Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Evaluation of Nature-Based and Traditional Solutions for Urban Soil Decompaction

Glynn C. Percival, Sean Graham, Christopher Percival and David Challice
Arboriculture & Urban Forestry (AUF) July 2025, 51 (4) 297-313; DOI: https://doi.org/10.48044/jauf.2025.012
Glynn C. Percival
Bartlett Tree Research Laboratories, Charlotte, NC, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Sean Graham
School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, Scotland
  • Find this author on Google Scholar
  • Search for this author on this site
Christopher Percival
Bartlett Tree Research Laboratory, Cutbush Lane East, Shinfield, Reading, England
  • Find this author on Google Scholar
  • Search for this author on this site
David Challice
Challice Consulting Ltd., Holmwood Farm Grange, Horsham Road, North Holmwood, Dorking, Surrey, England
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Ackerman A,
    2. Crespo A,
    3. Auwaerter J,
    4. Foulds E,
    5. Digit L.
    2021. Using tree modeling applications and game design software to simulate tree mortality and community interaction. Journal of Digital Landscape Architect. 6:163–170. https://doi.org/10.14627/537705013
    OpenUrl
  2. ↵
    Agriculture and Horticulture Development Boad (AHDB). 2018. How to count earth worms. Kenilworth (United Kingdom): AHDB. [Accessed 2023 September 18]. https://ahdb.org.uk/knowledge-library/how-to-count-earthworms
  3. ↵
    Agriculture and Horticulture Development Boad (AHDB). 2019. Biological tests for soil health. Kenilworth (United Kingdom): AHDB. [Accessed 2023 September 18]. https://ahdb.org.uk/knowledge-library/biological-tests-for-soil-health
  4. ↵
    1. Ahmed N,
    2. Al-Mutairi KA.
    2022. Earthworms effect on microbial population and soil fertility as well as their interaction with agriculture practices. Sustainability. 14(13):7803. https://doi.org/10.3390/su14137803
    OpenUrl
  5. ↵
    1. Awmack CS,
    2. Mondor EB,
    3. Lindroth RL.
    2007. Forest understory clover populations in enriched CO2 and O3 atmospheres: Interspecific, intraspecific, and indirect effects. Environmental Experimental Botany. 59(3):340–346. https://doi.org/10.1016/j.envexpbot.2006.04.003
    OpenUrl
  6. ↵
    1. Barré P,
    2. McKenzie BM,
    3. Hallett PD.
    2009. Earthworms bring compacted and loose soil to a similar mechanical state. Soil Biology and Biochemistry. 41(3):656–658. https://doi.org/10.1016/j.soilbio.2008.12.015
    OpenUrl
  7. ↵
    1. Bastin JF,
    2. Finegold Y,
    3. Garcia C,
    4. Mollicone D,
    5. Rezende M,
    6. Routh D,
    7. Zohner CM,
    8. Crowther TW.
    2019. The global tree restoration potential. Science. 365(6448):76–79. https://doi.org/10.1126/science.aax0848
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Beniston J,
    2. Lal R
    1. Beniston J,
    2. Lal R.
    2012. Improving soil quality for urban agriculture in the North Central US. In: Beniston J, Lal R, editors. Carbon sequestration in urban ecosystems. Dordrecht (Netherlands): Springer. p. 279–313. https://doi.org/10.1007/978-94-007-2366-5_15
