Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Fine-Root Responses of Two Maple and Two Magnolia Species to Waterlogging

Kelsey Patrick, Marvin Lo, Chad M. Rigsby, Carla E. Rosenfeld and M. Luke McCormack
Arboriculture & Urban Forestry (AUF) January 2025, 51 (1) 29-45; DOI: https://doi.org/10.48044/jauf.2024.025
Kelsey Patrick
Center for Tree Science The Morton Arboretum Lisle, IL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Marvin Lo
Center for Tree Science The Morton Arboretum Lisle, IL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Chad M. Rigsby
Center for Tree Science The Morton Arboretum Lisle, IL, USA The Bartlett Tree Research Laboratories Charlotte, NC, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Carla E. Rosenfeld
Center for Tree Science The Morton Arboretum Lisle, IL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
M. Luke McCormack
Center for Tree Science The Morton Arboretum Lisle, IL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Santamouris M
    1. Akbari H,
    2. Levinson RM,
    3. Miller WA,
    4. Berdahl PH.
    2005. Potentials of urban heat island mitigation. In: Santamouris M, editor. Proceedings of the 1st international conference on passive and low energy cooling for the built environment. PALENC 2005; 2005 May 19–21; Santorini, Greece. Imerovigli, Santorini (Greece): Heliotopos Conferences. p. 11–22. http://escholarship.org/uc/item/20j676c9
  2. ↵
    1. Woolhouse HW
    1. Armstrong W.
    1980. Aeration in higher plants. In: Woolhouse HW, editor. Advances in botanical research. Volume 7. Cambridge (MA, USA): Academic Press. p. 225–332. https://doi.org/10.1016/S0065-2296=(08)60089-0
    OpenUrl
  3. ↵
    1. Baldwin DS,
    2. Mitchell AM.
    2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: A synthesis. Regulated Rivers: Research & Management. 16(5):457–467. https://doi.org/10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B
    OpenUrl
  4. ↵
    1. Bhusal N,
    2. Adhikari A,
    3. Lee M,
    4. Han A,
    5. Han AR,
    6. Kim HS.
    2022. Evaluation of growth responses of six gymnosperm species under long-term excessive irrigation and traits determining species resistance to waterlogging. Agricultural and Forest Meteorology. 323:109071. https://doi.org/10.1016/j.agrformet.2022.109071
    OpenUrl
  5. ↵
    1. Buchel HB,
    2. Grosse W.
    1990. Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn. Tree Physiology. 6(3):247–256. https://doi.org/10.1093/treephys/6.3.247
    OpenUrlCrossRefPubMedWeb of Science
  6. ↵
    1. Camisón Á,
    2. Martín MÁ,
    3. Dorado FJ,
    4. Moreno G,
    5. Solla A.
    2020. Changes in carbohydrates induced by drought and waterlogging in Castanea sativa. Trees. 34:579–591. https://doi.org/10.1007/s00468-019-01939-x
    OpenUrl
  7. ↵
    1. Christensen JH,
    2. Christensen OB.
    2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change. 81:7–30. https://doi.org/10.1007/s10584-006-9210-7
    OpenUrlCrossRefWeb of Science
  8. ↵
    1. Christmann A,
    2. Grill E,
    3. Huang J.
    2013. Hydraulic signals in long-distance signaling. Current Opinion in Plant Biology. 16(3):293–300. https://doi.org/10.1016/j.pbi.2013.02.011
    OpenUrlCrossRefPubMed
  9. ↵
    1. Colmer TD.
    2003. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Annals of Botany. 91(2):301–309. https://doi.org/10.1093/aob/mcf114
    OpenUrlCrossRefPubMed
  10. ↵
    1. Dale AG,
    2. Frank SD.
    2017. Warming and drought combine to increase pest insect fitness on urban trees. PLOS One. 12(3):e0173844. https://doi.org/10.1371/journal.pone.0173844
    OpenUrlPubMed
  11. ↵
    1. Dreyer E.
    1994. Compared sensitivity of seedlings from 3 woody species (Quercus robur L, Quercus rubra L and Fagus sylvatica L) to water-logging and associated root hypoxia: Effects on water relations and photosynthesis. Annals of Forest Science. 51(4):417–428. http://doi.org/10.1051/forest:19940407
    OpenUrl
  12. ↵
    1. Frye J,
    2. Grosse W.
    1992. Growth responses to flooding and recovery of deciduous trees. Zeitschrift für Naturforschung C. 47(9-10):683–689. https://doi.org/10.1515/znc-1992-9-1008
    OpenUrl
