Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Applications of Defense Elicitors to Roots of Containerized Eastern White Pine (Pinus strobus) Stimulate Increased Defensive Enzyme Activities of Fine Roots

Angelina Harley, Andrew L. Loyd, Shealyn C. Malone, Amy M. Trowbridge, Kelby Fite and Chad M. Rigsby
Arboriculture & Urban Forestry (AUF) January 2025, 51 (1) 85-93; DOI: https://doi.org/10.48044/jauf.2024.024
Angelina Harley
The Center for Tree Science The Morton Arboretum Lisle, IL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Andrew L. Loyd
The Bartlett Tree Research Laboratories Charlotte, NC, USA Botanic Research Institute of Texas Fort Worth, TX, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Shealyn C. Malone
Department of Forest and Wildlife Ecology University of Wisconsin Madison, WI, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Amy M. Trowbridge
Department of Forest and Wildlife Ecology University of Wisconsin Madison, WI, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Kelby Fite
The Bartlett Tree Research Laboratories Charlotte, NC, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Chad M. Rigsby
The Center for Tree Science The Morton Arboretum Lisle, IL, USA The Bartlett Tree Research Laboratories Charlotte, NC, USA
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Aziz A,
    2. Poinssot B,
    3. Daire X,
    4. Adrian M,
    5. Bézier A,
    6. Lambert B,
    7. Joubert JM,
    8. Pugin A.
    2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions. 16(12):1118–1128. https://doi.org/10.1094/MPMI.2003.16.12.1118
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Barto K,
    2. Enright S,
    3. Eyles A,
    4. Wallis C,
    5. Chorbadjian R,
    6. Hansen R,
    7. Herms DA,
    8. Bonello P,
    9. Cipollini D.
    2008. Effects of fertilization and fungal and insect attack on systemic protein defenses of Austrian pine. Journal of Chemical Ecology. 34:1392–1400. https://doi.org/10.1007/s10886-008-9550-z
    OpenUrlCrossRefPubMed
  3. ↵
    1. Benhamou N,
    2. Thériault G.
    1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology. 41(1):33–52. https://doi.org/10.1016/0885-5765(92)90047-Y
    OpenUrl
  4. ↵
    1. Bradford MM.
    1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2): 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    1. Cerqueira A,
    2. Alves A,
    3. Berenguer H,
    4. Correia B,
    5. Gómez-Cadenas A,
    6. Diez JJ,
    7. Monteiro P,
    8. Pinto G.
    2017. Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression. Plant Physiology and Biochemistry. 114:88–99. https://doi.org/10.1016/j.plaphy.2017.02.020
    OpenUrlPubMed
  6. ↵
    1. Cipollini D,
    2. Wang Q,
    3. Whitehill JGA,
    4. Powell JR,
    5. Bonello P,
    6. Herms DA.
    2011. Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer. Journal of Chemical Ecology. 37:450–459. https://doi.org/10.1007/s10886-011-9954-z
    OpenUrlCrossRefPubMed
  7. ↵
    1. Van Loon LC
    1. Conrath U.
    2009. Chapter 9: Priming of induced plant defense responses. In: Van Loon LC, editor. Advances in botanical research. Volume 51. Cambridge (MA, USA): Academic Press (Elsevier). p. 361–395. https://doi.org/10.1016/S0065-2296(09)51009-9
    OpenUrl
  8. ↵
    1. Dalio RJD,
    2. Fleischmann F,
    3. Humez M,
    4. Osswald W.
    2014. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS ONE. 9(1):e87860. https://doi.org/10.1371/journal.pone.0087860
    OpenUrlCrossRefPubMed
  9. ↵
    1. Dobrowolski MP,
    2. Shearer BL,
    3. Colquhoun IJ,
    4. O’Brien PA,
    5. Hardy GEStJ.
    2008. Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology. 57(5):928–936. https://doi.org/10.1111/j.1365-3059.2008.01883.x
