Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Growth, Physiology, and Root Development in Seedlings of Woody Species Treated with a Seaweed Extract

Sebastien Comin, Gloria Brocca, Noemi Valsecchi, Simone Fumagalli, Irene Vigevani, Denise Corsini, Francesco Ferrini, Giovanni Ravanelli and Alessio Fini
Arboriculture & Urban Forestry (AUF) January 2025, 51 (1) 46-64; DOI: https://doi.org/10.48044/jauf.2024.013
Sebastien Comin
Department of Agricultural and Environmental Sciences – Landscape, Production, Agroenergy University of Milan Milano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Gloria Brocca
Department of Agricultural and Environmental Sciences – Landscape, Production, Agroenergy University of Milan Milano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Noemi Valsecchi
Department of Agricultural and Environmental Sciences – Landscape, Production, Agroenergy University of Milan Milano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Simone Fumagalli
Department of Agricultural and Environmental Sciences – Landscape, Production, Agroenergy University of Milan Milano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Irene Vigevani
Department of Agriculture, Food, Environment and Forestry University of Florence Viale delle Idee Sesto Fiorentino, FL, Italy Department of Sciences, Technologies and Society University School for Advanced Studies IUSS Pavia Piazza della Vittoria Pavia, PV, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Denise Corsini
Department of Agricultural and Environmental Sciences – Landscape, Production, Agroenergy University of Milan Milano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Francesco Ferrini
Department of Agriculture, Food, Environment and Forestry University of Florence Viale delle Idee Sesto Fiorentino, FL, Italy National Biodiversity Future Center Palermo, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Giovanni Ravanelli
Ente Regionale per i Servizi all’Agricoltura e alle Foreste via dei Campi Curno, BG, Italy National Biodiversity Future Center Palermo, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Alessio Fini
Department of Agricultural and Environmental Sciences – Landscape, Production, Agroenergy University of Milan Milano, Italy +39 02503 16563
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Agati G,
    2. Brunetti C,
    3. Fini A,
    4. Gori A,
    5. Guidi L,
    6. Landi M,
    7. Sebastiani F,
    8. Tattini M.
    2020. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 9(11):1908. https://doi.org/10.3390/antiox9111098
    OpenUrl
  2. ↵
    Agrofertil. 2015. Regulalg: 100% algues. Le Mans (France): Agrofertsil S.A.R.L. [Updated 2022 February 9; Accessed 2023 October]. https://www.agrofertil.fr/wp-content/uploads/2015/02/REGULALG.pdf
  3. ↵
    1. Amoroso G,
    2. Frangi P,
    3. Piatti R,
    4. Ferrini F,
    5. Fini A,
    6. Faoro M.
    2010. Effect of container design on plant growth and root deformation of littleleaf linden and field elm. HortScience. 45(12): 1824–1829. https://doi.org/10.21273/HORTSCI.45.12.1824
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Amoroso G,
    2. Frangi P,
    3. Piatti R,
    4. Fini A,
    5. Ferrini F,
    6. Faoro M.
    2011. Evaluation of shrubs for side slope greening and protection in urban landscape. HortTechnology. 21(3):359–366. https://doi.org/10.21273/HORTTECH.21.3.359
    OpenUrl
  5. ↵
    1. Basile B,
    2. Rouphael Y,
    3. Colla G,
    4. Soppelsa S,
    5. Andreotti C.
    2020. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae. 267:109330. https://doi.org/10.1016/j.scienta.2020.109330
    OpenUrl
  6. ↵
    1. Bowler DE,
    2. Buyung-Ali L,
    3. Knight TM,
    4. Pullin AS.
    2010. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning. 97(3): 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Breger BS,
    2. Eisenman TS,
    3. Kremer ME,
    4. Roman LA,
    5. Martin DG,
    6. Rogan J.
    2019. Urban tree survival and stewardship in a state-managed planting initiative: A case study in Holyoke, Massachusetts. Urban Forestry & Urban Greening. 43:126382. https://doi.org/10.1016/j.ufug.2019.126382