  9. ↵
    1. Blouin M,
    2. Hodson ME,
    3. Delgado EA,
    4. Baker G,
    5. Brussaard L,
    6. Butt KR,
    7. Dai J,
    8. Dendooven L,
    9. Peres G,
    10. Tondoh JE,
    11. Cluzeau D,
    12. Brun JJ.
    2013. A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science. 64(2):161–182. https://doi.org/10.1111/ejss.12025
    OpenUrl
  10. ↵
    1. Bottinelli N,
    2. Henry des Tureaux T,
    3. Hallaire V,
    4. Mathieu J,
    5. Benard Y,
    6. Duc Tran T,
    7. Jouquet P.
    2010. Earthworms accelerate soil porosity turnover under watering conditions. Geoderma. 156(1-2):43–47. https://doi.org/10.1016/j.geoderma.2010.01.006
    OpenUrlGeoRef
  11. ↵
    1. Brtnicky M,
    2. Kintl A,
    3. Hammerschmiedt T,
    4. Mustafa A,
    5. Elbl J,
    6. Kucerik J,
    7. Vyhnanek T,
    8. Skladanka J,
    9. Hunady I,
    10. Holatko J.
    2021. Clover species specific influence on microbial abundance and associated enzyme activities in rhizosphere and non-rhizosphere soils. Agronomy. 11(11):2214. https://doi.org/10.3390/agronomy11112214
    OpenUrl
  12. ↵
    1. Butt KR.
    2008. Earthworms in soil restoration: Lessons learned from United Kingdom case studies of land reclamation. Restoration Ecology. 16(4):637–641. https://doi.org/10.1111/j.1526-100X.2008.00483.x
    OpenUrl
  13. ↵
    1. Butt KR,
    2. Frederickson J,
    3. Morris RM.
    1995. An earthworm cultivation and soil inoculation technique for land restoration. Ecological Engineering. 4(1):1–9. https://doi.org/10.1016/0925-8574(93)E0053-S
    OpenUrl
  14. ↵
    1. Capowiez Y,
    2. Sammartino S,
    3. Cadoux S,
    4. Bouchant P,
    5. Guy R,
    6. Boizard H.
    2012. Roles of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Biology and Biochemistry. 55:93–103. https://doi.org/10.1016/j.soilbio.2012.06.013
    OpenUrl
  15. ↵
    1. Castellari S,
    2. Zandersen M,
    3. Davis M,
    4. Veerkamp C,
    5. Forster J,
    6. Marttunen M,
    7. Mysiak J,
    8. Vandewalle M,
    9. Medri S,
    10. Picatoste JR.
    2021. Nature-based solutions in Europe: Policy, knowledge and practice for climate change adaptation and disaster risk reduction. Copenhagen (Denmark): European Environment Agency. No 01/2021. 164 p. https://doi.org/10.2800/919315
  16. ↵
    1. Chalker-Scott L.
    2007. Impact of mulches on landscape plants and the environment—A review. Journal of Environmental Horticulture. 25(4):239–249. https://doi.org/10.24266/0738-2898-25.4.239
    OpenUrl
  17. ↵
    1. Chauhan PR.
    2014. Role of earthworms in soil fertility and factors affecting their population dynamics: A review. International Journal of Research. 1(6):642–649. https://journals.pen2print.org/index.php/ijr/article/view/311
    OpenUrl
  18. ↵
    1. Cimburova Z,
    2. Pont MB.
    2021. Location matters. A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecosystem Services. 50:101296. https://doi.org/10.1016/j.ecoser.2021.101296
    OpenUrl
  19. ↵
    1. Cong C,
    2. Pan H,
    3. Page J,
    4. Barthel S,
    5. Kalantari Z.
    2023. Modeling place-based nature-based solutions to promote urban carbon neutrality. Ambio. 52:1297–1313. https://doi.org/10.1007/s13280-023-01872-x
    OpenUrl
  20. ↵
    1. Williams MJWM
    1. Crush JR.
    1987. Nitrogen fixation. In: Williams MJWM, editor. White clover. Wallingford (United Kingdom): CAB International. p. 185–201.
  21. ↵
    1. Day SD,
    2. Bassuk NL.
    1994. A review of the effects of soil compaction and amelioration treatments on landscape trees. Journal of Arboriculture. 20(1):9–17. https://doi.org/10.48044/jauf.1994.003
    OpenUrl
  22. ↵
    1. Day SD,
    2. Bassuk NL,
    3. van Es H.
