Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs

Henrik Sjöman, Andrew Hirons and Harry Watkins
Arboriculture & Urban Forestry (AUF) July 2025, 51 (4) 329-354; DOI: https://doi.org/10.48044/jauf.2025.014
Henrik Sjöman
Swedish University of Agricultural Science, Department of Landscape Architecture, 8 Planning and Management, Alnarp, Sweden, Gothenburg Botanical Garden, Carl Skottsbergsgata 22A, Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden, Royal Botanic Gardens, Kew, Richmond, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
Andrew Hirons
University Centre Myerscough, Bilsborrow, Preston, Lancashire, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
Harry Watkins
St. Andrews Botanic Garden, Canongate, St Andrews, Fife, Bartlett School of Architecture, Queen Elizabeth Olympic Park, London, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Allen CD,
    2. Breshears DD,
    3. McDowell NG.
    2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 6(8):art129. https://doi.org/10.1890/ES15-00203.1
    OpenUrl
  2. ↵
    1. Archibold OW.
    1995. Temperate forest ecosystems. In: Ecology of world vegetation. London (United Kingdom); New York (NY, USA): Chapman & Hall. p. 165–203.
  3. ↵
    1. Baraloto C,
    2. Timothy Paine CE,
    3. Poorter L,
    4. Beauchene J,
    5. Bonal D,
    6. Domenach AM,
    7. Hérault B,
    8. Patiño S,
    9. Roggy JC,
    10. Chave J.
    2010. Decoupled leaf and stem economics in rain forest trees. Ecology Letters. 13(11):1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.x
    OpenUrlCrossRefPubMed
  4. ↵
    1. Caccianiga M,
    2. Luzzaro A,
    3. Pierce S,
    4. Ceriani RM,
    5. Cerabolini B.
    2006. The functional basis of a primary succession resolved by CSR classification. Oikos. 112(1):10–20. https://doi.org/10.1111/j.0030-1299.2006.14107.x
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Cerabolini BEL,
    2. Brusa G,
    3. Ceriani RM,
    4. De Andreis R,
    5. Luzzaro A,
    6. Pierce S.
    2010. Can CSR classification be generally applied outside Britain? Plant Ecology. 210:253–261. https://doi.org/10.1007/s11258-010-9753-6
    OpenUrl
  6. ↵
    1. Chapin FS III.
    1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics. 11:233–260. https://doi.org/10.1146/annurev.es.11.110180.001313
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Crowther TW,
    2. Thomas SM,
    3. van den Hoogen J,
    4. Robmann N,
    5. Chavarria A,
    6. Cottam A,
    7. Cole R,
    8. Elliott T,
    9. Clark E,
    10. Max S,
    11. Danylo O,
    12. Rowe C.
    2022. Restor: Transparency and connectivity for the global environmental movement. One Earth. 5(5):476–481. https://doi.org/10.1016/j.oneear.2022.04.003
    OpenUrl
  8. ↵
    1. de Paula LFA,
    2. Negreiros D,
    3. Azevedo LO,
    4. Fernandes RL,
    5. Stehmann JR,
    6. Silveira FAO.
    2015. Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodiversity and Conservation. 24:2239–2253. https://doi.org/10.1007/s10531-015-0904-x
    OpenUrl
  9. ↵
    1. Díaz S,
    2. Kattge J,
    3. Cornelissen JHC
    , et al. 2016. The global spectrum of plant form and function. Nature. 529:167–171. https://doi.org/10.1038/nature16489
    OpenUrlCrossRefPubMed
  10. ↵
    1. Dirr MA.
    2011. Dirr’s encyclopedia of trees and shrubs. Portland (OR, USA): Timber Press. 951 p.
  11. ↵
    1. Ely KS,
    2. Rogers A,
    3. Agarwal DA
    , et al. 2021. A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics. 61:101232. https://doi.org/10.1016/j.ecoinf.2021.101232
    OpenUrl
  12. ↵
    1. Grime JR.
    1974. Vegetation classification by reference to strategies. Nature. 250:26–31. https://doi.org/10.1038/250026a0
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Grime JP.
    1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist. 111(982):1169–1194. https://doi.org/10.1086/283244
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Grime JP.
    2006. Plant strategies, vegetation processes, and ecosystem properties. 2nd Ed. Chichester (United Kingdom): Wiley. 464 p.