    OpenUrl
  8. ↵
    1. Calvo P,
    2. Nelson L,
    3. Kloepper JW.
    2014. Agricultural uses of plant biostimulants. Plant and Soil. 383:3–41. https://doi.org/10.1007/s11104-014-2131-8
    OpenUrlCrossRef
  9. ↵
    1. Conesa MR,
    2. Espinosa PJ,
    3. Pallarés D,
    4. Pérez-Pastor A.
    2020. Influence of plant biostimulant as technique to harden citrus nursery plants before transplanting to the field. Sustainability. 12(15):6190. https://doi.org/10.3390/su12156190
    OpenUrl
  10. ↵
    1. Conway TM,
    2. Vander Vecht J.
    2015. Growing a diverse urban forest: Species selection decisions by practitioners planting and supplying trees. Landscape and Urban Planning. 138:1–10. https://doi.org/10.1016/j.landurbplan.2015.01.007
    OpenUrl
  11. ↵
    1. Craigie JS.
    2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology. 23:371–393. https://doi.org/10.1007/s10811-010-9560-4
    OpenUrl
  12. ↵
    1. Gupta S,
    2. Van Staden J
    1. Critchley AT,
    2. Critchley JSC,
    3. Norrie J,
    4. Gupta S,
    5. Van Staden J.
    2021. Chapter 13. Perspectives on the global biostimulant market: Applications, volumes, and values, 2016 data and projections to 2022. In: Gupta S, Van Staden J, editors. Biostimulants for crops from seed germination to plant development: A practical approach. 1st Ed. Amsterdam (Netherlands): Elsevier. p. 289–296. https://doi.org/10.1016/B978-0-12-823048-0.00012-5
  13. ↵
    1. De Saeger J,
    2. Van Praet S,
    3. Vereecke D,
    4. Park J,
    5. Jacques S,
    6. Han T,
    7. Depuydt S.
    2020. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology. 32:573–597. https://doi.org/10.1007/s10811-019-01903-9
    OpenUrl
  14. ↵
    1. du Jardin P.
    2012. The science of plant biostimulants—A bibliographic analysis: Final report [Contract 30-CE0455515/0096, Ad hoc study on bio-stimulants products]. Brussels (Belgium): European Commission. 37 p.
  15. ↵
    1. Elansary HO,
    2. Skalicka-Woźniak K,
    3. King IW.
    2016. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiology and Biochemistry. 105:310–320. https://doi.org/10.1016/j.plaphy.2016.05.024
    OpenUrlPubMed
  16. ↵
    1. Elmes A,
    2. Rogan J,
    3. Roman LA,
    4. Williams CA,
    5. Ratick SJ,
    6. Nowak DJ,
    7. Martin DG.
    2018. Predictors of mortality for juvenile trees in a residential urban-to-rural cohort in Worcester, MA. Urban Forestry & Urban Greening. 30:138–151. https://doi.org/10.1016/j.ufug.2018.01.024
    OpenUrl
  17. ↵
    FAO. 2016. The state of world fisheries and aquaculture 2016: Contributing to food security and nutrition for all. Rome: Food and Agriculture Organization of the United Nations. 200 p. https://openknowledge.fao.org/server/api/core/bitstreams/20e618b3-93a1-488a-9697-798f6b6c6b35/content
  18. ↵
    1. Fichtner A,
    2. Wissemann V.
    2021. Biological flora of the British Isles: Crataegus monogyna. Journal of Ecology. 109(1):541–571. https://doi.org/10.1111/1365-2745.13554
    OpenUrl
  19. ↵
    1. Fini A,
    2. Ferrini F,
    3. Frangi P,
    4. Amoroso G,
    5. Giordano C.
    2010. Growth, leaf gas exchange and leaf anatomy of three ornamental shrubs grown under different light intensities. European Journal of Horticultural Science. 75(3):111–117. https://air.unimi.it/retrieve/handle/2434/660357/1266658/ejhs_28-09.pdf
    OpenUrl
  20. ↵
    1. Fini A,
    2. Frangi P,
    3. Amoroso G,
    4. Piatti R,
    5. Faoro M,
    6. Bellasio C,
    7. Ferrini F.
    2011. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza. 21:703–719. https://doi.org/10.1007/s00572-011-0370-6
    OpenUrlPubMed
  21. ↵
    1. Fini A,
    2. Loreto F,
    3. Tattini M,
    4. Giordano C,
    5. Ferrini F,
    6. Brunetti C,
    7. Centritto M.
    2016. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiologia Plantarum. 157(1): 54–68. https://doi.org/10.1111/ppl.12401