    1995. Effects of four compaction remediation methods for landscape trees on soil aeration, mechanical impedance and tree establishment. Journal of Environmental Horticulture. 13(2):64–71. https://doi.org/10.24266/0738-2898-13.2.64
    OpenUrl
  23. ↵
    1. Day SD,
    2. Harris RJ.
    2008. Growth, survival, and root system morphology of deeply planted Corylus colurna 7 years after transplanting and the effects of root collar excavation. Urban Forestry & Urban Greening. 7(2):119–128. https://doi.org/10.1016/j.ufug.2007.12.004
    OpenUrl
  24. ↵
    1. Day SD,
    2. Watson G,
    3. Wiseman EP,
    4. Harris RJ.
    2009. Causes and consequences of deep structural roots in urban trees: From nursery production to landscape establishment. Arboriculture & Urban Forestry. 35(4):182–191. https://doi.org/10.48044/jauf.2009.031
    OpenUrl
  25. ↵
    1. Deguchi S,
    2. Shimazaki Y,
    3. Uozumi S,
    4. Tawaraya K,
    5. Kawamoto H,
    6. Tanaka O.
    2007. White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant and Soil. 291:291–299. https://doi.org/10.1007/s11104-007-9194-8
    OpenUrlCrossRef
  26. ↵
    1. Elderbrock E,
    2. Enright C,
    3. Lynch KA,
    4. Rempel AR.
    2020. A guide to public green space planning for urban ecosystem services. Land. 9(10):391. https://doi.org/10.3390/land9100391
    OpenUrl
  27. ↵
    European Commission. 2015. Towards an EU research and innovation policy agenda for nature-based solutions and re-naturing cities—Final report of the horizon 2020 expert group on nature-based solutions and re-naturing cities (full version). European Commission Publications Office. 76 p. https://doi.org/10.2777/765301
  28. ↵
    European Commission. 2016. Policy topics: Nature-based solutions. European Commission. [Accessed 2023 September 18]. https://ec.europa.eu/research/environment/index.cfm?pg=nbs
  29. ↵
    1. Ferreira CSS,
    2. Kalantari Z,
    3. Hartmann T,
    4. Pereira P
    1. Ferreira CSS,
    2. Potočki K,
    3. Kapović-Solomun M,
    4. Kalantari Z.
    2021. Nature-based solutions for flood mitigation and resilience in urban areas. In: Ferreira CSS, Kalantari Z, Hartmann T, Pereira P editors. Nature-based solutions for flood mitigation: Environmental and socio-economic aspects. The Handbook of Environmental Chemistry. Vol 107. Cham (Switzerland): Springer, https://doi.org/10.1007/698_2021_758
  30. ↵
    1. Fite K.
    2008. Impacts of Root Invigoration and its individual components on the performance of red maple (Acer rubrum) [dissertation]. Clemson (SC, USA): Clemson University. 137 p. https://open.clemson.edu/all_dissertations/260
  31. ↵
    1. Fite K,
    2. Smiley ET,
    3. McIntyre J,
    4. Wells CE.
    2011. Evaluation of a soil decompaction and amendment process for urban trees. Arboriculture & Urban Forestry. 37(4):293–300. https://doi.org/10.48044/jauf.2011.038
    OpenUrl
  32. ↵
    1. Gliński J,
    2. Lipiec J.
    1990. Soil physical conditions and plant roots. 1st Ed. Boca Raton (FL, USA): CRC Press. 260 p. https://doi.org/10.1201/9781351076708
  33. ↵
    1. Grey V,
    2. Livesley SJ,
    3. Fletcher TD,
    4. Szota C.
    2018. Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landscape and Urban Planning. 178:122–129. https://doi.org/10.1016/j.landurbplan.2018.06.002
    OpenUrl
  34. ↵
    1. Haruna SI,
    2. Anderson SH,
    3. Udawatta RP,
    4. Clark JG,
    5. Phillips NC,
    6. Cui S,
    7. Gao Y.
    2020. Improving soil physical properties through the use of cover crops: A review. Agrosystems, Geosciences & Environment. 3(1):e20105. https://doi.org/10.1002/agg2.20105
