1. Chersich MF,
    2. Pham MD,
    3. Area A,
    4. Haghighi MM,
    5. Manyuchi A,
    6. Swift CP,
    7. Wernecke B,
    8. Robinson M,
    9. Hetem R,
    10. Boeckmann M,
    11. Hajat S.
    2020. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: Systematic review and meta-analysis. BMJ. 371:m3811. https://doi.org/10.1136/bmj.m3811
    OpenUrlAbstract/FREE Full Text
  10. ↵
    City of Chicago. 2009. Chicago’s urban forest agenda. Chicago (IL, USA): City of Chicago. 26 p. https://www.chicago.gov/content/dam/city/depts/doe/general/NaturalResourcesAndWaterConservation_PDFs/UrbanForestAgenda/ChicagosUrbanForestAgenda2009.pdf
  11. ↵
    City of Syracuse. 2020. Urban forest master plan. For: Forestry Department City of Syracuse, NY Kent (OH, USA): Davey Resource Group, Inc. 164 p. https://www.syr.gov/files/sharedassets/public/v/2/2-departments/parks-recreation/documents/forestry/urban-forest-master-plan.pdf
  12. ↵
    1. Conway TM,
    2. Yip V.
    2016. Assessing residents’ reactions to urban forest disservices: A case study of a major storm event. Landscape and Urban Planning. 153:1–10. https://doi.org/10.1016/j.landurbplan.2016.04.016
    OpenUrlCrossRef
  13. ↵
    1. Selin H
    1. Coward H.
    2003. Hindu views of nature and the environment. In: Selin H, editor. Nature across cultures: Science across cultures: The history of non-Western science. Volume 4. Dordrecht (Netherlands): Springer. p. 411–419. https://doi.org/10.1007/978-94-017-0149-5_21
    OpenUrl
  14. ↵
    1. Cronley C,
    2. Fackler A,
    3. First JM,
    4. Lee S,
    5. Tsouris I.
    2024. Persons experiencing homelessness during extreme temperatures: Lessons for promoting socially inclusive adaptive capacity. International Journal of Environmental Research and Public Health. 21(8):984. https://doi.org/10.3390/ijerph21080984
    OpenUrl
  15. ↵
    1. de Groot R,
    2. Brander L,
    3. van der Ploeg S,
    4. Costanza R,
    5. Bernard F,
    6. Braat L,
    7. Christie M,
    8. Crossman N,
    9. Ghermandi A,
    10. Hein L,
    11. Hussain S,
    12. Kumar P,
    13. McVittie A,
    14. Portela R,
    15. Rodriguez LC,
    16. ten Brink P,
    17. van Beukering P.
    2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services. 1(1):50–61. https://doi.org/10.1016/j.ecoser.2012.07.005
    OpenUrl
    1. de Guzman EB,
    2. Wohldmann EL,
    3. Eisenman DP.
    2023. Cooler and healthier: Increasing tree stewardship and reducing heat-health risk using community-based urban forestry. Sustainability. 15(8):6716. https://doi.org/10.3390/su15086716
    OpenUrl
    1. Eslamian S,
    2. Eslamian F
    1. Deilami K,
    2. Shooshtarian S,
    3. Rudner J,
    4. Butt A,
    5. Amati M.
    2022. Resilience and adaptation strategies for urban heat at regional, city and local scales. In: Eslamian S, Eslamian F, editors. Disaster risk reduction for resilience. Cham (Switzerland): Springer International Publishing. p. 177–212. https://doi.org/10.1007/978-3-030-72196-1_8
  16. ↵
    1. Dunlop T,
    2. Khojasteh D,
    3. Cohen-Shacham E,
    4. Glamore W,
    5. Haghani M,
    6. van den Bosch M,
    7. Rizzi D,
    8. Greve P,
    9. Felder S.
    2024. The evolution and future of research on nature-based solutions to address societal challenges. Communications Earth & Environment. 5:132. https://doi.org/10.1038/s43247-024-01308-8
    OpenUrl
    1. Ebenberger M,
    2. Arnberger A.
    2019. Exploring visual preferences for structural attributes of urban forest stands for restoration and heat relief. Urban Forestry & Urban Greening. 41:272282. https://doi.org/10.1016/j.ufug.2019.04.011
    OpenUrl
  17. ↵
    1. Ehsan S,
    2. Abbas F,
    3. Ibrahim M,
    4. Ahmad B,
    5. Farooque AA.
    2021. Thermal discomfort levels, building design concepts, and some heat mitigation strategies in low-income communities of a South Asian city. International Journal of Environmental Research and Public Health. 18(5):2535. https://doi.org/10.3390/ijerph18052535
    OpenUrl
  18. ↵
    1. Eisenman TS,
    2. Flanders T,
    3. Harper RW,
    4. Hauer RJ,
    5. Lieberknecht K.
    2021. Traits of a bloom: A nationwide survey of U.S. urban tree planting initiatives (TPIs). Urban Forestry & Urban Greening. 61:127006. https://doi.org/10.1016/j.ufug.2021.127006
    OpenUrl
  19. ↵
    Forest for All NYC. 2021. NYC urban forest agenda: Toward a healthy, resilient, equitable, and just New York City. 108 p. https://forestforall.nyc/wp-content/uploads/2021/06/NYC-Urban-Forest-Agenda-.pdf
