Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Tree Trimming Effects on 3-Dimensional Crown Structure and Tree Biomechanics: A Pilot Project

Nicholas Cranmer, Robert T. Fahey, Thomas Worthley, Chandi Witharana, Brandon Alveshere and Amanda Bunce
Arboriculture & Urban Forestry (AUF) November 2024, 50 (6) 395-413; DOI: https://doi.org/10.48044/jauf.2024.020
Nicholas Cranmer
Department of Natural Resources and the Environment, University of Connecticut, 1376 Storrs Rd, Storrs, Connecticut, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Robert T. Fahey
Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut, USA, +1-860-486-0148,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Thomas Worthley
Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA, +1-860-345-5232,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Chandi Witharana
Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA, +1-860-486-2840,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Brandon Alveshere
Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Amanda Bunce
Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Åkerblom M,
    2. Raumonen P,
    3. Mäkipää R,
    4. Kaasalainen M.
    2017. Automatic tree species recognition with quantitative structure models. Remote Sensing ofEnvironment. 191:1–12. https://doi.org/10.1016/j.rse.2016.12.002
    OpenUrl
  2. ↵
    1. Ancelin P,
    2. Courbaud B,
    3. Fourcaud T
    2004. Development of an individual tree-based mechanical model to predict wind damage within forest stands. Forest Ecology and Management . 203(1-3):101–121. https://doi.org/10.1016/j.foreco.2004.07.067
    OpenUrlCrossRefWeb of Science
  3. ↵
    1. Badel E,
    2. Ewers FW,
    3. Cochard H,
    4. Telewski FW.
    2015. Acclimation of mechanical and hydraulic functions in trees: Impact of the thigmomorphogenetic process. Frontiers in Plant Science. 6. https://doi.org/10.3389/fpls.2015.00266
  4. ↵
    1. Bunce A,
    2. Volin JC,
    3. Miller DR,
    4. Parent J,
    5. Rudnicki M.
    2019. Determinants of tree sway frequency in temperate deciduous forests of the Northeast United States. Agricultural and Forest Meteorology. 266-267:87–96. https://doi.org/10.1016/j.agrformet.2018.11.020
    OpenUrl
  5. ↵
    1. Calders K,
    2. Adams J,
    3. Armston J,
    4. Bartholomeus H,
    5. Bauwens S,
    6. Bentley LP,
    7. Chave J,
    8. Danson FM,
    9. Demol M,
    10. Disney M,
    11. Gaulton R,
    12. Krishna Moorthy SM,
    13. Levick SR,
    14. Saarinen N,
    15. Schaaf C,
    16. Stovall A,
    17. Terryn L,
    18. Wilkes P,
    19. Verbeeck H.
    2020. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing ofEnvironment. 251:112102. https://doi.org/10.1016/j.rse.2020.112102
    OpenUrl
  6. ↵
    1. Cerrai D,
    2. Wanik DW,
    3. Bhuiyan MAE,
    4. Zhang X,
    5. Yang J,
    6. Frediani MEB,
    7. Anagnostou EN.
    2019. Predicting storm outages through new representations of weather and vegetation. IEEE Access. 7:29639–29654. https://doi.org/10.1109/ACCESS.2019.2902558
    OpenUrl
  7. ↵
    1. Dale VH,
    2. Joyce LA,
    3. Mcnulty S,
    4. Neilson RP,
    5. Ayres MP,
    6. Flannigan MD,
    7. Hanson PJ,
    8. Irland LC,
    9. Lugo AE,
    10. Peterson CJ,
    11. Simberloff D,
    12. Swanson FJ,
    13. Stocks BJ,
    14. Michael Wotton B.
    2001. Climate change and forest disturbances. BioScience. 51(9):723–734. https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
    OpenUrlCrossRefWeb of Science
  8. ↵
    1. Del Río M,
    2. Bravo-Oviedo A,
    3. Ruiz-Peinado R,
    4. Condés S.
    2019. Tree allometry variation in response to intra-and inter-specific competitions. Trees. 33(1):121–138. https://doi.org/10.1007/s00468-018-1763-3
    OpenUrl
  9. ↵
    1. Echereme CB,
    2. Mbaekwe EI,
    3. Ekwealor KU.
    2015. Tree crown architecture: Approach to tree form, structure and performance: A review. International Journal of Scientific and Research Publications. 5(9):1. http://www.ijsrp.org/research-paper-0915.php?rp=P454569
    OpenUrl
  10. ↵
    Eversource. 2019. Understanding vegetation management: A guide for property owners, Revised Ed. Sandisfield (MA, USA): Eversource. [Accessed 2022]. 13 p. www.sandisfieldma.gov/sites/g/files/vyhlif1171/f/news/eversource-understanding-veg-man-guide-rev-11-29-19-lo-res.pdf
  11. ↵
    FARO Technologies, Inc. 2021. FARO® SCENE version 6.2.5.7 [computer software]. Lake Mary (FL, USA): FARO Technologies, Inc. www.faro.com/en/Products/Software/SCENE-Software
  12. ↵
    1. Gardiner B,
    2. Berry P,
    3. Moulia B.
    2016. Review: Wind impacts on plant growth, mechanics and damage. Plant Science. 245:94118. https://doi.org/10.1016/j.plantsci.2016.01.006
    OpenUrl
  13. ↵
    1. Gardiner BA,
    2. Quine CP.
    2000. Management of forests to reduce the risk of abiotic damage — A review with particular reference to the effects of strong winds. Forest Ecology and Management . 135(1-3):261–277. https://doi.org/10.1016/S0378-1127(00)00285-1
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Girardeau-Montaut D.