    OpenUrl
  35. ↵
    1. Hascher W,
    2. Wells CE.
    2007. Effects of soil decompaction and amendment on root growth and architecture in red maple (Acer rubrum). Arboriculture & Urban Forestry. 33(6):428–432. https://doi.org/10.48044/jauf.2007.049
    OpenUrl
  36. ↵
    1. Herron J,
    2. Hennessy D,
    3. Curran TP,
    4. Moloney A,
    5. O’Brien D.
    2021. The simulated environmental impact of incorporating white clover into pasture-based dairy production systems. Journal of Dairy Science. 104(7):7902–7918. https://doi.org/10.3168/jds.2020-19077
    OpenUrlPubMed
  37. ↵
    Intergovernmental Panel on Climate Change (IPCC). 2018. Global warming of 1.5 °C. Cambridge (United Kingdom) and New York (NY, USA): Cambridge University Press. https://doi.org/10.1017/9781009157940.001
  38. ↵
    1. Keeler BL,
    2. Hamel P,
    3. McPhearson T,
    4. Hamann MH,
    5. Donahue ML,
    6. Prado KAM,
    7. Arkema KK,
    8. Bratman GN,
    9. Brauman KA,
    10. Finlay JC,
    11. Guerry AD,
    12. Hobbie SE,
    13. Johnson JA,
    14. MacDonald GK,
    15. McDonald RI,
    16. Neverisky N,
    17. Wood SA.
    2019. Social-ecological and technological factors moderate the value of urban nature. Nature Sustainability. 2(1):29–38. https://doi.org/10.1038/s41893-018-0202-1
    OpenUrl
  39. ↵
    1. Klopp H.
    2023. Bulk density is an indicator of soil health. Brookings (SD, USA): South Dakota State University Extension Office. [Updated 2023 September 22; Accessed 2025 February 13]. https://extension.sdstate.edu/bulk-density-indicator-soil-health
  40. ↵
    1. Kong X,
    2. Zhang X,
    3. Xu C,
    4. Hauer RJ.
    2021. Review on urban forests and trees as nature-based solutions over 5 years. Forests. 12(11):1453. https://doi.org/10.3390/f12111453
    OpenUrl
  41. ↵
    1. Kuncheva GS.
    2015. Comparative study of microbial activity and chemical properties of soil by implementing anti-erosion measure vertical mulching with organic residues. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 63(1):59–63. https://doi.org/10.11118/actaun201563010059
    OpenUrl
  42. ↵
    1. Horton CG
    1. Le Bayon RC,
    2. Bullinger-Weber G,
    3. Schomburg A,
    4. Turberg P,
    5. Schlaepfer R,
    6. Guenat C.
    2017. Earthworms as ecosystem engineers: A review. In: Horton CG, editor. Earthworms: Types, roles and research. Hauppauge (NY, USA): NOVA Publishers. p. 129–177.
  43. ↵
    1. López-Díaz ML,
    2. Rigueiro-Rodríguez A,
    3. Mosquera-Losada MR.
    2009. Influence of pasture botanical composition and fertilization treatments on tree growth. Forest Ecology and Management. 257(4):363–1372. https://doi.org/10.1016/j.foreco.2008.12.001
    OpenUrl
  44. ↵
    1. Maréchal J,
    2. Hoeffner K,
    3. Marié X,
    4. Cluzeau D.
    2021. Response of earthworm communities to soil engineering and soil isolation in urban landscapes. Ecological Engineering. 169:106307. https://doi.org/10.1016/j.ecoleng.2021.106307
    OpenUrl
  45. ↵
    1. Miller RW,
    2. Hauer RJ,
    3. Werner LP.
    2015. Urban forestry: Planning and managing urban greenspaces. Long Grove (IL, USA): Waveland Press, Inc. 560 p.
  46. ↵
    1. Miron J,
    2. Millward AA.
    2024. Forecasting tree root architecture as a complement to proactive urban green space design. Arboriculture & Urban Forestry. 50(3):201–223. https://doi.org/10.48044/jauf.2024.005
    OpenUrl
  47. ↵
    1. Carroll GD
    1. Morris LA,
    2. Miller M,
    3. Ingerson M,
    4. Figueroa D,
    5. Orr M.
    2009. Soil compaction and response to amelioration treatments around established trees in an urban campus environment. In: Carroll GD, editor. Proceedings of the 2009 Georgia Water Resources Conference. 2009 April 27–29; Athens (GA, US): The University of Georgia: Warnell School of Forestry and Natural Resources. p. 470–474.