    1. Franck U,
    2. Krüger M,
    3. Schwarz N,
    4. Grossman K,
    5. Röder S,
    6. Schlink U.
    2013. Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig. Meteorologische Zeitschrift. 22(2):167–177. https://doi.org/10.1127/0941-2948/2013/0384
    OpenUrl
  20. ↵
    1. Gabbe CJ,
    2. Chang JS,
    3. Kamson M,
    4. Seo E.
    2023. Reducing heat risk for people experiencing unsheltered homelessness. International Journal of Disaster Risk Reduction. 96:103904. https://doi.org/10.1016/j.ijdrr.2023.103904
    OpenUrl
  21. ↵
    1. Gasparrini A,
    2. Guo Y,
    3. Sera F,
    4. Vicedo-Cabrera AM,
    5. Huber V,
    6. Tong S,
    7. de Sousa Zanotti Stagliorio Coelho M,
    8. Nascimento Saldiva PH,
    9. Lavigne E,
    10. Matus Correa P,
    11. Valdes Ortega N,
    12. Kan H,
    13. Osorio S,
    14. Kyselý J,
    15. Urban A,
    16. Jaakkola JJK,
    17. Ryti NRI,
    18. Pascal M,
    19. Goodman PG,
    20. Zeka A,
    21. Michelozzi P,
    22. Scortichini M,
    23. Hashizume M,
    24. Honda Y,
    25. Hurtado-Diaz M,
    26. Cesar Cruz J,
    27. Seposo X,
    28. Kim H,
    29. Tobias A,
    30. Iñiguez C,
    31. Forsberg B,
    32. Åström DO,
    33. Ragettli MS,
    34. Guo YL,
    35. Wu CF,
    36. Zanobetti A,
    37. Schwartz J,
    38. Bell ML,
    39. Dang TN,
    40. Van DD,
    41. Heaviside C,
    42. Vardoulakis S,
    43. Hajat S,
    44. Haines A,
    45. Armstrong B.
    2017. Projections of temperature-related excess mortality under climate change scenarios. The Lancet Planetary Health. 1(9):E360–E367. https://doi.org/10.1016/S2542-5196(17)30156-0
    OpenUrl
  22. ↵
    1. Giannakis E,
    2. Bruggeman A,
    3. Poulou D,
    4. Zoumides C,
    5. Eliades M.
    2016. Linear parks along urban rivers: Perceptions of thermal comfort and climate change adaptation in Cyprus. Sustainability. 8(10):1023. https://doi.org/10.3390/su8101023
    OpenUrl
  23. ↵
    1. Gnanakan K.
    2015. Creation, Christians and environmental stewardship. Fronteiras: Journal of Social, Technological and Environmental Science. 4(3):122–135. https://doi.org/10.21664/2238-8869.2015v4i3.p122-135
    OpenUrl
  24. ↵
    1. Golden SD,
    2. Earp JAL.
    2012. Social ecological approaches to individuals and their contexts: Twenty years of health education & behavior health promotion interventions. Health Education & Behavior. 39(3):364–372. https://doi.org/10.1177/1090198111418634
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Grabowski ZJ,
    2. McPhearson T,
    3. Pickett STA.
    2023. Transforming US urban green infrastructure planning to address equity. Landscape and Urban Planning. 229:104591. https://doi.org/10.1016/j.landurbplan.2022.104591
    OpenUrl
  26. ↵
    1. Guardaro M,
    2. Messerschmidt M,
    3. Hondula DM,
    4. Grimm NB,
    5. Redman CL.
    2020. Building community heat action plans story by story: A three neighborhood case study. Cities. 107:102886. https://doi.org/10.1016/j.cities.2020.102886
    OpenUrl
  27. ↵
    1. Habeeb D,
    2. Vargo J,
    3. Stone B Jr.
    2015. Rising heat wave trends in large US cities. Natural Hazards. 76:1651–1665. https://doi.org/10.1007/s11069-014-1563-z
    OpenUrl
  28. ↵
    1. Harrington LJ,
    2. Otto FEL.
    2020. Reconciling theory with the reality of African heatwaves. Nature Climate Change. 10:796–798. https://doi.org/10.1038/s41558-020-0851-8
    OpenUrl
    1. Heng SL,
    2. Chow WTL.
    2019. How ‘hot’ is too hot? Evaluating acceptable outdoor thermal comfort ranges in an equatorial urban park. International Journal of Biometeorology. 63:801816. https://doi.org/10.1007/s00484-019-01694-1
    OpenUrl
  29. ↵
    1. Hopkins LP,
    2. January-Bevers DJ,
    3. Caton EK,
    4. Campos LA.
    2022. A simple tree planting framework to improve climate, air pollution, health, and urban heat in vulnerable locations using non-traditional partners. Plants, People, Planet. 4(3):243–257. https://doi.org/10.1002/ppp3.10245
    OpenUrl
  30. ↵
    1. Hu L,
    2. Li Q.
    2020. Greenspace, bluespace, and their interactive influence on urban thermal environments. Environmental Research Letters. 15(3):034041. https://doi.org/10.1088/1748-9326/ab6c30
