Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Detection of Ganoderma australe Decay in Three Acacia confusa Trees: A Case Study

Cheng-Jung Lin, Po-Hong Lin, Chieh-Yu Chang and Qi-Zhu Gong
Arboriculture & Urban Forestry (AUF) March 2025, 51 (2) 154-168; DOI: https://doi.org/10.48044/jauf.2025.003
Cheng-Jung Lin
Forest Products Utilization Division, Taiwan Forestry Research Institute, 53 Nanhai Rd, Taipei, Taiwan, Department of Forestry and Natural Resources, National Ilan University, Yilan, Taiwan
Roles: Senior Researcher, Adjunct professor
  • Find this author on Google Scholar
  • Search for this author on this site
Po-Hong Lin
Forest Products Utilization Division, Taiwan Forestry Research Institute, 53 Nanhai Rd, Taipei, Taiwan
Roles: Assistant Researcher
  • Find this author on Google Scholar
  • Search for this author on this site
Chieh-Yu Chang
Forest Products Utilization Division, Taiwan Forestry Research Institute, 53 Nanhai Rd, Taipei, Taiwan
Roles: Research Assistant
  • Find this author on Google Scholar
  • Search for this author on this site
Qi-Zhu Gong
Forest Products Utilization Division, Taiwan Forestry Research Institute, 53 Nanhai Rd, Taipei, Taiwan
Roles: Research Assistant
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Ross RJ
    1. Allison RB,
    2. Wang X.
    2015. Nondestructive testing in the urban forest. In: Ross RJ, editor. Nondestructive evaluation of wood. 2nd Ed. Madison (WI, USA): USDA Forest Service, Forest Products Laboratory. General Technical Report FPL-GTR-238. p. 77–86. https://www.fpl.fs.usda.gov/documnts/fplgtr/fpl_gtr238.pdf
  2. ↵
    1. Bethge K,
    2. Mattheck C,
    3. Hunger E.
    1996. Equipment for detection and evaluation of incipient decay in trees. Arboricultural Journal. 20(1):13–37. https://doi.org/10.1080/03071375.1996.9747095
    OpenUrl
  3. ↵
    1. Brazee NJ,
    2. Marra RE,
    3. Göcke L,
    4. van Wassenaer P.
    2011. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry: An International Journal of Forest Research. 84(1):33–39. https://doi.org/10.1093/forestry/cpq040
    OpenUrl
  4. ↵
    1. Deflorio G,
    2. Fink S,
    3. Schwarze FWMR.
    2008. Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Science and Technology. 42:117–132. https://doi.org/10.1007/s00226-007-0159-0
    OpenUrl
  5. ↵
    1. Downes GM,
    2. Lausberg M,
    3. Potts BM,
    4. Pilbeam DL,
    5. Bird M,
    6. Bradshaw B.
    2018. Application of the IML Resistograph to the infield assessment of basic density in plantation eucalypts. Australian Forestry. 81(3):177–185. https://doi.org/10.1080/00049158.2018.1500676
    OpenUrl
  6. ↵
    FAKOPP. 2020. Manual for the ArborSonic3D acoustic tomograph. Agfalva (Hungary): Fakopp Enterprise Bt. User’s manual v6.5. 63 p. https://files.fakopp.com/upload/manuals/Manual.en-USv6.2.3.pdf
  7. ↵
    1. Frontini F.
    2017. In situ evaluation of a timber structure using a drilling resistance device. Case study: Kjøpmannsgata 27, Trondheim (Norway). International Wood Products Journal. 8(sup1): 14–20. https://doi.org/10.1080/20426445.2016.1275092
    OpenUrl
  8. ↵
    1. Fundova I,
    2. Funda T,
    3. Wu HX.
    2018. Non-destructive wood density assessment of Scots pine (Pinus sylvestris L.) using Resistograph and Pilodyn. PLOS ONE. 13(9):e0204518. https://doi.org/10.1371/journal.pone.0204518