    OpenUrl
  22. ↵
    1. Flexas J,
    2. Scoffoni C,
    3. Gago J,
    4. Sack L.
    2013. Leaf mesophyll conductance and leaf hydraulic conductance: An introduction to their measurement and coordination. Journal of Experimental Botany. 64(13):3965–3981. https://doi.org/10.1093/jxb/ert319
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Franco JA,
    2. Martínez-Sánchez JJ,
    3. Fernández JA,
    4. Bañón S.
    2006. Selection and nursery production of ornamental plants for landscaping and xerogardening in semi-arid environments. The Journal of Horticultural Science and Biotechnology. 81(1):3–17. https://doi.org/10.1080/14620316.2006.11512022
    OpenUrl
  24. ↵
    1. Frioni T,
    2. VanderWeide J,
    3. Palliotti A,
    4. Tombesi S,
    5. Poni S,
    6. Sabbatini P.
    2021. Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Scientia Horticulturae. 277:109807. https://doi.org/10.1016/j.scienta.2020.109807
    OpenUrl
  25. ↵
    1. Genet M,
    2. Stokes A,
    3. Salin F,
    4. Mickovski SB,
    5. Fourcaud T,
    6. Dumail JF,
    7. van Beek R.
    2005. The influence of cellulose content on tensile strength in tree roots. Plant and Soil. 278:1–9. https://doi.org/10.1007/s11104-005-8768-6
    OpenUrlCrossRefWeb of Science
  26. ↵
    1. Genty B,
    2. Briantais JM,
    3. Baker NR.
    1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)—General Subjects. 990(1):87–92. https://doi.org/10.1016/S0304-4165(89)80016-9
    OpenUrlCrossRefWeb of Science
  27. ↵
    1. Guidi L,
    2. Degl’Innocenti E,
    3. Remorini D,
    4. Massai R,
    5. Tattini M.
    2008. Interactions of water stress and solar irradiance on the physiology and biochemistry of Ligustrum vulgare. Tree Physiology. 28(6):873–883. https://doi.org/10.1093/treephys/28.6.873
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Harley PC,
    2. Loreto F,
    3. Di Marco G,
    4. Sharkey TD.
    1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology. 98(4):1429–1436. https://doi.org/10.1104/pp.98.4.1429
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Hilbert DR,
    2. Roman LA,
    3. Koeser AK,
    4. Vogt J,
    5. van Doorn NS.
    2019. Urban tree mortality: A literature review. Arboriculture & Urban Forestry. 45(5):167–200. https://doi.org/10.48044/jauf.2019.015
    OpenUrl
  30. ↵
    1. Jeannin I,
    2. Lescure JC,
    3. Morot-Gaudry JF.
    1991. The effects of aqueous seaweed sprays on the growth of maize. Botanica Marina. 34(6):469–474. https://doi.org/10.1515/botm.1991.34.6.469
    OpenUrl
  31. ↵
    1. Tan PY,
    2. Jim CY
    1. Jim CY.
    2017. Conservation and creation of urban woodlands. In: Tan PY, Jim CY, editors. Greening cities: Forms and functions. 1st Ed. Springer Singapore. p. 307–330. https://doi.org/10.1007/978-981-10-4113-6_14
  32. ↵
    1. Khan W,
    2. Rayirath UP,
    3. Subramanian S,
    4. Jithesh MN,
    5. Rayorath P,
    6. Hodges DM,
    7. Critchley AT,
    8. Craigie JS,
    9. Norrie J,
    10. Prithiviraj B.
    2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation. 28:386–399. https://doi.org/10.1007/s00344-009-9103-x
    OpenUrlCrossRefWeb of Science
  33. ↵
    1. Koeser AK,
    2. Gilman EF,
    3. Paz M,
    4. Harchick C.
    2014. Factors influencing urban tree planting program growth and survival in Florida, United States. Urban Forestry & Urban Greening. 13(4):655–661. https://doi.org/10.1016/j.ufug.2014.06.005
    OpenUrl
  34. ↵
    1. Kozlowski TT,
    2. Pallardy SG.
    2002. Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review. 68(2):270–334. https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
    OpenUrlCrossRefWeb of Science
  35. ↵
    Legislative Decree 10 November 2003, n. 386. Implementation of Directive 1999/105/EC on the marketing of forest reproductive material. Gazzetta Ufficiale della Repubblica Italiana. 23(29-01-2004): Ordinary Supplement no. 14. https://www.gazzettaufficiale.it/eli/id/2004/01/29/004G0024/sg