    OpenUrl
  31. ↵
    1. Huanchun H,
    2. Hailin Y,
    3. Chen Y,
    4. Chen T,
    5. Bai L,
    6. Peng ZR.
    2021. Urban green space optimization based on a climate health risk appraisal—A case study of Beijing city, China. Urban Forestry & Urban Greening. 62:127154. https://doi.org/10.1016/j.ufug.2021.127154
    OpenUrl
    1. Jenerette GD,
    2. Harlan SL,
    3. Buyantuev A,
    4. Stefanov WL,
    5. Declet-Barreto J,
    6. Ruddell BL,
    7. Myint SW,
    8. Kaplan S,
    9. Li X.
    2016. Micro-scale urban surface temperatures are related to landcover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecology. 31:745–760. https://doi.org/10.1007/s10980-015-0284-3
    OpenUrl
  32. ↵
    1. Jung J,
    2. Uejio CK,
    3. Kintziger KW,
    4. Duclos C,
    5. Reid K,
    6. Jordan M,
    7. Spector JT.
    2021. Heat illness data strengthens vulnerability maps. BMC Public Health. 21:1999. https://doi.org/10.1186/s12889-021-12097-6
    OpenUrlPubMed
  33. ↵
    1. Jusoff K,
    2. Samah SAA.
    2011. Environmental sustainability: What Islam propagates. World Applied Sciences Journal. 12:46–53. https://www.idosi.org/wasj/wasj12(CKBS)/9.pdf
    OpenUrl
    1. Kabisch N,
    2. Kraemer R,
    3. Masztalerz O,
    4. Hemmerling J,
    5. Püffel C,
    6. Haase D.
    2021. Impact of summer heat on urban park visitation, perceived health and ecosystem service appreciation. Urban Forestry & Urban Greening. 60:127058. https://doi.org/10.1016/j.ufug.2021.127058
    OpenUrl
  34. ↵
    1. Verma P,
    2. Singh P,
    3. Singh R,
    4. Raghubanshi AS
    1. Kapoor V,
    2. Tripathi S,
    3. Devi RS,
    4. Srivastava P,
    5. Bhadouria R.
    2020. Chapter 6—Ecological economics of an urban settlement: An overview. In: Verma P, Singh P, Singh R, Raghubanshi AS, editors. Urban ecology: Emerging patterns and social-ecological systems. Amsterdam (Netherlands): Elsevier. p. 91–110. https://doi.org/10.1016/B978-0-12-820730-7.00006-9
    1. Karimi A,
    2. Mohammad P.
    2022. Effect of outdoor thermal comfort condition on visit of tourists in historical urban plazas of Sevilla and Madrid. Environmental Science and Pollution Research. 29:60641–60661. https://doi.org/10.1007/s11356-022-20058-8
    OpenUrl
  35. ↵
    1. Kiel M.
    2023 October 10. New York City passes bill to expand urban tree canopy, combat climate change. Brooklyn Daily Eagle. https://brooklyneagle.com/articles/2023/10/10/new-york-city-council-passes-legislation-to-expand-urban-tree-canopy-and-combat-climate-change
  36. ↵
    1. Kilbourne EM,
    2. Choi K,
    3. Jones TS,
    4. Thacker SB.
    1982. Risk factors for heatstroke: A case-control study. JAMA. 247(24):3332–3336. https://doi.org/10.1001/jama.1982.03320490030031
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Kremer P,
    2. Andersson E,
    3. McPhearson T,
    4. Elmqvist T.
    2015. Advancing the frontier of urban ecosystem services research. Ecosystem Services. 12:149–151. https://doi.org/10.1016/j.ecoser.2015.01.008
    OpenUrl
  38. ↵
    1. Kruize H,
    2. van der Vliet N,
    3. Staatsen B,
    4. Bell R,
    5. Chiabai A,
    6. Muiños G,
    7. Higgins S,
    8. Quiroga S,
    9. Martinez-Juarez P,
    10. Aberg Yngwe M,
    11. Tsichlas F,
    12. Karnaki P,
    13. Lima ML, Garcí
    14. a de Jalón S,
    15. Khan M,
    16. Morris G,
    17. Stegeman I.
    2019. Urban green space: Creating a triple win for environmental sustainability, health, and health equity through behavior change. International Journal of Environmental Research and Public Health. 16(22):4403. https://doi.org/10.3390/ijerph16224403
    OpenUrl
    1. Kumar P,
    2. Sharma A.
    2022. Assessing outdoor thermal comfort conditions at an urban park during summer in the hot semi-arid region of India. Materials Today: Proceedings. 61:(2)356–369. https://doi.org/10.1016/j.matpr.2021.10.085
    OpenUrl
  39. ↵
    1. Lafortezza R,
    2. Carrus G,
    3. Sanesi G,
    4. Davies C.
    2009. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry & Urban Greening. 8(2):97–108. https://doi.org/10.1016/j.ufug.2009.02.003
    OpenUrl
    1. Lam CKC,
    2. Pan H,
    3. Nie W,
    4. Li X,
    5. Wu J,
    6. Yin Z,
    7. Han J.
    2024. Effects of perceived environmental quality and psychological status on outdoor thermal comfort: A panel study in Southern China. Sustainable Cities and Society. 112:105578. https://doi.org/10.1016/j.scs.2024.105578