    OpenUrl
  10. ↵
    1. El Ghaouth A,
    2. Arul J,
    3. Grenier J,
    4. Benhamou N,
    5. Asselin A,
    6. Bélanger R.
    1994. Effect of chitosan on cucumber plants: Suppression of Pythium aphanidermatum and induction of defense reactions. Phytopathology. 84(3):313–320. https://doi.org/10.1094/Phyto-84-313
    OpenUrlCrossRefWeb of Science
  11. ↵
    1. Eyles A,
    2. Bonello P,
    3. Ganley R,
    4. Mohammed C.
    2010. Induced resistance to pests and pathogens in trees. New Phytologist. 185(4):893–908. https://doi.org/10.1111/j.1469-8137.2009.03127.x
    OpenUrlCrossRefPubMedWeb of Science
  12. ↵
    1. Felipini RB,
    2. Boneti JI,
    3. Katsurayama Y,
    4. Neto ACR,
    5. Veleirinho B,
    6. Maraschin M,
    7. Di Piero RM.
    2016. Apple scab control and activation of plant defence responses using potassium phosphite and chitosan. European Journal of Plant Pathology. 145:929–939. https://doi.org/10.1007/s10658-016-0881-2
    OpenUrl
  13. ↵
    1. Fossdal CG,
    2. Hietala AM,
    3. Kvaalen H,
    4. Solheim H.
    2006. Changes in host chitinase isoforms in relation to wounding and colonization by Heterobasidion annosum: Early and strong defense response in 33-year-old resistant Norway spruce clone. Tree Physiology. 26(2):169–177. https://doi.org/10.1093/treephys/26.2.169
    OpenUrlPubMed
  14. ↵
    1. Fossdal CG,
    2. Nagy NE,
    3. Johnsen Ø,
    4. Dalen LS.
    2007. Local and systemic stress responses in Norway spruce: Similarities in gene expression between a compatible pathogen interaction and drought stress. Physiological and Molecular Plant Pathology. 70(4-6):161–173. https://doi.org/10.1016/j.pmpp.2007.09.002
    OpenUrl
  15. ↵
    1. Frampton J,
    2. Pettersson M,
    3. Braham AM.
    2018. Genetic variation for resistance to Phytophthora root rot in Eastern white pine seedlings. Forests. 9(4):161. https://doi.org/10.3390/f9040161
    OpenUrl
  16. ↵
    1. Franceschi VR,
    2. Krokene P,
    3. Christiansen E,
    4. Krekling T.
    2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist. 167(2):353–376. https://doi.org/10.1111/j.1469-8137.2005.01436.x
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Garbelotto M,
    2. Schmidt DJ,
    3. Harnik TY.
    2007. Phosphite injections and bark application of phosphite + PentrabarkTM control sudden oak death in coast live oak. Arboriculture & Urban Forestry. 33(5):309–317. https://doi.org/10.48044/jauf.2007.035
    OpenUrl
  18. ↵
    1. Gillman JH,
    2. Zlesak DC,
    3. Smith JA.
    2003. Applications of potassium silicate decrease black spot infection in Rosa hybrida ‘Meipelta’ (Fuschia MeidilandTM). HortScience. 38(6):1144–1147. https://doi.org/10.21273/HORTSCI.38.6.1144
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Gozzo F,
    2. Faoro F.
    2013. Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. Journal of Agricultural and Food Chemistry. 61(51):12473–12491. https://doi.org/10.1021/jf404156x
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Harada T,
    2. Fujimori K,
    3. Hirose S,
    4. Masada M.
    1966. Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium. Agricultural and Biological Chemistry. 30(8):764–769. https://doi.org/10.1080/00021369.1966.10858682
    OpenUrl
  21. ↵
    1. Hodge A,
    2. Alexander IJ,
    3. Gooday GW.
    1995. Chitinolytic activities of Eucalyptus pilularis and Pinus sylvestris root systems challenged with mycorrhizal and pathogenic fungi. New Phytologist. 131(2): 255–261. https://doi.org/10.1111/j.1469-8137.1995.tb05727.x