  13. ↵
    1. Fujita S,
    2. Noguchi K,
    3. Tange T.
    2020. Root responses of five Japanese afforestation species to waterlogging. Forests. 11(5):552. https://doi.org/10.3390/f11050552
    OpenUrl
  14. ↵
    1. Glenz C,
    2. Schlaepfer R,
    3. Iorgulescu I,
    4. Kienast F.
    2006. Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management. 235(1-3):1–13. https://doi.org/10.1016/j.foreco.2006.05.065
    OpenUrl
  15. ↵
    1. Grote R,
    2. Samson R,
    3. Alonso R,
    4. Amorim JH,
    5. Cariñanos P,
    6. Churkina G,
    7. Fares S,
    8. Thiec DL,
    9. Niinemets Ü,
    10. Mikkelsen TN,
    11. Paoletti E,
    12. Tiwary A,
    13. Calfapietra C.
    2016. Functional traits of urban trees: Air pollution mitigation potential. Frontiers in Ecology and the Environment. 14(10):543–550. https://doi.org/10.1002/fee.1426
    OpenUrl
  16. ↵
    1. Haase D,
    2. Hellwig R.
    2022. Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees, Forests and People. 8:100252. https://doi.org/10.1016/j.tfp.2022.100252
    OpenUrl
  17. ↵
    1. Habibi F,
    2. Liu T,
    3. Shahid MA,
    4. Schaffer B,
    5. Sarkhosh A.
    2023. Physiological, biochemical, and molecular responses of fruit trees to root zone hypoxia. Environmental and Experimental Botany. 206:105179. https://doi.org/10.1016/j.envexpbot.2022.105179
    OpenUrl
  18. ↵
    1. Herrera A,
    2. Tezara W,
    3. Marín O,
    4. Rengifo E.
    2008. Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiologia Plantarum. 134(1):41–48. https://doi.org/10.1111/j.1399-3054.2008.01099.x
    OpenUrlCrossRefPubMed
  19. ↵
    1. Hirons A,
    2. Thomas PA.
    2017. Applied tree biology. 1st Ed. Hoboken (NJ, USA): Wiley-Blackwell. https://www.perlego.com/book/991918/applied-tree-biology-pdf
  20. ↵
    1. Jaiswal A,
    2. Srivastava JP.
    2018. Changes in reactive oxygen scavenging systems and protein profiles in maize roots in response to nitric oxide under waterlogging stress. Indian Journal of Biochemistry and Biophysics. 55:26–33. https://www.researchgate.net/publication/324088819
    OpenUrl
  21. ↵
    1. Kreuzwieser J,
    2. Rennenberg H.
    2014. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell & Environment. 37(10):2245–2259. https://doi.org/https://doi.org/10.1111/pce.12310
    OpenUrlCrossRef
  22. ↵
    1. Kundzewicz ZW,
    2. Kanae S,
    3. Seneviratne SI,
    4. Handmer J,
    5. Nicholls N,
    6. Peduzzi P,
    7. Mechler R,
    8. Bouwer LM,
    9. Arnell N,
    10. Mach K,
    11. Muir-Wood R,
    12. Brakenridge GR,
    13. Kron W,
    14. Benito G,
    15. Honda Y,
    16. Takahashi K,
    17. Sherstyukov B.
    2014. Flood risk and climate change: Global and regional perspectives. Hydrological Sciences Journal. 59(1):1–28. https://doi.org/10.1080/02626667.2013.857411
    OpenUrlCrossRef
  23. ↵
    1. Li M,
    2. López R,
    3. Venturas M,
    4. Pita P,
    5. Gordaliza GG,
    6. Gil L,
    7. Rodríguez-Calcerrada J.
    2015. Greater resistance to flooding of seedlings of Ulmus laevis than Ulmus minor is related to the maintenance of a more positive carbon balance. Trees. 29:835–848. https://doi.org/10.1007/s00468-015-1163-x
    OpenUrl
  24. ↵
    1. Lopez OR,
    2. Kursar TA.
    2003. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats? Oecologia. 136:193–204. https://doi.org/10.1007/s00442-003-1259-7
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. MacAdam JW,
    2. Nelson CJ,
    3. Sharp RE.
    1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology. 99(3):872–878. https://doi.org/10.1104/pp.99.3.872
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Martínez-Alcántara B,
    2. Jover S,
    3. Quiñones A,
    4. Forner-Giner MA,
    5. Rodríguez-Gamir J,
    6. Legaz F,
    7. Primo-Millo E,
    8. Iglesias DJ.
    2012. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology. 169(12):1150–1157. https://doi.org/10.1016/j.jplph.2012.03.016
    OpenUrlCrossRefPubMed
  27. ↵
    1. McDonald MP,
    2. Galwey NW,
    3. Colmer TD.
    2008. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant, Cell & Environment. 25(3):441–451. https://doi.org/10.1046/j.0016-8025.2001.00817.x