    OpenUrl
  40. ↵
    1. Lanza K,
    2. Jones J,
    3. Acuña F,
    4. Coudert M,
    5. Bixler RP,
    6. Kamath H,
    7. Niyogi D.
    2023. Heat vulnerability of Latino and Black residents in a low-income community and their recommended adaptation strategies: A qualitative study. Urban Climate. 51:101656. https://doi.org/10.1016/j.uclim.2023.101656
    OpenUrl
  41. ↵
    1. Li J,
    2. Wang J,
    3. Niu J.
    2023. Elderly residents’ uses of fragmented outdoor spaces in public housing estates in Hong Kong— Decoding causality and heat-risk exposure. Building and Environment. 245:110912. https://doi.org/10.1016/j.buildenv.2023.110912
    OpenUrl
    1. Li X,
    2. Li X,
    3. Tang N,
    4. Chen S,
    5. Deng Y,
    6. Gan D.
    2022. Summer outdoor thermal perception for the elderly in a comprehensive park of Changsha, China. Atmosphere. 13(11):1853. https://doi.org/10.3390/atmos13111853
    OpenUrl
    1. Lin J,
    2. Chen S,
    3. Yang J,
    4. Li Z.
    2024. Research on summer outdoor thermal comfort based on COMFA model in an urban park of Fuzhou, China. Theoretical and Applied Climatology. 155:2311–2322. https://doi.org/10.1007/s00704-023-04782-w
    OpenUrl
    1. Liu F,
    2. Tian Y,
    3. Jim C,
    4. Wang T,
    5. Luan J,
    6. Yan M.
    2022. Residents’ living environments, self-rated health status and perceptions of urban green space benefits. Forests. 13(1):9. https://doi.org/10.3390/f13010009
    OpenUrl
    1. Liu Y,
    2. Gao Y,
    3. Shi D,
    4. Zhuang C,
    5. Lin Z,
    6. Hao Z.
    2022. Modelling residential outdoor thermal sensation in hot summer cities: A case study in Chongqing, China. Buildings. 12(10). https://doi.org/10.3390/buildings12101564
    1. Lo AY,
    2. Jim CY,
    3. Cheung PK,
    4. Wong GKL,
    5. Cheung LTO.
    2022. Space poverty driving heat stress vulnerability and the adaptive strategy of visiting urban parks. Cities. 127:103740. https://doi.org/10.1016/j.cities.2022.103740
    OpenUrl
  42. ↵
    1. Lundgren-Kownacki K,
    2. Hornyanszky ED,
    3. Chu TA,
    4. Olsson JA,
    5. Becker P.
    2018. Challenges of using air conditioning in an increasingly hot climate. International Journal of Biometeorology. 62:401–412. https://doi.org/10.1007/s00484-017-1493-z
    OpenUrlPubMed
  43. ↵
    1. Lyytimäki J,
    2. Petersen LK,
    3. Normander B,
    4. Bezák P.
    2008. Nature as a nuisance? Ecosystem services and disservices to urban lifestyle. Environmental Sciences. 5(3):161–172. https://doi.org/10.1080/15693430802055524
    OpenUrl
    1. Ma X,
    2. Tian Y,
    3. Du M,
    4. Hong B,
    5. Lin B.
    2021. How to design comfortable open spaces for the elderly? Implications of their thermal perceptions in an urban park. Science of the Total Environment. 768:144985. https://doi.org/10.1016/j.scitotenv.2021.144985
    OpenUrlPubMed
  44. ↵
    1. Maghrabi A,
    2. Alyamani A,
    3. Addas A.
    2021. Exploring pattern of green spaces (GSs) and their impact on climatic change mitigation and adaptation strategies: Evidence from a Saudi Arabian city. Forests. 12(5):629. https://doi.org/10.3390/f12050629
    OpenUrl
    1. Maras I,
    2. Buttstädt M,
    3. Hahmann J,
    4. Hofmeister H,
    5. Schneider C.
    2014. Investigating public places and impacts of heat stress in the city of Aachen, Germany. Journal of the Geographical Society of Berlin. 144:290–303. https://doi.org/10.12854/ERDE-144-20
    OpenUrl
  45. ↵
    1. Marí-DellOlmo M,
    2. Oliveras L,
    3. Barón-Miras LE,
    4. Borrell C,
    5. Montalvo T,
    6. Ariza C,
    7. Ventayol I,
    8. Mercuriali L,
    9. Sheehan M,
    10. Gómez-Gutiérrez A,
    11. Villalbí JR.
    2022. Climate change and health in urban areas with a Mediterranean climate: A conceptual framework with a social and climate justice approach. International Journal of Environmental Research and Public Health. 19(19):12764. https://doi.org/10.3390/ijerph191912764
    OpenUrl
  46. ↵
    1. McDonald RI,
    2. Biswas T,
    3. Sachar C,
    4. Housman I,
    5. Boucher TM,
    6. Balk D,
    7. Nowak D,
    8. Spotswood E,
    9. Stanley CK,
    10. Leyk S.
    2021. The tree cover and temperature disparity in US urbanized areas: Quantifying the association with income across 5,723 communities. PLoS ONE. 16(4):e0249715. https://doi.org/10.1371/journal.pone.0249715