  48. ↵
    1. Nandhini P,
    2. Senthamizh Selvi B,
    3. Shoba N,
    4. Maragatham S.
    2021. Study of vertical mulching on physico chemical characters of tender nut water in coconut (Cocos nucífera L.) cv. COD. Journal of Pharmacognosy and Phytochemistry. 10(1): 1796–1800.
    OpenUrl
  49. ↵
    1. Ojha RB,
    2. Devkota D.
    2014. Earthworms: Soil and ecosystem engineers—A review. World Journal of Agricultural Research. 2(6):257–260. https://doi.org/10.12691/wjar-2-6-1
    OpenUrl
  50. ↵
    1. Paembonan SA,
    2. Hagihara A,
    3. Hozumi K.
    1990. Photosynthesis of a Hinoki tree. Transactions of the 38th Annual Meeting of the Chubu Branch of the Japanese Forestry Society. p. 63–66.
  51. ↵
    1. Parveaud CE,
    2. Gomez C,
    3. Bussi C,
    4. Capowiez Y.
    2012. Effect of white clover (Trifolium repens cv. Huia) cover crop on agronomic properties and soil biology in an organic peach orchard. ActaHorticulturae. 933:373–380. https://doi.org/10.17660/ActaHortic.2012.933.48
    OpenUrl
  52. ↵
    1. Percival GC,
    2. Graham S,
    3. Franklin E.
    2023. The influence of soil decompaction and amendments on soil quality. Arboriculture & Urban Forestry. 49(4):179–189. https://doi.org/10.48044/jauf.2023.012
    OpenUrl
  53. ↵
    1. Rahman MA,
    2. Moser A,
    3. Anderson M,
    4. Zhang C,
    5. Rötzerb T,
    6. Pauleit S.
    2019. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban Forestry & Urban Greening. 38:22–32. https://doi.org/10.1016/j.ufug.2018.11.002
    OpenUrl
  54. ↵
    1. Reid G,
    2. Cox J.
    2005. Soil biology testing. State of New South Wales (NSW, Australia): Dept of Primary Industry. [Accessed 2020 July]. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/41643/Soil_biology_testing.pdf
  55. ↵
    1. Riches D,
    2. Porter IJ,
    3. Oliver DP,
    4. Bramley RGV,
    5. Rawnsley B,
    6. Edwards J,
    7. White RE.
    2013. Review: Soil biological properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research. 19(3):311–323. https://doi.org/10.1111/ajgw.12034
    OpenUrl
  56. ↵
    1. Ruiz SA,
    2. Bickel S,
    3. Or D.
    2021. Global earthworm distribution and activity windows based on soil hydromechanical constraints. Communications Biology. 4:612. https://doi.org/10.1038/s42003-021-02139-5
    OpenUrlPubMed
  57. ↵
    1. Sax MS,
    2. Bassuk N,
    3. van Es H,
    4. Rakow D.
    2017. Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urban Forestry & Urban Greening. 24:149–156. https://doi.org/10.1016/j.ufug.2017.03.023
    OpenUrl
  58. ↵
    1. Scharenbroch BC.
    2009. A meta-analysis of studies published in Arboriculture & Urban Forestry relating to organic materials and impacts on soil, tree, and environmental properties. Arboriculture & Urban Forestry. 35(5):221–231. https://doi.org/10.48044/jauf.2009.036
    OpenUrl
  59. ↵
    1. Scharenbroch BC,
    2. Watson GW.
    2014. Wood chips and compost improve soil quality and increase growth of Acer rubrum and Betula nigra in compacted urban soil. Arboriculture & Urban Forestry. 40(6):319–331 https://doi.org/10.48044/jauf.2014.030