  15. ↵
    1. Grime JP,
    2. Hunt R.
    1975. Relative growth-rate: Its range and adaptive significance in a local flora. The Journal of Ecology. p. 393–422. https://onlinelibrary.wiley.com/pb-assets/assets/13652745/RelativeGrowth-Rate.pdf
  16. ↵
    1. Grime JP,
    2. Pierce S.
    2012. The evolutionary strategies that shape ecosystems. Chichester (United Kingdom): Wiley-Blackwell. https://doi.org/10.1002/9781118223246
  17. ↵
    1. Götmark F,
    2. Götmark E,
    3. Jensen AM.
    2016. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Frontiers in Plant Science. 7. https://doi.org/10.3389/fpls.2016.01095
  18. ↵
    1. Hamilton NE,
    2. Ferry M.
    2018. ggtern: Ternary diagrams using ggplot2. Journal of Statistical Software, Code Snippets. 87(3):1–17. https://doi.org/10.18637/jss.v087.c03
    OpenUrl
  19. ↵
    1. Hodgson JG,
    2. Wilson PJ,
    3. Hunt R,
    4. Grime JP,
    5. Thompson K.
    1999. Allocating C-S-R plant functional types: A soft approach to a hard problem. Oikos. 85(2):282–294. https://doi.org/10.2307/3546494
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Keddy PA.
    2007. Plants and vegetation: Origins, processes, consequences. Cambridge (United Kingdom): Cambridge University Press. 683 p. https://doi.org/10.1017/CBO9780511812989
  21. ↵
    1. Kianmehr A,
    2. MacDonald B,
    3. Margulies E,
    4. Birdwell A,
    5. Wilson JP.
    2024. A new approach to monitor the life cycle of urban street tree canopies. Urban Forestry & Urban Greening. 101:128518. https://doi.org/10.1016/j.ufug.2024.128518
    OpenUrl
  22. ↵
    1. Koeser AK,
    2. Gilman EF,
    3. Paz M,
    4. Harchick C.
    2014. Factors influencing urban tree planting program growth and survival in Florida, United States. Urban Forestry & Urban Greening. 13(4):655–661. https://doi.org/10.1016/j.ufug.2014.06.005
    OpenUrl
  23. ↵
    1. Kottek M,
    2. Grieser J,
    3. Beck C,
    4. Rudolf B,
    5. Rubel F.
    2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130
    OpenUrlCrossRef
  24. ↵
    1. Kühn N.
    2011. Neue staudenverwendung. Stuttgart (Germany): Ulmer Eugen Verlag. 329 p.
  25. ↵
    1. Laforest-Lapointe I,
    2. Martínez-Vilalta J,
    3. Retana J.
    2014. Intraspecific variability in functional traits matters: Case study of Scots pine. Oecologia. 175(4):1337–1348. https://doi.org/10.1007/s00442-014-2967-x
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Laughlin DC.
    2023. Plant strategies: The demographic consequences offunctional traits in changing environments. Oxford (United Kingdom): Oxford University Press. https://doi.org/10.1093/oso/9780192867940.001.0001
  27. ↵
    1. Lyon C,
    2. Saupe EE,
    3. Smith CJ,
    4. Hill DJ,
    5. Beckerman AP,
    6. Stringer LC,
    7. Marchant R,
    8. McKay J,
    9. Burke A,
    10. O’Higgins P,
    11. Dunhill AM,
    12. Allen BJ,
    13. Riel-Salvatore J,
    14. Aze T.
    2022. Climate change research and action must look beyond 2100. Global Change Biology. 28(2):349–361. https://doi.org/10.1111/gcb.15871
    OpenUrlPubMed
  28. ↵
    1. Maharramova E,
    2. Huseynova I,
    3. Kolbaia S,
    4. Gruenstaeudl M,
    5. Borsch T,
    6. Muller LAH.
    2018. Phylogeography and population genetics of the riparian relict tree Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. Systematics and Biodiversity. 16(1):14–27. https://doi.org/10.1080/14772000.2017.1333540
    OpenUrlCrossRef
  29. ↵
    1. Matusick G,
    2. Ruthrof KX,
    3. Kala J,
    4. Brouwers NC,
    5. Breshears DD,
    6. Hardy GESJ.
    2018. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environmental Research Letters. 13(9):095002. https://doi.org/10.1088/1748-9326/aad8cb
    OpenUrl
  30. ↵
    1. Morrow CJ,
    2. Jaeger SJ,
    3. Lindroth RL.
    2022. Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia. 199:119–128. https://doi.org/10.1007/s00442-022-05158-z