  36. ↵
    1. Loreto F,
    2. Centritto M,
    3. Chartzoilakis K.
    2003. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant, Cell & Environment. 26(4):595–601. https://doi.org/10.1046/j.1365-3040.2003.00994.x
    OpenUrlCrossRefWeb of Science
  37. ↵
    1. MacDonald JE,
    2. Hacking J,
    3. Weng Y,
    4. Norrie J.
    2012. Root growth of containerized lodgepole pine seedlings in response to Ascophyllum nodosum extract application during nursery culture. Canadian Journal of Plant Science. 92(6):1207–1212. https://doi.org/10.4141/cjps2011-279
    OpenUrl
  38. ↵
    1. Moreira R,
    2. Sineiro J,
    3. Chenlo F,
    4. Arufe S,
    5. Díaz-Varela D.
    2017. Aqueous extracts of Ascophyllum nodosum obtained by ultrasound-assisted extraction: Effects of drying temperature of seaweed on the properties of extracts. Journal of Applied Phycology. 29:3191–3200. https://doi.org/10.1007/s10811-017-1159-6
    OpenUrl
  39. ↵
    1. Nelson WR,
    2. van Staden J.
    1986. Effect of seaweed concentrate on the growth of wheat. South African Journal of Science. 82:199–200.
    OpenUrl
  40. ↵
    1. Nicese FP,
    2. Ferrini F.
    2008. Competitiveness and environmental sustainability of ornamental nursery. Convention Proceedings “Development of Tuscany’s Nursery”. 2008 May 12; Pistoia, Italy. p. 79–99.
  41. ↵
    1. Ostonen I,
    2. Püttsepp Ü,
    3. Biel C,
    4. Alberton O,
    5. Bakker MR,
    6. Lõhmus K,
    7. Majdi H,
    8. Metcalfe D,
    9. Olsthoorn AFM,
    10. Pronk A,
    11. Vangue-lova E,
    12. Weih M,
    13. Brunner I.
    2007. Specific root length as an indicator of environmental change. Plant Biosystems. 141(3): 426–442. https://doi.org/10.1080/11263500701626069
    OpenUrl
  42. ↵
    1. Percival GC,
    2. Keary IP,
    3. Noviss K.
    2008. The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), English oak (Quercus robur), and European beech (Fagus sylvatica). Arboriculture & Urban Forestry. 34(2):89–100. https://doi.org/10.48044/jauf.2008.012
    OpenUrl
  43. ↵
    1. Pereira L,
    2. Morrison L,
    3. Shukla PS,
    4. Critchley AT.
    2020. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. Journal of Applied Phycology. 32:3561–3584. https://doi.org/10.1007/s10811-020-02246-6
    OpenUrlCrossRef
  44. ↵
    1. Poorter H,
    2. Ryser P.
    2015. The limits to leaf and root plasticity: What is so special about specific root length? New Phytologist. 206(4):1188–1190. https://doi.org/10.1111/nph.13438
    OpenUrlCrossRefPubMed
  45. ↵
    1. Rahman MA,
    2. Stratopoulos LMF,
    3. Moser-Reischl A,
    4. Zölch T,
    5. Häberle KH,
    6. Rötzer T,
    7. Pretzsch H,
    8. Pauleit S.
    2020. Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment. 170:106606. https://doi.org/10.1016/j.buildenv.2019.106606
    OpenUrl
  46. ↵
    1. Rayorath P,
    2. Khan W,
    3. Palanisamy R,
    4. MacKinnon SL,
    5. Stefanova R,
    6. Hankins SD,
    7. Critchley AT,
    8. Prithiviraj B.
    2008. Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. Journal of Plant Growth Regulation. 27(4):370–379. https://doi.org/10.1007/s00344-008-9063-6
    OpenUrl
  47. ↵
    1. Renner S,
    2. Zohner CM.
    2019. The occurrence of red and yellow autumn leaves explained by regional differences in insolation and temperature. New Phytologist. 224(4):1464–1471. https://doi.org/10.1111/nph.15900
    OpenUrlPubMed
  48. ↵
    1. Roman LA,
    2. Battles JJ,
    3. McBride JR.
    2014. Determinants of establishment survival for residential trees in Sacramento County, CA. Landscape and Urban Planning. 129:22–31. https://doi.org/10.1016/j.landurbplan.2014.05.004