    OpenUrlPubMed
  9. ↵
    1. Gilbert EA,
    2. Smiley ET.
    2004. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). Journal of Arboriculture. 30(5):277–280. https://doi.org/10.48044/jauf.2004.033
    OpenUrl
  10. ↵
    1. Gilbert GS,
    2. Ballesteros JO,
    3. Barrios-Rodriguez CA,
    4. Bonadies EF,
    5. Cedeño-Sánchez ML,
    6. Fossatti-Caballero NJ,
    7. Trejos-Rodríguez MM,
    8. Pérez-Suñiga JM,
    9. Holub-Young KS,
    10. Henn LAW,
    11. Thompson JB,
    12. García-López CG,
    13. Romo AC,
    14. Johnston DC,
    15. Barrick PP,
    16. Jordan FA,
    17. Herschovich S,
    18. Russo N,
    19. Sánchez JD,
    20. Fábrega JP,
    21. Lumpkin R,
    22. McWilliams HA,
    23. Chester KN,
    24. Burgos AC,
    25. Wong EB,
    26. Diab JH,
    27. Renteria SA,
    28. Harrower JT,
    29. Hooton DA,
    30. Glenn TC,
    31. Faircloth BC,
    32. Hubbell SP.
    2016. Use of sonic tomography to detect and quantify wood decay in living trees. Applications in Plant Sciences. 4(12):1600060. https://doi.org/10.3732%2Fapps.1600060
    OpenUrl
  11. ↵
    1. Heikura T,
    2. Terho M,
    3. Perttunen J,
    4. Sievänen R.
    2008. A computerbased tool to link decay information to 3D architecture of urban trees. Urban Forestry & Urban Greening. 7(4):233–239. https://doi.org/10.1016/j.ufug.2008.07.001
    OpenUrl
  12. ↵
    1. Johnstone D,
    2. Moore G,
    3. Tausz M,
    4. Nicolas M.
    2010. The measurement of wood decay in landscape trees. Arboriculture & Urban Forestry. 36(3):121–127. https://doi.org/10.48044/jauf.2010.016
    OpenUrl
  13. ↵
    1. Juhásová G,
    2. Adamíková K,
    3. Kobza M,
    4. Hrubík P,
    5. Serbinová K,
    6. Hanzel E.
    2007. Horticultural evaluation of woody plants in the National Cemetery Martin, Slovakia. Folia Oecologica. 34(1):9–15. https://www.researchgate.net/publication/298683441
    OpenUrl
  14. ↵
    1. Kaestner A,
    2. Niemz P.
    2004. Non-destructive methods to detect decay in trees. Wood Research. 49(2):17–28. https://www.researchgate.net/publication/289872726
    OpenUrl
  15. ↵
    1. Karlinasari L,
    2. Danu D,
    3. Nandika D,
    4. Ipb K,
    5. Bogor D,
    6. Tujaman M.
    2017. Drilling resistance method to evaluate density and hardness properties of resinous wood of agarwood (Aquilaria malaccensis). Wood Research. 62(5):683–690. https://www.researchgate.net/publication/321061981
    OpenUrl
  16. ↵
    1. Karlinasari L,
    2. Putri N,
    3. Turjaman M,
    4. Wahyudi I,
    5. Nandika D.
    2016. Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.). Turkish Journal of Agriculture and Forestry. 40(5):696–704. https://doi.org/10.3906/tar-1511-74
    OpenUrl
  17. ↵
    1. Li H,
    2. Zhang X,
    3. Li Z,
    4. Wen J,
    5. Tan X.
    2022. A review of research on tree risk assessment methods. Forests. 13(1):1556. https://doi.org/10.3390/f13101556
    OpenUrl
  18. ↵
    1. Li L,
    2. Wang X,
    3. Wang L,
    4. Allison RB.
    2012. Acoustic tomography in relation to 2D ultrasonic velocity and hardness mappings. Wood Science and Technology 46:551–561. https://doi.org/10.1007/s00226-011-0426-y
    OpenUrl
  19. ↵
    1. Ross RJ,
    2. Wang X,
    3. Brashaw BK
    1. Liang S,
    2. Wang X,
    3. Wiedenbeck J,
    4. Cai Z,
    5. Fu F.
    2008. Evaluation of acoustic tomography for tree decay detection. In: Ross RJ, Wang X, Brashaw BK, editors. Proceedings of the 15th international symposium on nondestructive testing of wood. 2007 September 10–12; Duluth, Minnesota, USA. Madison (WI, USA): Forest Products Society. 49–54. https://www.nrs.fs.usda.gov/pubs/jrnl/2008/nrs_2008_liang_001.pdf
  20. ↵
    1. Lin CJ,
    2. Huang YH,
    3. Huang GS,
    4. Wu ML.
    2015. Detection and evaluation of termite damage in Norfolk island pine (Araucaria heteaophylla) trees by nondestructive techniques. Research Report on Experimental Forest, College of Bioresources and Agriculture, National Taiwan University. 29(2):79–90. https://doi.org/10.6542/EFNTU.2015.29(2).2
    OpenUrl
  21. ↵
    1. Lin CJ,
    2. Huang YH,
    3. Huang GS,
    4. Wu ML.
    2016a. Detection of decay damage in iron-wood living trees by nondestructive techniques. Journal of Wood Science. 62:42–51. https://doi.org/10.1007/s10086-015-1520-9
    OpenUrl
  22. ↵
    1. Lin CJ,
    2. Huang YH,
    3. Huang GS,
    4. Wu ML,
    5. Yang TH.
    2016b. Detection of termite damage in hoop pine (Araucaria cunninghamii) trees using nondestructive evaluation techniques. Journal of Tropical Forest Science. 28(1):79–87.