    OpenUrl
  22. ↵
    1. Islam MA,
    2. Sturrock RN,
    3. Williams HL,
    4. Ekramoddoullah AKM.
    2010. Identification, characterization, and expression analyses of class II and IV chitinase genes from Douglas-fir seedlings infected by Phellinus sulphurascens. Phytopathology. 100(4): 356–366. https://doi.org/10.1094/PHYTO-100-4-0356
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Jøhnk N,
    2. Hietala AM,
    3. Fossdal CG,
    4. Collinge DB,
    5. Newman MA.
    2005. Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.). Tree Physiology. 25(12): 1533–1543. https://doi.org/10.1093/treephys/25.12.1533
    OpenUrlCrossRefPubMed
  24. ↵
    1. Kamenidou S,
    2. Cavins TJ,
    3. Marek S.
    2008. Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. HortScience. 43(1):236–239. https://doi.org/10.21273/HORTSCI.43.1.236
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Kamenidou S,
    2. Cavins TJ,
    3. Marek S.
    2010. Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae. 123(3):390–394. https://doi.org/10.1016/j.scienta.2009.09.008
    OpenUrl
  26. ↵
    1. Kasuga T,
    2. Hayden KJ,
    3. Eyre CA,
    4. Croucher PJP,
    5. Schechter S,
    6. Wright JW,
    7. Garbelotto M.
    2021. Innate resistance and phosphite treatment affect both the pathogen’s and host’s transcriptomes in the tanoak-Phytophthora ramorum pathosystem. Journal of Fungi. 7(3):198. https://doi.org/10.3390/jof7030198
    OpenUrlPubMed
  27. ↵
    1. Keeling CI,
    2. Bohlmann J.
    2006. Diterpene resin acids in conifers. Phytochemistry. 67(22):2415–2423. https://doi.org/10.1016/j.phytochem.2006.08.019
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Kersten PJ,
    2. Kopper BJ,
    3. Raffa KF,
    4. Illman BL.
    2006. Rapid analysis of abietanes in conifers. Journal of Chemical Ecology. 32:2679–2685. https://doi.org/10.1007/s10886-006-9191-z
    OpenUrlPubMed
  29. ↵
    1. LaFontaine PJ,
    2. Benhamou N.
    1996. Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicislycopersici. Biocontrol Science and Technology. 6(1):111–124. https://doi.org/10.1080/09583159650039575
    OpenUrlCrossRefWeb of Science
  30. ↵
    1. Latunde-Dada AO,
    2. Lucas JA.
    2001. The plant defence activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiological and Molecular Plant Pathology. 58(5):199–208. https://doi.org/10.1006/pmpp.2001.0327
    OpenUrl
  31. ↵
    1. Llorens E,
    2. García-Agustín P,
    3. Lapeña L.
    2017. Advances in induced resistance by natural compounds: Towards new options for woody crop protection. Scientia Agricola. 74(1):90–100. https://doi.org/10.1590/1678-992X-2016-0012
    OpenUrl
  32. ↵
    1. Martín-García J,
    2. Zas R,
    3. Solla A,
    4. Woodward S,
    5. Hantula J,
    6. Vainio EJ,
    7. Mullett M,
    8. Morales-Rodríguez C,
    9. Vannini A,
    10. Martínez-Álvarez P,
    11. Pinto G,
    12. Alves A,
    13. Amaral J,
    14. Wingfield MJ,
    15. Fourie G,
    16. Steenkamp ET,
    17. Ahumada R,
    18. Šerá B,
    19. Sanz-Ros AV,
    20. Raposo R,
    21. Elvira-Recuenco M,
    22. Iturritxa E,
    23. Gordon TR,
    24. Diez JJ.
    2019. Environmentally friendly methods for controlling pine pitch canker. Plant Pathology. 68(5):843–860. https://doi.org/10.1111/ppa.13009