    OpenUrl
  28. ↵
    1. Meinen C,
    2. Hertel D,
    3. Leuschner C.
    2009. Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems. 12:1103–1116. https://doi.org/10.1007/s10021-009-9271-3
    OpenUrlCrossRef
  29. ↵
    1. Montagnoli A,
    2. Terzaghi M,
    3. Baesso B,
    4. Santamaria R,
    5. Scippa GS,
    6. Chiatante D.
    2016. Drought and fire stress influence seedling competition in oak forests: Fine-root dynamics as indicator of adaptation strategies to climate change. REFORESTA. 1(1):86–105. https://doi.org/10.21750/REFOR.1.06.6
    OpenUrl
  30. ↵
    1. Niinemets Ü.
    2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management. 260(10):1623–1639. https://doi.org/10.1016/j.foreco.2010.07.054
    OpenUrlCrossRefWeb of Science
  31. ↵
    1. Niinemets Ü,
    2. Valladares F.
    2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs. 76(4):521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Nowak DJ.
    2006. Institutionalizing urban forestry as a “biotechnology” to improve environmental quality. Urban Forestry & Urban Greening. 5(2):93–100. https://doi.org/10.1016/j.ufug.2006.04.002
    OpenUrl
  33. ↵
    1. Ow LF,
    2. Ghosh S,
    3. Yusof ML.
    2019. Effects of waterlogged soil on N-uptake by flood tolerant and sensitive containerised tree seedlings. The International Journal of Urban Forestry. 41(3):172–188. https://doi.org/10.1080/03071375.2019.1642049
    OpenUrl
  34. ↵
    1. Parent C,
    2. Crèvecoeur M,
    3. Capelli N,
    4. Dat JF.
    2011. Contrasting growth and adaptive responses of two oak species to flooding stress: Role of non-symbiotic haemoglobin. Plant, Cell & Environment. 34(7):1113–1126. https://doi.org/10.1111/j.1365-3040.2011.02309.x
    OpenUrlCrossRefPubMed
  35. ↵
    1. Pezeshki SR,
    2. Chambers JL.
    1985. Stomatal and photosynthetic response of sweet gum (Liquidambarstyraciflua) to flooding. Canadian Journal of Forest Research. 15(2):371–375. https://doi.org/10.1139/x85-059
    OpenUrl
  36. ↵
    1. Repo T,
    2. Domisch T,
    3. Kilpeläinen J,
    4. Piirainen S,
    5. Silvennoinen R,
    6. Lehto T.
    2020. Dynamics of fine-root production and mortality of Scots pine in waterlogged peat soil during the growing season. Canadian Journal of Forest Research. 50(5):510–518. https://doi.org/10.1139/cjfr-2019-0163
    OpenUrl
  37. ↵
    1. Roman LA,
    2. Battles JJ,
    3. McBride JR.
    2016. Urban tree mortality: A primer on demographic approaches. Newtown Square (PA, USA): USDA Forest Service, Northern Research Station. General Technical Report NRS-158. 24 p. https://doi.org/10.2737/NRS-GTR-158
  38. ↵
    1. Saeki I,
    2. Dick CW,
    3. Barnes BV,
    4. Murakami N.
    2011. Comparative phylogeography of red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.): Impacts of habitat specialization, hybridization and glacial history. Journal of Biogeography. 38(5):992–1005. https://doi.org/10.1111/j.1365-2699.2010.02462.x
    OpenUrlCrossRefWeb of Science
  39. ↵
    1. Saglio PH.
    1985. Effect of path or sink anoxia on sugar translocation in roots of maize seedlings. Plant Physiology. 77(2):285–290. https://doi.org/10.1104/pp.77.2.285
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Salvatierra A,
    2. Toro G,
    3. Mateluna P,
    4. Opazo I,
    5. Ortiz M,
    6. Pimentel P.
    2020. Keep calm and survive: Adaptation strategies to energy crisis in fruit trees under root hypoxia. Plants. 9(9):1108. https://doi.org/10.3390/plants9091108
    OpenUrlPubMed
  41. ↵
    1. Sargent CS.
    1922. Manual of the trees of North America (exclusive of Mexico). 2nd Ed. Cambridge (MA, USA): The Riverside Press. 941 p.
  42. ↵
    1. Schmull M,
    2. Thomas FM.
    2000. Morphological and physiological reactions of young deciduous trees (Quercus robur L., Q. petraea [Matt.] Liebl., Fagus sylvatica L.) to waterlogging. Plant and Soil. 225:227–242. https://doi.org/10.1023/A:1026516027096
    OpenUrlCrossRefWeb of Science
  43. ↵
    1. Shi F,
    2. Pan Z,
    3. Dai P,
    4. Shen Y,
    5. Lu Y,
    6. Han B.
    2023. Effect of waterlogging stress on leaf anatomical structure and ultrastructure of Phoebe sheareri seedlings. Forests. 14(7):1294. https://doi.org/10.3390/f14071294