    OpenUrl
  49. ↵
    1. Salvi L,
    2. Brunetti C,
    3. Cataldo E,
    4. Niccolai A,
    5. Centritto M,
    6. Ferrini F,
    7. Mattii GB.
    2019. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiology and Biochemistry. 139:21–32. https://doi.org/10.1016/j.plaphy.2019.03.002
    OpenUrlPubMed
  50. ↵
    1. Santaniello A,
    2. Scartazza A,
    3. Gresta F,
    4. Loreti E,
    5. Biasone A,
    6. Di Tommaso D,
    7. Piaggesi A,
    8. Perata D.
    2017. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Frontiers in Plant Science. 8:1362. https://doi.org/10.3389/fpls.2017.01362
    OpenUrlPubMed
  51. ↵
    1. Shukla PS,
    2. Mantin EG,
    3. Adil M,
    4. Bajpai S,
    5. Critchley AT,
    6. Prithiviraj B.
    2019. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science. 10:655. https://doi.org/10.3389/fpls.2019.00655
    OpenUrlPubMed
  52. ↵
    1. Spinelli F,
    2. Fiori G,
    3. Noferini M,
    4. Sprocatti M,
    5. Costa G.
    2009. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. The Journal of Horticultural Science and Biotechnology. 84(6):131–137. https://doi.org/10.1080/14620316.2009.11512610
    OpenUrl
  53. ↵
    1. Tattini M,
    2. Loreto F,
    3. Fini A,
    4. Guidi L,
    5. Brunetti C,
    6. Velikova V,
    7. Gori A,
    8. Ferrini F.
    2015. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought stressed Platanus × acerifolia plants during Mediterranean summers. New Phytologist. 207(3):613–626. https://doi.org/10.1111/nph.13380
    OpenUrlPubMed
  54. ↵
    1. Tennant D.
    1975. A test of a modified line intersect method of estimating root length. Journal of Ecology. 63(3):995–1001. https://doi.org/10.2307/2258617
    OpenUrlCrossRefWeb of Science
  55. ↵
    1. Tkaczyk M,
    2. Szmidla H,
    3. Sikora K.
    2022. The use of biostimulants containing Ascophyllum nodosum (L.) Le Jolis algal extract in the cultivation and protection of English oak Quercus robur L. seedlings in forest nurseries. Sylwan. 166(4):244–252. https://doi.org/10.26202/sylwan.2022032
    OpenUrl
  56. ↵
    1. Van Oosten MJ,
    2. Pepe O,
    3. De Pascale S,
    4. Silletti S,
    5. Maggio A.
    2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture. 4:5. https://doi.org/10.1186/s40538-017-0089-5
    OpenUrl
  57. ↵
    1. Weemstra M,
    2. Kiorapostolou N,
    3. van Ruijven J,
    4. Mommer L,
    5. de Vries J,
    6. Sterck F.
    2020. The role of fine-root mass, specific root length and life span in tree performance: A whole-tree exploration. Functional Ecology. 34(3):575–585. https://doi.org/10.1111/1365-2435.13520
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (1)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 1
January 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Growth, Physiology, and Root Development in Seedlings of Woody Species Treated with a Seaweed Extract
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Growth, Physiology, and Root Development in Seedlings of Woody Species Treated with a Seaweed Extract
Sebastien Comin, Gloria Brocca, Noemi Valsecchi, Simone Fumagalli, Irene Vigevani, Denise Corsini, Francesco Ferrini, Giovanni Ravanelli, Alessio Fini
Arboriculture & Urban Forestry (AUF) Jan 2025, 51 (1) 46-64; DOI: 10.48044/jauf.2024.013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Growth, Physiology, and Root Development in Seedlings of Woody Species Treated with a Seaweed Extract
Sebastien Comin, Gloria Brocca, Noemi Valsecchi, Simone Fumagalli, Irene Vigevani, Denise Corsini, Francesco Ferrini, Giovanni Ravanelli, Alessio Fini
Arboriculture & Urban Forestry (AUF) Jan 2025, 51 (1) 46-64; DOI: 10.48044/jauf.2024.013
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Acknowledgements
    • Appendix
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Evaluation of Nature-Based and Traditional Solutions for Urban Soil Decompaction
  • Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
Show more Articles

Similar Articles

Keywords

  • Ascophyllum nodosum
  • Leaf Gas Exchange
  • Plant Production
  • Root Line Intersect Method

© 2025 International Society of Arboriculture

Powered by HighWire