    OpenUrlPubMed
  31. ↵
    1. Negreiros D,
    2. Le Stradic S,
    3. Fernandes GW,
    4. Rennó HC.
    2014. CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecology. 215:379388. https://doi.org/10.1007/s11258-014-0302-6
    OpenUrl
  32. ↵
    1. Kabisch N,
    2. Korn H,
    3. Stadler J,
    4. Bonn A
    1. Pauleit S,
    2. Zölch T,
    3. Hansen R,
    4. Randrup TB,
    5. Konijnendijk van den Bosch C.
    2017. Nature-based solutions and climate change— Four shades of green. In: Kabisch N, Korn H, Stadler J, Bonn A, editors. Nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice. Cham (Switzerland): Springer. p. 29–49. https://doi.org/10.1007/978-3-319-56091-5_3
  33. ↵
    1. Pérez-Harguindeguy N,
    2. Diaz S,
    3. Garnier E,
    4. Jaureguiberry P,
    5. Poorter L,
    6. ter Steege H,
    7. Cornelissen JHC.
    2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal Botany. 61(3):167–234. https://doi.org/10.1071/BT12225
    OpenUrl
  34. ↵
    1. Pierce S,
    2. Brusa G,
    3. Vagge I,
    4. Cerabolini BEL.
    2013. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology. 27(4):1002–1010. https://doi.org/10.1111/1365-2435.12095
    OpenUrl
  35. ↵
    1. Pierce S,
    2. Negreiros D,
    3. Cerabolini BEL
    , et al. 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology. 31(2):444–457. https://doi.org/10.1111/1365-2435.12722
    OpenUrlCrossRef
  36. ↵
    1. Poorter H,
    2. Niklas KJ,
    3. Reich PB,
    4. Oleksyn J,
    5. Poot P,
    6. Mommer L.
    2012. Biomass allocation to leaves, stems and roots: Metaanalyses of interspecific variation and environmental control. New Phytologist. 193(1):30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Reich PB.
    2014. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. Journal of Ecology. 102(2):275–301. https://doi.org/10.1111/1365-2745.12211
    OpenUrlCrossRefWeb of Science
  38. ↵
    1. Roman LA,
    2. Battles JJ,
    3. McBride JR.
    2014. The balance of planting and mortality in a street tree population. Urban Ecosystems. 17:387–404. https://doi.org/10.1007/s11252-013-0320-5
    OpenUrl
  39. ↵
    1. Rosado BHP,
    2. de Mattos EA.
    2017. On the relative importance of CSR ecological strategies and integrative traits to explain species dominance at local scales. Functional Ecology. 31(10): 1969–1974. https://doi.org/10.1111/1365-2435.12894
    OpenUrl
  40. ↵
    1. Mooney HA,
    2. Winner WE,
    3. Pell EJ
    1. Rundel PW.
    1991. 16—Shrub life forms. In: Mooney HA, Winner WE, Pell EJ, editors. Response of plants to multiple stresses: A volume in Pergamon programmed texts. San Diego (CA, USA): Academic Press. p. 345–370. https://doi.org/10.1016/B978-0-08-092483-0.50021-9
  41. ↵
    1. Ryan MG,
    2. Yoder BJ.
    1997. Hydraulic limits to tree height and tree growth. BioScience. 47(4):235–242. https://doi.org/10.2307/1313077
    OpenUrlCrossRefWeb of Science
  42. ↵
    1. Scheffer M,
    2. Vergnon R,
    3. Cornelissen JHC,
    4. Hantson S,
    5. Holmgren M,
    6. van Nes EH,
    7. Xu C.
    2014. Why trees and shrubs but rarely trubs? Trends in Ecology & Evolution. 29(8):433–434. https://doi.org/10.1016/j.tree.2014.06.001
    OpenUrlPubMed
  43. ↵
    1. Shipley B,
    2. Vu TT.
    2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist. 153(2):359–364. https://doi.org/10.1046/j.0028-646X.2001.00320.x
    OpenUrlCrossRefWeb of Science
  44. ↵
    1. Sjöman H,
    2. Anderson A.
    2024. The essential tree selection guide: For climate resilience, carbon storage, species diversity and other ecosystem benefits. London (United Kingdom): Filbert Press. 550 p.
  45. ↵
    1. Sjöman H,
    2. Hirons AD,
    3. Bassuk NL.
    2018. Improving confidence in tree species selection for challenging urban sites: A role for leaf turgor loss. Urban Ecosystems. 21:1171–1188. https://doi.org/10.1007/s11252-018-0791-5
    OpenUrl
  46. ↵
    1. Sjöman H,
    2. Ignell S,
    3. Hirons A.
    2023. Selection of shrubs for urban environments—An evaluation of drought tolerance of 120 species and cultivars. HortScience. 58(5):573–579. https://doi.org/10.21273/HORTSCI17063-22