    OpenUrl
  33. ↵
    1. Mason CJ,
    2. Villari C,
    3. Keefover-Ring K,
    4. Jagemann S,
    5. Zhu J,
    6. Bonello P,
    7. Raffa KF.
    2017. Spatial and temporal components of induced plant responses in the context of herbivore life history and impact on host. Functional Ecology. 31(11):2034–2050. https://doi.org/10.1111/1365-2435.12911
    OpenUrl
  34. ↵
    1. Mauch-Mani B,
    2. Baccelli I,
    3. Luna E,
    4. Flors V.
    2017. Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology. 68:485–512. https://doi.org/10.1146/annurev-arplant-042916-041132
    OpenUrlCrossRefPubMed
  35. ↵
    1. Monteiro ACA,
    2. de Resende MLV,
    3. Valente TCT,
    4. Ribeiro PM Jr.,
    5. Pereira VF,
    6. da Costa JR,
    7. da Silva JAG.
    2016. Manganese phosphite in coffee defence against Hemileia vastatrix, the coffee rust fungus: Biochemical and molecular analyses. Journal of Phytopathology. 164(11-12):1043–1053. https://doi.org/10.1111/jph.12525
    OpenUrl
  36. ↵
    1. Moreira X,
    2. Sampedro L,
    3. Zas R,
    4. Pearse IS.
    2016. Defensive traits in young pine trees cluster into two divergent syndromes related to early growth rate. PLoS ONE. 11(3):e0152537. https://doi.org/10.1371/journal.pone.0152537
    OpenUrlCrossRefPubMed
  37. ↵
    1. Nagy NE,
    2. Fossdal CG,
    3. Dalen LS,
    4. Lönneborg A,
    5. Heldal I,
    6. Johnsen Ø.
    2004. Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce (Picea abies). Physiologia Plantarum. 120(3):465–473. https://doi.org/10.1111/j.0031-9317.2004.00265.x
    OpenUrlPubMed
  38. ↵
    1. Niere JO,
    2. Deangelis G,
    3. Grant BR.
    1994. The effect of phosphonate on the acid-soluble phosphorus components in the genus Phytophthora. Microbiology. 140(7):1661–1670. https://doi.org/10.1099/13500872-140-7-1661
    OpenUrlCrossRefWeb of Science
  39. ↵
    1. Oostendorp M,
    2. Kunz W,
    3. Dietrich B,
    4. Staub T.
    2001. Induced disease resistance in plants by chemicals. European Journal of Plant Pathology. 107:19–28. https://doi.org/10.1023/A:1008760518772
    OpenUrl
  40. ↵
    1. Percival GC.
    2001. Induction of systemic acquired disease resistance in plants: Potential implications for disease management in urban forestry. Journal of Arboriculture. 27(4):181–192. https://doi.org/10.48044/jauf.2001.020
    OpenUrl
  41. ↵
    1. Pilbeam RA,
    2. Howard K,
    3. Shearer BL,
    4. Hardy GEStJ.
    2011. Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. Trees. 25:1121–1131. https://doi.org/10.1007/s00468-011-0587-1
    OpenUrl
  42. ↵
    R Core Team. 2018. R: A language and environment for statistical computing [computer software]. Vienna (Austria): R Foundation for Statistical Computing. https://www.r-project.org
  43. ↵
    1. Raaymakers TM,
    2. Van den Ackerveken G.
    2016. Extracellular recognition of oomycetes during biotrophic infection of plants. Frontiers in Plant Science. 7:1–12. https://doi.org/10.3389/fpls.2016.00906
    OpenUrlPubMed
  44. ↵
    1. Reglinski T,
    2. Taylor JT,
    3. Dick MA.
    2004. Chitosan induces resistance to pitch canker in Pinus radiata. New Zealand Journal of Forestry Science. 34(1):49–58. https://www.scionresearch.com/__data/assets/pdf_file/0003/59178/04_REGLINSKI.pdf