    OpenUrl
  60. ↵
    1. Hussain C,
    2. Hait S
    1. Singh S,
    2. Sinha RK.
    2022. Vermicomposting of organic wastes by earthworms: Making wealth from waste by converting ‘garbage into gold’ for farmers. In: Hussain C, Hait S, editors. Advanced organic waste management. Cambridge (MA, USA): Elsevier Inc. p. 93–120. https://doi.org/10.1016/B978-0-323-85792-5.00004-6
  61. ↵
    1. Smetak KM,
    2. Johnson-Maynard JL,
    3. Lloyd JE.
    2007. Earthworm population density and diversity in different-aged urban systems. Applied Soil Ecology. 37(1-2):161–168. https://doi.org/10.1016/j.apsoil.2007.06.004
    OpenUrl
  62. ↵
    1. Smiley ET.
    2001. Terravent™: Soil fracture patterns and impact on bulk density. Journal of Arboriculture. 27(6):326–330. https://doi.org/10.48044/jauf.2001.036
    OpenUrl
  63. ↵
    Sustainable Agriculture Research and Education (SARE). 2007. White clover. In: Managing cover crops profitably. 3rd Ed. College Park (MD, USA): SARE Outreach. p. 167–184. https://www.sare.org/publications/managing-cover-crops-profitably/legume-cover-crops/white-clover
  64. ↵
    1. Thomsen EO,
    2. Reeve JR,
    3. Culumber CM,
    4. Alston DG,
    5. Newhall R,
    6. Cardon G.
    2019. Simple soil tests for on-site evaluation of soil health in orchards. Sustainability. 11(21):6009. https://doi.org/10.3390/su11216009
    OpenUrl
  65. ↵
    1. Tytherleigh A,
    2. Peel S,
    3. Shaw G,
    4. Rochford A.
    2008. Soil sampling for habitat recreation and restoration. Natural England Technical Information Note TIN035. York (United Kingdom): Natural England. 3 p. https://publications.naturalengland.org.uk/publication/31015
  66. ↵
    1. Watson GW,
    2. Hewitt AM,
    3. Custic M,
    4. Lo M.
    2014. The management of tree root systems in urban and suburban settings: A review of soil influence on root growth. Arboriculture & Urban Forestry. 40(4):193–217. https://doi.org/10.48044/jauf.2014.021
    OpenUrl
  67. ↵
    1. McWilliams W,
    2. Roesch FA
    1. Winn MF,
    2. Araman PA.
    2010. A tool to determine crown and plot canopy transparency for forest inventory and analysis phase 3 plots using digital photographs. In: McWilliams W, Roesch FA, editors. Monitoring Across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists. e-General Technical Report SRS-157. Asheville (NC, US): USDA Forest Service, Southern Research Station. p. 217–222. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs157/gtr_srs157_217.pdf
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 4
July 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of Nature-Based and Traditional Solutions for Urban Soil Decompaction
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Evaluation of Nature-Based and Traditional Solutions for Urban Soil Decompaction
Glynn C. Percival, Sean Graham, Christopher Percival, David Challice
Arboriculture & Urban Forestry (AUF) Jul 2025, 51 (4) 297-313; DOI: 10.48044/jauf.2025.012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evaluation of Nature-Based and Traditional Solutions for Urban Soil Decompaction
Glynn C. Percival, Sean Graham, Christopher Percival, David Challice
Arboriculture & Urban Forestry (AUF) Jul 2025, 51 (4) 297-313; DOI: 10.48044/jauf.2025.012
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Conflicts of Interest
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Right Appraisal for the Right Purpose: Comparing Techniques for Appraising Heritage Trees in Australia and Canada
  • Urban Tree Mortality: The Purposes and Methods for (Secretly) Killing Trees Suggested in Online How-To Videos and Their Diagnoses
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
Show more Articles

Similar Articles

Keywords

  • Compaction
  • Cover Crop
  • Plant Health Care
  • Root Growth
  • Soil Biological Activity
  • Soil Management
  • Urban Soils

© 2025 International Society of Arboriculture

Powered by HighWire