    OpenUrlCrossRef
  47. ↵
    1. Sjöman H,
    2. Nielsen AB.
    2010. Selecting trees for urban paved sites in Scandinavia—A review of information on stress tolerance and its relation to the requirements of tree planners. Urban Forestry & Urban Greening. 9(4):281–293. https://doi.org/10.1016/j.ufug.2010.04.001
    OpenUrl
  48. ↵
    1. Sjöman H,
    2. Watkins H,
    3. Kelly LJ,
    4. Hirons A,
    5. Kainulainen K,
    6. Martin KWE,
    7. Antonelli A.
    2024. Resilient trees for urban environments: The importance of intraspecific variation. Plants, People, Planet. 6(6):1180–1189. https://doi.org/10.1002/ppp3.10518
    OpenUrl
  49. ↵
    1. Song YG,
    2. Li Y,
    3. Meng HH,
    4. Fragnière Y,
    5. Ge BJ,
    6. Sakio H,
    7. Yousefzadeh H,
    8. Bétrisey S,
    9. Kozlowski G.
    2020. Phylogeny, taxonomy, and biogeography of Pterocarya (Juglandaceae). Plants. 9(11):1524. https://doi.org/10.3390/plants9111524
    OpenUrlPubMed
  50. ↵
    1. Tanentzap AJ,
    2. Mountford EP,
    3. Cooke AS,
    4. Coomes DA.
    2012. The more stems the merrier: Advantages of multi-stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland. Journal of Ecology. 100(1):171–183. https://doi.org/10.1111/j.1365-2745.2011.01879.x
    OpenUrl
  51. ↵
    1. Watkins H,
    2. Hirons A,
    3. Sjöman H,
    4. Cameron R,
    5. Hitchmough JD.
    2021. Can trait-based schemes be used to select species in urban forestry? Frontiers in Sustainable Cities. 3. https://doi.org/10.3389/frsc.2021.654618
  52. ↵
    1. Watkins JHR,
    2. Cameron RWF,
    3. Sjöman H,
    4. Hitchmough JD.
    2020. Using big data to improve ecotype matching for Magnolias in urban forestry. Urban Forestry & Urban Greening. 48:126580. https://doi.org/10.1016/j.ufug.2019.126580
    OpenUrl
  53. ↵
    1. Westoby M.
    1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil. 199:213–227. https://doi.org/10.1023/A:1004327224729
    OpenUrlCrossRefWeb of Science
  54. ↵
    1. Westoby M,
    2. Falster DS,
    3. Moles AT,
    4. Vesk PA,
    5. Wright IJ.
    2002. Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology, Evolution, and Systematics. 33:125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452
    OpenUrlCrossRefWeb of Science
  55. ↵
    1. Gartner BL
    1. Wilson BF.
    1995. 4—Shrub stems: Form and function. In: Gartner BL, editor. Plant stems: Physiology and functional morphology. San Diego (CA, USA): Academic Press. p. 91–102. https://doi.org/10.1016/B978-012276460-8/50006-0
  56. ↵
    1. Wilson JB,
    2. Lee WG.
    2000. C-S-R triangle theory: Communitylevel predictions, tests, evaluation of criticisms, and relation to other theories. Oikos. 91(1):77–96. https://www.jstor.org/stable/3547475
    OpenUrl
  57. ↵
    1. Wright IJ,
    2. Reich PB,
    3. Westoby M
    , et al. 2004. The worldwide leaf economics spectrum. Nature. 428:821–827. https://doi.org/10.1038/nature02403
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Yi C,
    2. Hendrey G,
    3. Niu S,
    4. McDowell N,
    5. Allen CD.
    2022. Tree mortality in a warming world: Causes, patterns, and implications. Environmental Research Letters. 17(3):030201. https://doi.org/10.1088/1748-9326/ac507b
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 4
July 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
Henrik Sjöman, Andrew Hirons, Harry Watkins
Arboriculture & Urban Forestry (AUF) Jul 2025, 51 (4) 329-354; DOI: 10.48044/jauf.2025.014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
Henrik Sjöman, Andrew Hirons, Harry Watkins
Arboriculture & Urban Forestry (AUF) Jul 2025, 51 (4) 329-354; DOI: 10.48044/jauf.2025.014
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conflicts of Interest
    • Appendix
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Right Appraisal for the Right Purpose: Comparing Techniques for Appraising Heritage Trees in Australia and Canada
  • Urban Tree Mortality: The Purposes and Methods for (Secretly) Killing Trees Suggested in Online How-To Videos and Their Diagnoses
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
Show more Articles

Similar Articles

Keywords

  • Climate Change
  • Diversity
  • Plant Selection
  • Urban Environments

© 2025 International Society of Arboriculture

Powered by HighWire