    OpenUrlCrossRefPubMed
  47. ↵
    1. Elmqvist T,
    2. Fragkias M,
    3. Goodness J,
    4. Güneralp B,
    5. Marcotullio PJ,
    6. McDonald RI,
    7. Parnell S,
    8. Schewenius M,
    9. Sendstad M,
    10. Seto KC,
    11. Wilkinson C
    1. McPhearson T,
    2. Maddox D,
    3. Gunther B,
    4. Bragdon D.
    2013. Local assessment of New York City: Biodiversity, green space, and ecosystem services. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C, editors. Urbanization, biodiversity and ecosystem services: Challenges and opportunities. Dordrecht (Netherlands): Springer. p. 355–383. https://doi.org/10.1007/978-94-007-7088-1_19
  48. ↵
    1. Meehl GA,
    2. Tebaldi C.
    2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 305(5686):994–997. https://doi.org/10.1126/science.1098704
    OpenUrlAbstract/FREE Full Text
    1. Mi J,
    2. Hong B,
    3. Zhang T,
    4. Huang B,
    5. Niu J.
    2020. Outdoor thermal benchmarks and their application to climate-responsive designs of residential open spaces in a cold region of China. Building and Environment. 169:106592. https://doi.org/10.1016/j.buildenv.2019.106592
    OpenUrl
  49. ↵
    Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Synthesis. Washington (DC, USA): Island Press. 155 p. https://www.millenniumassessment.org/documents/document.356.aspx.pdf
  50. ↵
    1. Mittermüller J,
    2. Erlwein S,
    3. Bauer A,
    4. Trokai T,
    5. Duschinger S,
    6. Schönemann M.
    2021. Context-specific, user-centred: Designing urban green infrastructure to effectively mitigate urban density and heat stress. Urban Planning. 6(4):40–53. https://doi.org/10.17645/up.v6i4.4393
    OpenUrl
  51. ↵
    1. Munn Z,
    2. Pollock D,
    3. Khalil H,
    4. Alexander L,
    5. McLnerney P,
    6. Godfrey CM,
    7. Peters M,
    8. Tricco AC.
    2022. What are scoping reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBIEvidence Synthesis. 20(4):950–952. https://doi.org/10.11124/JBIES-21-00483
    OpenUrl
  52. ↵
    1. Nabhan GP,
    2. Orlando L,
    3. Smith Monti L,
    4. Aronson J.
    2020. Hands-on ecological restoration as a nature-based health intervention: Reciprocal restoration for people and ecosystems. Ecopsychology. 12(3):195–202. https://doi.org/10.1089/eco.2020.0003
    OpenUrlCrossRef
  53. ↵
    National Integrated Heat Health Information System (NIHHIS). 2024a. 2024-2030 national heat strategy. Interagency Working Group on Extreme Heat. 37 p. https://cpo.noaa.gov/wp-content/uploads/2024/07/National_Heat_Strategy-2024-2030.pdf
  54. ↵
    National Integrated Heat Health Information System (NIHHIS). 2024b. About Heat.gov. Washington (DC, USA): National Oceanic and Atmospheric Administration (NOAA). [Accessed 2024 September 9]. https://www.heat.gov/pages/about-heat-gov
  55. ↵
    National Weather Service. [date unknown]. Weather related fatality and injury statistics. Washington (DC, USA): National Oceanic and Atmospheric Administration (NOAA). https://www.weather.gov/hazstat
  56. ↵
    New York City Department of Parks & Recreation. [date unknown]. NYC parks stewardship. [Accessed 2024 January 22]. https://www.nycgovparks.org/reg/stewardship
    1. Niu J,
    2. Xiong J,
    3. Qin H,
    4. Wu H,
    5. Zhang K,
    6. Yan J,
    7. Ye L,
    8. Han G.
    2023. Thermal comfort influences positive emotions but not negative emotions when visiting green spaces during summer. Forests. 14(8):1512. https://doi.org/10.3390/f14081512
    OpenUrl
  57. ↵
    1. Nyelele C,
    2. Kroll CN.
    2020. The equity of urban forest ecosystem services and benefits in the Bronx, NY. Urban Forestry & Urban Greening. 53:126723. https://doi.org/10.1016/j.ufug.2020.126723
    OpenUrl
  58. ↵
    1. Ogunbode CA.
    2022. Climate justice is social justice in the Global South. Nature Human Behaviour. 6:1443. https://doi.org/10.1038/s41562-022-01456-x
    OpenUrlPubMed
  59. ↵
    1. Oke TR.
    1982. The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society. 108(455):1–24. https://doi.org/10.1002/qj.49710845502
    OpenUrlCrossRefWeb of Science
  60. ↵
    1. Doan T,
    2. Renz C,
    3. Bhattacharya M,
    4. Lievano F,
    5. Scarazzini L.
    1. Oleske DM,
    2. Islam SS.
    2019. Chapter 5—Role of epidemiology in the biopharmaceutical industry. In: Doan T, Renz C, Bhattacharya M, Lievano F, Scarazzini L. Pharmacovigilance: A practical approach. Amsterdam (Netherlands): Elsevier. p. 69–87. https://doi.org/10.1016/B978-0-323-58116-5.00005-5
  61. ↵
    1. Oosterbroek B,
    2. de Kraker J,
    3. Akkermans S,
    4. Esser P,
    5. Martens P.
    2024. Participatory design of urban green spaces to improve residents’ health. Land. 13(1):88. https://doi.org/10.3390/land13010088