    OpenUrl
  23. ↵
    1. Lin CJ,
    2. Kao YC,
    3. Lin TT,
    4. Tsai MJ,
    5. Wang SY,
    6. Lin LD,
    7. Wang YN,
    8. Chan MH.
    2008. Application of an ultrasonic tomographic technique for detecting defects in standing trees. International Biodeterioration & Biodegradation. 62(4):434–441. https://doi.org/10.1016/j.ibiod.2007.09.007
    OpenUrl
  24. ↵
    1. Lin CJ,
    2. Lee CJ,
    3. Tsai MJ.
    2016c. Inspection and evaluation of decay damage in Japanese cedar trees through nondestructive techniques. Arboriculture & Urban Forestry. 42(3):201–212. https://doi.org/10.48044/jauf.2016.018
    OpenUrl
  25. ↵
    1. Lin CJ,
    2. Lin PH,
    3. Chang CY,
    4. Yeh JL.
    2023. Detection of decay-induced damage in living camphor trees using stress wave tomography. Applied Science and Management Research. 10(1):59–66. https://doi.org/10.6511/ASMR.202309_10(1).0007
    OpenUrl
  26. ↵
    1. Luley CJ.
    2022. Wood decay fungi common to the Northeast and Central United States. 2nd Ed. Naples (NY, USA): Urban Forest Diagnostics LLC. 145 p.
  27. ↵
    1. Lonsdale D
    1. Mattheck C,
    2. Breloer H.
    1994. The body language of trees: A handbook for failure analysis. In: Lonsdale D, editor. Great Britain Department of the Environment Research for Amenity Trees, Volume 4. 3rd Ed. London (United Kingdom): Her Majesty’s Stationery Office. 240 p.
    OpenUrl
  28. ↵
    1. Ostrovský R,
    2. Kobza M,
    3. Gažo J.
    2017. Extensively damaged trees tested with acoustic tomography considering tree stability in urban greenery. Trees. 31:1015–1023. https://doi.org/10.1007/s00468-017-1526-6
    OpenUrl
  29. ↵
    1. Pokorny J,
    2. O’Brien J,
    3. Hauer R,
    4. Johnson G,
    5. Albers J,
    6. Bedker P,
    7. Mielke M.
    2003. Urban tree risk management: A community guide to program design and implementation. St. Paul (MN, USA): USDA Forest Service Northeastern Area. NA-TP-03-03. 204 p. https://www.fs.usda.gov/nrs/pubs/na/NA-TP-03-03.pdf
  30. ↵
    1. Rabe C,
    2. Ferner D,
    3. Fink S,
    4. Schwarze FWMR.
    2004. Detection of decay in trees with stress waves and interpretation of acoustic tomograms. Arboricultural Journal. 28(1-2):3–19. https://doi.org/10.1080/03071375.2004.9747399
    OpenUrl
  31. ↵
    1. Rayner ADM,
    2. Boddy L.
    1988. Fungal decomposition of wood: Its biology and ecology. Chichester (United Kingdom): John Wiley & Sons, Ltd. 587 p.
  32. ↵
    1. Seta GW, Widiyatno,
    2. Hidayati F,
    3. Na’iem M.
    2021. Impact of thinning and pruning on tree growth, stress wave velocity, and pilodyn penetration response of clonal teak (Tectona grandis) plantation. Forest Science and Technology. 17(2): 57–66. https://doi.org/10.1080/21580103.2021.1911865
    OpenUrl
  33. ↵
    1. Sharapov E,
    2. Brischke C,
    3. Militz H.
    2020. Assessment of preservative-treated wooden poles using drilling-resistance measurements. Forests. 11(1):20. https://doi.org/10.3390/f11010020
    OpenUrl
  34. ↵
    1. Sharapov E,
    2. Brischke C,
    3. Militz H,
    4. Smirnova E.
    2018. Effects of white rot and brown rot decay on the drilling resistance measurements in wood. Holzforschung. 72(10):905–913. https://doi.org/10.1515/hf-2017-0204