    OpenUrl
  44. ↵
    1. van Dongen JT,
    2. Licausi F
    1. Takahashi H,
    2. Yamauchi T,
    3. Colmer TD,
    4. Nakazono M.
    2014. Aerenchyma formation in plants. In: van Dongen JT, Licausi F, editors. Low-oxygen stress in plants: Oxygen sensing and adaptive responses to hypoxia. Plant Cell Monographs, volume 21. Wien (Austria): Springer Vienna. p. 247–265. https://doi.org/10.1007/978-3-7091-1254-0_13
    OpenUrl
  45. ↵
    1. Turner-Skoff JB,
    2. Cavender N.
    2019. The benefits of trees for livable and sustainable communities. Plants, People, Planet. 1(4):323–335. https://doi.org/10.1002/ppp3.39
    OpenUrl
  46. ↵
    1. Ulmer JM,
    2. Wolf KL,
    3. Backman DR,
    4. Tretheway RL,
    5. Blain CJ,
    6. O’Neil-Dunne JPM,
    7. Frank LD.
    2016. Multiple health benefits of urban tree canopy: The mounting evidence for a green prescription. Health & Place. 42:54–62. https://doi.org/10.1016/j.healthplace.2016.08.011
    OpenUrlPubMed
  47. ↵
    1. Wang XM,
    2. Wang XK,
    3. Su YB,
    4. Zhang HX.
    2019. Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of The Total Environment. 653:120–130. https://doi.org/10.1016/j.scitotenv.2018.10.281
    OpenUrlPubMed
  48. ↵
    1. Welinder KG.
    1992. Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology. 2(3):388–393. https://doi.org/10.1016/0959-440X(92)90230-5
    OpenUrlCrossRef
  49. ↵
    1. Hornik K,
    2. Parmigiani G
    1. Wickham H.
    2016. Data analysis. In: Hornik K, Parmigiani G, editors. ggplot2: Elegant graphics for data analysis. 2nd Ed. Cham (Switzerland): Springer International Publishing. p. 189–201. https://doi.org/10.1007/978-3-319-24277-4_9
  50. ↵
    1. Wiström B,
    2. Emilsson T,
    3. Sjöman H,
    4. Levinsson A.
    2023. Experimental evaluation of waterlogging and drought tolerance of essential Prunus species in central Europe. Forest Ecology and Management. 537:120904. https://doi.org/10.1016/j.foreco.2023.120904
    OpenUrl
  51. ↵
    1. Yamauchi T,
    2. Shimamura S,
    3. Nakazono M,
    4. Mochizuki T.
    2013. Aerenchyma formation in crop species: A review. Field Crops Research. 152:8–16. https://doi.org/10.1016/j.fcr.2012.12.008
    OpenUrl
  52. ↵
    1. Zhang SZ,
    2. Hua BZ,
    3. Zhang F.
    2008. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interactions. 2:209–213. https://doi.org/10.1007/s11829-008-9044-5
    OpenUrl
  53. ↵
    1. Zwack JA,
    2. Graves WR,
    3. Townsend AM.
    1999. Variation among red and freeman maples in response to drought and flooding. HortScience. 34(4):664–668. https://doi.org/10.21273/HORTSCI.34.4.664
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 51 (1)
Arboriculture & Urban Forestry (AUF)
Vol. 51, Issue 1
January 2025
  • Table of Contents
  • Table of Contents (PDF)
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fine-Root Responses of Two Maple and Two Magnolia Species to Waterlogging
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Fine-Root Responses of Two Maple and Two Magnolia Species to Waterlogging
Kelsey Patrick, Marvin Lo, Chad M. Rigsby, Carla E. Rosenfeld, M. Luke McCormack
Arboriculture & Urban Forestry (AUF) Jan 2025, 51 (1) 29-45; DOI: 10.48044/jauf.2024.025

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Fine-Root Responses of Two Maple and Two Magnolia Species to Waterlogging
Kelsey Patrick, Marvin Lo, Chad M. Rigsby, Carla E. Rosenfeld, M. Luke McCormack
Arboriculture & Urban Forestry (AUF) Jan 2025, 51 (1) 29-45; DOI: 10.48044/jauf.2024.025
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Arboriculture & Urban Forestry Quiz Questions
    • Acknowledgements
    • Appendix
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Linking Urban Greening and Community Engagement with Heat-Related Health Outcomes: A Scoping Review of the Literature
  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
Show more Articles

Similar Articles

Keywords

  • Anoxic
  • Flooding
  • Photosynthesis
  • Root Trait
  • Tree Selection
  • Urban Tree

© 2025 International Society of Arboriculture

Powered by HighWire