    OpenUrl
  62. ↵
    1. Ostrom E.
    2009. A general framework for analyzing sustainability of social-ecological systems. Science. 325(5939):419–422. https://doi.org/10.1126/science.1172133
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Pant LP,
    2. Adhikari B,
    3. Bhattarai KK.
    2015. Adaptive transition for transformations to sustainability in developing countries. Current Opinion in Environmental Sustainability. 14:206212. https://doi.org/10.1016/j.cosust.2015.07.006
    OpenUrl
  64. ↵
    1. Patel L,
    2. Conlon KC,
    3. Sorensen C,
    4. McEachin S,
    5. Nadeau K,
    6. Kakkad K,
    7. Kizer KW.
    2022. Climate change and extreme heat events: How health systems should prepare. NEJM Catalyst. 3(7). https://doi.org/10.1056/CAT.21.0454
  65. ↵
    1. Rathmann J,
    2. Beck C,
    3. Flutura S,
    4. Seiderer A,
    5. Aslan I,
    6. André E.
    2020. Towards quantifying forest recreation: Exploring outdoor thermal physiology and human well-being along exemplary pathways in a central European urban forest (Augsburg, SE-Germany). Urban Forestry & Urban Greening. 49:126622. https://doi.org/10.1016/j.ufug.2020.126622
    OpenUrl
  66. ↵
    1. Roman LA,
    2. Conway TM,
    3. Eisenman TS,
    4. Koeser AK,
    5. Ordóñez Barona C,
    6. Locke DH,
    7. Jenerette GD,
    8. Östberg J,
    9. Vogt J.
    2021. Beyond ‘trees are good’: Disservices, management costs, and tradeoffs in urban forestry. Ambio. 50:615–630. https://doi.org/10.1007/s13280-020-01396-8
    OpenUrl
  67. ↵
    1. Rosso F,
    2. Pioppi B,
    3. Pisello AL.
    2024. Tactical urban pocket parks (TUPPs) for subjective and objective multi-domain comfort enhancement. Journal of Environmental Management. 349:119447. https://doi.org/10.1016/j.jenvman.2023.119447
    OpenUrlPubMed
  68. ↵
    1. Salmond JA,
    2. Tadaki M,
    3. Vardoulakis S,
    4. Arbuthnott K,
    5. Coutts A,
    6. Demuzere M,
    7. Dirks KN,
    8. Heaviside C,
    9. Lim S,
    10. Macintyre H,
    11. McInnes RN,
    12. Wheeler BW.
    2016. Health and climate related ecosystem services provided by street trees in the urban environment. Environmental Health. 15(S36). https://doi.org/10.1186/s12940-016-0103-6
  69. ↵
    1. Schell CJ,
    2. Dyson K,
    3. Fuentes TL,
    4. Des Roches S,
    5. Harris NC,
    6. Miller DS,
    7. Woelfle-Erskine CA,
    8. Lambert MR.
    2020. The ecological and evolutionary consequences of systemic racism in urban environments. Science. 369(6510):aay4497. https://doi.org/10.1126/science.aay4497
    OpenUrl
  70. ↵
    1. Schlosberg D,
    2. Collins LB.
    2014. From environmental to climate justice: Climate change and the discourse of environmental justice. WIREs Climate Change. 5(3):359–374. https://doi.org/10.1002/wcc.275
    OpenUrl
  71. ↵
    1. Schmeltz MT,
    2. Sembajwe G,
    3. Marcotullio PJ,
    4. Grassman JA,
    5. Himmelstein DU,
    6. Woolhandler S.
    2015. Identifying individual risk factors and documenting the pattern of heat-related illness through analyses of hospitalization and patterns of household cooling. PLoS ONE. 10(3):e0118958. https://doi.org/10.1371/journal.pone.0118958
    OpenUrlPubMed
  72. ↵
    1. Schwarz K,
    2. Fragkias M,
    3. Boone CG,
    4. Zhou W,
    5. McHale M,
    6. Grove JM,
    7. O’Neil-Dunne J,
    8. McFadden JP,
    9. Buckley GL,
    10. Childers D,
    11. Ogden L,
    12. Pincetl S,
    13. Pataki D,
    14. Whitmer A,
    15. Cadenasso ML.
    2015. Trees grow on money: Urban tree canopy cover and environmental justice. PLoS ONE. 10(4):e0122051. https://doi.org/10.1371/journal.pone.0122051
    OpenUrlCrossRefPubMed
  73. ↵
    1. Sousa-Silva R,
    2. Zanocco C.
    2024. Assessing public attitudes towards urban green spaces as a heat adaptation strategy: Insights from Germany. Landscape and Urban Planning. 245:105013. https://doi.org/10.1016/j.landurbplan.2024.105013
    OpenUrl
  74. ↵
    1. Stone B Jr.,
    2. Mallen E,
    3. Rajput M,
    4. Gronlund CJ,
    5. Broadbent AM,
    6. Krayenhoff ES,
    7. Augenbroe G,
    8. O’Neill MS,
    9. Georgescu M.
    2021. Compound climate and infrastructure events: How electrical grid failure alters heat wave risk. Environmental Science & Technology. 55(10):6957–6964. https://doi.org/10.1021/acs.est.1c00024