    OpenUrl
  35. ↵
    1. Shigo AL.
    1989. Tree pruning: A worldwide photo guide. 3rd Ed. Durham (NH, USA): Shigo and Trees, Associates. 180 p.
  36. ↵
    1. Soge AO,
    2. Popoola OI,
    3. Adetoyinbo AA.
    2020. Detection of wood decay and cavities in living trees: A review. Canadian Journal of Forest Research. 51(7):937–947. https://doi.org/10.1139/cjfr-2020-0340
    OpenUrl
  37. ↵
    1. Son J,
    2. Kim S,
    3. Shin J,
    4. Lee G,
    5. Kim H.
    2021. Reliability of nondestructive sonic tomography for detection of defects in old Zelkova serrata (Thunb.) Makino trees. Forest Science and Technology. 17(3):110–118. https://doi.org/10.1080/21580103.2021.1946169
    OpenUrl
  38. ↵
    1. Tallavo F,
    2. Cascante G,
    3. Pandey MD.
    2012. A novel methodology for condition assessment of wood poles using ultrasonic testing. NDT & E International. 52:149–156. https://doi.org/10.1016/j.ndteint.2012.08.002
    OpenUrl
  39. ↵
    1. Terho M,
    2. Hantula J,
    3. Hallaksela A-M.
    2007. Occurrence and decay patterns of common wood-decay fungi in hazardous trees felled in the Helsinki City. Forest Pathology. 37(6):420–432. https://doi.org/10.1111/j.1439-0329.2007.00518.x
    OpenUrl
  40. ↵
    1. Wang X,
    2. Allison RB.
    2008. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture & Urban Forestry. 34(1):1–4. https://doi.org/10.48044/jauf.2008.001
    OpenUrl
  41. ↵
    1. Wang X,
    2. Allison RB,
    3. Wang L,
    4. Ross RJ.
    2007. Acoustic tomography for decay detection in red oak trees. Madison (WI, USA): USDA Forest Service, Forest Products Laboratory. FPL-RP-642. 7 p. https://doi.org/10.2737/FPL-RP-642
  42. ↵
    1. Wang X,
    2. Wiedenbeck J,
    3. Liang S.
    2009. Acoustic tomography for decay detection in black cherry trees. Wood and Fiber Science. 41(2):127–137. https://www.fpl.fs.usda.gov/documnts/pdf2009/fpl_2009_wang001.pdf
    OpenUrl
  43. ↵
    1. Wang X,
    2. Wiedenbeck J,
    3. Ross RJ,
    4. Forsman JW,
    5. Erickson JR,
    6. Pilon C,
    7. Brashaw BK.
    2005. Nondestructive evaluation of incipient decay in hardwood logs. Madison (WI, USA): USDA Forest Service, Forest Products Laboratory. FPL-GTR-162. 11 pp. https://doi.org/10.2737/FPL-GTR-162
  44. ↵
    1. Yasuda Y,
    2. Iki T,
    3. Takashima Y,
    4. Takahashi M,
    5. Hiraoka Y,
    6. Mishima K.
    2021. Genetic gains in wood property can be achieved by indirect selection and nondestructive measurements in full-sib families of Japanese cedar (Cryptomeria japonica. D. Don) plus tree clones. Annals of Forest Science. 78:50. https://doi.org/10.1007/s13595-021-01064-1
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 2
March 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Detection of Ganoderma australe Decay in Three Acacia confusa Trees: A Case Study
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Detection of Ganoderma australe Decay in Three Acacia confusa Trees: A Case Study
Cheng-Jung Lin, Po-Hong Lin, Chieh-Yu Chang, Qi-Zhu Gong
Arboriculture & Urban Forestry (AUF) Mar 2025, 51 (2) 154-168; DOI: 10.48044/jauf.2025.003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Detection of Ganoderma australe Decay in Three Acacia confusa Trees: A Case Study
Cheng-Jung Lin, Po-Hong Lin, Chieh-Yu Chang, Qi-Zhu Gong
Arboriculture & Urban Forestry (AUF) Mar 2025, 51 (2) 154-168; DOI: 10.48044/jauf.2025.003
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Acknowledgements
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
  • Right Appraisal for the Right Purpose: Comparing Techniques for Appraising Heritage Trees in Australia and Canada
  • Urban Tree Mortality: The Purposes and Methods for (Secretly) Killing Trees Suggested in Online How-To Videos and Their Diagnoses
Show more Articles

Similar Articles

Keywords

  • Nondestructive Testing
  • Stress Wave Analysis
  • Tomographic Imaging
  • Tree Health Assessment
  • Wood Decay Detection

© 2025 International Society of Arboriculture

Powered by HighWire