    OpenUrl
  45. ↵
    1. Rigsby CM,
    2. Herms DA,
    3. Bonello P,
    4. Cipollini D.
    2016. Higher activities of defense-associated enzymes may contribute to greater resistance of Manchurian ash to emerald ash borer than a closely related and susceptible congener. Journal of Chemical Ecology. 42:782–792. https://doi.org/10.1007/s10886-016-0736-5
    OpenUrlPubMed
  46. ↵
    1. Rigsby CM,
    2. Villari C,
    3. Peterson DL,
    4. Herms DA,
    5. Bonello P,
    6. Cipollini D.
    2018. Girdling increases survival and growth of emerald ash borer larvae on Manchurian ash. Agricultural and Forest Entomology. 21(1):130–135. https://doi.org/10.1111/afe.12292
    OpenUrl
  47. ↵
    1. Xu Z
    1. Roy JC,
    2. Salaün F,
    3. Giraud S,
    4. Ferri A.
    2017. Solubility of chitin: Solvents, solution behaviors and their related mechanisms. In: Xu Z, editor. Solubility of polysaccharides. London (United Kingdom): InTech. 138 p. https://doi.org/10.5772/intechopen.71385
  48. ↵
    1. Trowbridge AM,
    2. Bowers MD,
    3. Monson RK.
    2016. Conifer monoterpene chemistry during an outbreak enhances consumption and immune response of an eruptive folivore. Journal of Chemical Ecology. 42:1281–1292. https://doi.org/10.1007/s10886-016-0797-5
    OpenUrlPubMed
  49. ↵
    1. Wang M,
    2. Gao L,
    3. Dong S,
    4. Sun Y,
    5. Shen Q,
    6. Guo S.
    2017. Role of silicon on plant-pathogen interactions. Frontiers in Plant Science. 8:701. https://doi.org/10.3389/fpls.2017.00701
    OpenUrlPubMed
  50. ↵
    1. Zheng K,
    2. Lu J,
    3. Li J,
    4. Yu Y,
    5. Zhang J,
    6. He Z,
    7. Ismail OM,
    8. Wu J,
    9. Xie X,
    10. Li X,
    11. Xu G,
    12. Dou D,
    13. Wang X.
    2021. Efficiency of chitosan application against Phytophthora infestans and the activation of defence mechanisms in potato. International Journal of Biological Macromolecules. 182:1670–1680. https://doi.org/10.1016/j.ijbiomac.2021.05.097
    OpenUrlPubMed
  51. ↵
    1. Zwart DC,
    2. Kim S-H.
    2012. Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. HortScience. 47(12):1736–1740. https://doi.org/10.21273/HORTSCI.47.12.1736
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (1)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 1
January 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Applications of Defense Elicitors to Roots of Containerized Eastern White Pine (Pinus strobus) Stimulate Increased Defensive Enzyme Activities of Fine Roots
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Applications of Defense Elicitors to Roots of Containerized Eastern White Pine (Pinus strobus) Stimulate Increased Defensive Enzyme Activities of Fine Roots
Angelina Harley, Andrew L. Loyd, Shealyn C. Malone, Amy M. Trowbridge, Kelby Fite, Chad M. Rigsby
Arboriculture & Urban Forestry (AUF) Jan 2025, 51 (1) 85-93; DOI: 10.48044/jauf.2024.024

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Applications of Defense Elicitors to Roots of Containerized Eastern White Pine (Pinus strobus) Stimulate Increased Defensive Enzyme Activities of Fine Roots
Angelina Harley, Andrew L. Loyd, Shealyn C. Malone, Amy M. Trowbridge, Kelby Fite, Chad M. Rigsby
Arboriculture & Urban Forestry (AUF) Jan 2025, 51 (1) 85-93; DOI: 10.48044/jauf.2024.024
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials And Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Acknowledgements
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Evaluation of Nature-Based and Traditional Solutions for Urban Soil Decompaction
  • Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
Show more Articles

Similar Articles

Keywords

  • Defense Elicitors
  • Defense Induction
  • Induced Resistance
  • Pest Management
  • Root Defenses

© 2025 International Society of Arboriculture

Powered by HighWire