    OpenUrlPubMed
  75. ↵
    1. Sun S,
    2. Weinberger KR,
    3. Spangler KR,
    4. Eliot MN,
    5. Braun JM,
    6. Wellenius GA.
    2019. Ambient temperature and preterm birth: A retrospective study of 32 million US singleton births. Environment International. 126:7–13. https://doi.org/10.1016/j.envint.2019.02.023
    OpenUrlCrossRefPubMed
  76. ↵
    1. Taha H.
    1997. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings. 25(2):99–103. https://doi.org/10.1016/S0378-7788(96)00999-1
    OpenUrlCrossRefWeb of Science
  77. ↵
    The City of New York. 2017. Cool neighborhoods NYC: A comprehensive approach to keep communities safe in extreme heat. 44 p. https://www.nyc.gov/assets/orr/pdf/Cool_Neighborhoods_NYC_Report.pdf
  78. ↵
    Urban Forestry Division. 2022. Washington DC’s urban forestry master plan. 47 p. https://trees.dc.gov/documents/ed51a97853344f20b6c2d6273baf2313/explore
  79. ↵
    US Centers for Disease Control and Prevention (CDC). 2024. About the Public Health Data Strategy (PHDS). [Accessed 2024 December 16]. https://www.cdc.gov/public-health-data-strategy/php/about/index.html
  80. ↵
    US Department of Health and Human Services. [date unknown]. Healthy people 2030: Social determinants of health. Washington (DC, USA): Office of Disease Prevention and Health Promotion. https://health.gov/healthypeople/priority-areas/social-determinants-health
  81. ↵
    USDA Forest Service. 2023. Announcing urban and community forestry funding. Washington (DC, USA): United States Department of Agriculture. https://www.fs.usda.gov/inside-fs/leadership/announcing-urban-and-community-forestry-funding
  82. ↵
    1. Vaidyanathan A,
    2. Gates A,
    3. Brown C,
    4. Prezzato E,
    5. Bernstein A.
    2024. Heat-related emergency department visits—United States, May–September 2023. Morbidity and Mortality Weekly Report (MMWR). 73(15):324–329. https://doi.org/10.15585/mmwr.mm7315a1
    OpenUrl
  83. ↵
    1. Vaidyanathan A,
    2. Malilay J,
    3. Schramm P,
    4. Saha S.
    2020. Heat-related deaths—United States, 2004–2018. Morbidity and Mortality Weekly Report (MMWR). 69(24):729–734. https://doi.org/10.15585/mmwr.mm6924a1
    OpenUrl
  84. ↵
    1. Vaidyanathan A,
    2. Saha S,
    3. Vicedo-Cabrera AM,
    4. Gasparrini A,
    5. Abdurehman N,
    6. Jordan R,
    7. Hawkins M,
    8. Hess J,
    9. Elixhauser A.
    2019. Assessment of extreme heat and hospitalizations to inform early warning systems. Proceedings of the National Academy of Sciences. 116(12):5420–5427. https://doi.org/10.1073/pnas.1806393116
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Watts N,
    2. Adger WN,
    3. Agnolucci P,
    4. Blackstock J,
    5. Byass P,
    6. Cai W,
    7. Chaytor S,
    8. Colbourn T,
    9. Collins M,
    10. Cooper A,
    11. Cox PM,
    12. Depledge J,
    13. Drummond P,
    14. Ekins P,
    15. Galaz V,
    16. Grace D,
    17. Graham H,
    18. Grubb M,
    19. Haines A,
    20. Hamilton I,
    21. Hunter A,
    22. Jiang X,
    23. Li M,
    24. Kelman I,
    25. Liang L,
    26. Lott M,
    27. Lowe R,
    28. Luo Y,
    29. Mace G,
    30. Maslin M,
    31. Nilsson M,
    32. Oreszczyn T,
    33. Pye S,
    34. Quinn T,
    35. Svensdotter M,
    36. Venevsky S,
    37. Warner K,
    38. Xu B,
    39. Yang J,
    40. Yin Y,
    41. Yu C,
    42. Zhang Q,
    43. Gong P,
    44. Montgomery H,
    45. Costello A.
    2015. Health and climate change: Policy responses to protect public health. The Lancet. 386(10006):1861–1914. https://doi.org/10.1016/S0140-6736(15)60854-6
    OpenUrl
  86. ↵
    1. Winbourne JB,
    2. Jones TS,
    3. Garvey SM,
    4. Harrison JL,
    5. Wang L,
    6. Li D,
    7. Templer PH,
    8. Hutyra LR.
    2020. Tree transpiration and urban temperatures: Current understanding, implications, and future research directions. BioScience. 70(7):576–588. https://doi.org/10.1093/biosci/biaa055
    OpenUrl
    1. Wong GKL,
    2. Ma ATH,
    3. Cheung LTO,
    4. Lo AY,
    5. Jim CY.
    2024. Visiting urban green space as a climate-change adaptation strategy: Exploring push factors in a push-pull framework. Climate Risk Management. 43:100589. https://doi.org/10.1016/j.crm.2024.100589
    OpenUrl
    1. Wong LP,
    2. Alias H,
    3. Aghamohammadi N,
    4. Aghazadeh S,
    5. Nik Sulaiman NM.
    2017. Urban heat island experience, control measures and health impact: A survey among working community in the city of Kuala Lumpur. Sustainable Cities and Society. 35:660–668. https://doi.org/10.1016/j.scs.2017.09.026
    OpenUrl
  87. ↵
    1. Wong NH,
    2. Tan CL,
    3. Kolokotsa DD,
    4. Takebayashi H.
    2021. Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment. 2:166–181. https://doi.org/10.1038/s43017-020-00129-5
    OpenUrl
  88. ↵
    1. Woodward A,
    2. Hinwood A,
    3. Bennett D,
    4. Grear B,
    5. Vardoulakis S,
    6. Lalchandani N,
    7. Lyne K,
    8. Williams C.
    2023. Trees, climate change, and health: An urban planning, greening and implementation perspective. International Journal of Environmental Research and Public Health. 20(18):6798. https://doi.org/10.3390/ijerph20186798
    OpenUrl
  89. ↵
    World Bank Group. 2022. Urban population (% of total population). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2022&start=1960
    1. Wu H,
    2. Jin R,
    3. Liu M,
    4. Nie Z,
    5. Zhao H,
    6. Yao L,
    7. Zhao L.
    2024. Investigating the potential of street trees in mitigating pedestrian thermal stress during heatwaves conditions: An empirical study in Guangzhou. Building and Environment. 265:111955. https://doi.org/10.1016/j.buildenv.2024.111955
    OpenUrl
  90. ↵
    1. Yung EHK,
    2. Wang S,
    3. Chau CK.
    2019. Thermal perceptions of the elderly, use patterns and satisfaction with open space. Landscape and Urban Planning. 185:44–60. https://doi.org/10.1016/j.landurbplan.2019.01.003
    OpenUrl
  91. ↵
    1. Zhang L,
    2. Tan PY,
    3. Richards D.
    2021. Relative importance of quantitative and qualitative aspects of urban green spaces in promoting health. Landscape and Urban Planning. 213:104131. https://doi.org/10.1016/j.landurbplan.2021.104131
    OpenUrl
    1. Zhang L,
    2. Wei D,
    3. Hou Y,
    4. Du J,
    5. Liu Z,
    6. Zhang G,
    7. Shi L.
    2020. Outdoor thermal comfort of urban park—A case study. Sustainability. 12(5):1961. https://doi.org/10.3390/su12051961
    OpenUrl
    1. Zhang T,
    2. Huang R,
    3. Yang M,
    4. Lin G,
    5. Ma X,
    6. Wang X,
    7. Huang Q.
    2023. Perceptions of the health risk from hot days and the cooling effect of urban green spaces: A case study in Xi’an, China. Frontiers in Public Health. 11. https://doi.org/10.3389/fpubh.2023.1211164
  92. ↵
    1. Zhao L,
    2. Lee X,
    3. Smith RB,
    4. Oleson K.
    2014. Strong contributions of local background climate to urban heat islands. Nature. 511:216–219. https://doi.org/10.1038/nature13462
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Zhao L,
    2. Oleson K,
    3. Bou-Zeid E,
    4. Krayenhoff ES,
    5. Bray A,
    6. Zhu Q,
    7. Zheng Z,
    8. Chen C,
    9. Oppenheimer M.
    2021. Global multi-model projections of local urban climates. Nature Climate Change. 11:152–157. https://doi.org/10.1038/s41558-020-00958-8
    OpenUrl
Previous
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 4
July 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Linking Urban Greening and Community Engagement with Heat-Related Health Outcomes: A Scoping Review of the Literature
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Linking Urban Greening and Community Engagement with Heat-Related Health Outcomes: A Scoping Review of the Literature
Olivia J. Keenan, Aalayna Rae Green, Alexander R. Young, Daniel S.W. Katz, Qi Li, Wenna Xi, David L. Miller, Chris Williams, Emily Nobel Maxwell, Glenn L. McMillan, Julia Gohlke, Nathan Ashe, Sarah Wozniak, Michelle R. Demetres, Laila Gad, Arnab K. Ghosh
Arboriculture & Urban Forestry (AUF) Jul 2025, 51 (4) 379-415; DOI: 10.48044/jauf.2025.017

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Linking Urban Greening and Community Engagement with Heat-Related Health Outcomes: A Scoping Review of the Literature
Olivia J. Keenan, Aalayna Rae Green, Alexander R. Young, Daniel S.W. Katz, Qi Li, Wenna Xi, David L. Miller, Chris Williams, Emily Nobel Maxwell, Glenn L. McMillan, Julia Gohlke, Nathan Ashe, Sarah Wozniak, Michelle R. Demetres, Laila Gad, Arnab K. Ghosh
Arboriculture & Urban Forestry (AUF) Jul 2025, 51 (4) 379-415; DOI: 10.48044/jauf.2025.017
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Conflicts of Interest
    • Acknowledgements
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Right Appraisal for the Right Purpose: Comparing Techniques for Appraising Heritage Trees in Australia and Canada
  • Urban Tree Mortality: The Purposes and Methods for (Secretly) Killing Trees Suggested in Online How-To Videos and Their Diagnoses
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
Show more Articles

Similar Articles

Keywords

  • Community Engagement
  • Environmental Justice
  • Extreme Heat
  • Heat-Related Health
  • Public Health
  • Urban Forestry
  • Urban Greening

© 2025 International Society of Arboriculture

Powered by HighWire