    2020. CloudCompare version 2.11.3 [computer software]. Grenoble (France): CloudCompare. [Accessed 2022 January 31; Updated 2020 October 28]. www.danielgm.net/cc
  15. ↵
    1. Goodfellow J,
    2. Blumreich B,
    3. Nowacki G.
    1987. Tree growth response to line clearance pruning. Journal of Arboriculture. 13(8):196–200. https://doi.org/10.48044/jauf.1987.042
    OpenUrl
  16. ↵
    1. Guggenmoos S.
    2003. Effects of tree mortality on power line security. Journal of Arboriculture. 29(4):181–196. https://doi.org/10.48044/jauf.2003.022
    OpenUrl
  17. ↵
    1. Hackenberg J,
    2. Spiecker H,
    3. Calders K,
    4. Disney M,
    5. Raumonen P.
    2015. SimpleTree—An efficient open source tool to build tree models from TLS clouds. Forests. 6(12):4245–4294. https://doi.org/10.3390/f6114245
    OpenUrl
  18. ↵
    1. Hammerling E.
    2012. State vegetation management task force final report issued to the Connecticut Department of Energy & Environmental Protection. Middlefield (CT, USA): State Vegetation Management Task Force. 94 p. https://portal.ct.gov/DEEP/Forestry/VM-Task-Force/Final-Recommendations
  19. ↵
    1. Hart MB.
    2011. Tropical storm Irene delivered a Sunday punch to Connecticut. Wrack Lines. 11(2):68. https://opencommons.uconn.edu/wracklines/68
    OpenUrl
  20. ↵
    1. Hasan R,
    2. Othman N,
    3. Ismail F.
    2016. Roadside tree management in selected local authorities for public safety. Procedia— Social and Behavioral Sciences. 234:218–227. https://doi.org/10.1016/j.sbspro.2016.10.237
    OpenUrl
  21. ↵
    1. Jackson TD,
    2. Sethi S,
    3. Dellwik E,
    4. Angelou N,
    5. Bunce A,
    6. van Emmerik T,
    7. Duperat M,
    8. Ruel JC,
    9. Wellpott A,
    10. Van Bloem S,
    11. Achim A,
    12. Kane B,
    13. Ciruzzi DM,
    14. Loheide SP,
    15. James K,
    16. Burcham D,
    17. Moore J,
    18. Schindler D,
    19. Kolbe S,
    20. Wiegmann K,
    21. Rudnicki M,
    22. Lieffers VJ,
    23. Selker J,
    24. Gougherty AV,
    25. Newson T,
    26. Koeser A,
    27. Miesbauer J,
    28. Samelson R,
    29. Wagner J,
    30. Ambrose AR,
    31. Detter A,
    32. Rust S,
    33. Coomes D,
    34. Gardiner B.
    2021. The motion of trees in the wind: A data synthesis. Biogeosciences. 18(13):4059–4072. https://doi.org/10.5194/bg-18-4059-2021
    OpenUrl
  22. ↵
    1. Jackson T,
    2. Shenkin A,
    3. Kalyan B,
    4. Zionts J,
    5. Calders K,
    6. Origo N,
    7. Disney M,
    8. Burt A,
    9. Raumonen P,
    10. Malhi Y.
    2019a. A new architectural perspective on wind damage in a natural forest. Frontiers in Forests and Global Change. 1:13. https://doi.org/10.3389/ffgc.2018.00013
    OpenUrl
  23. ↵
    1. Jackson T,
    2. Shenkin A,
    3. Moore J,
    4. Bunce A,
    5. van Emmerik T,
    6. Kane B,
    7. Burcham D,
    8. James K,
    9. Selker J,
    10. Calders K,
    11. Origo N,
    12. Disney M,
    13. Burt A,
    14. Wilkes P,
    15. Raumonen P,
    16. Gonzalez de Tanago Menaca J,
    17. Lau A,
    18. Herold M,
    19. Goodman RC,
    20. Fourcaud T,
    21. Malhi Y.
    2019b. An architectural understanding of natural sway frequencies in trees. Journal of The Royal Society Interface. 16(155):20190116. https://doi.org/10.1098/rsif.2019.0116
    OpenUrlPubMed
  24. ↵
    1. Jaeger DM,
    2. Looze ACM,
    3. Raleigh MS,
    4. Miller BW,
    5. Friedman JM,
    6. Wessman CA.
    2022. From flowering to foliage: Accelerometers track tree sway to provide high-resolution insights into tree phenology. Agricultural and Forest Meteorology. 318:108900. https://doi.org/10.1016/j.agrformet.2022.108900
    OpenUrl
  25. ↵
    1. James K.
    2003. Dynamic loading of trees. Arboriculture & Urban Forestry. 29(3):165–171. https://doi.org/10.48044/jauf.2003.020
    OpenUrl
  26. ↵
    1. James KR,
    2. Haritos N,
    3. Ades PK.
    2006. Mechanical stability of trees under dynamic loads. American Journal of Botany. 93(10):1522–1530. https://doi.org/10.3732/ajb.93.10.1522
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. James KR,
    2. Moore JR,
    3. Slater D,
    4. Dahle GA.
    2018. Tree biomechanics. CABI Reviews. 1–11. https://doi.org/10.1079/PAVSNNR201712038
  28. ↵
    1. Kane B,
    2. James KR.
    2011. Dynamic properties of open-grown deciduous trees. Canadian Journal of Forest Research. 41(2):321–330. https://doi.org/10.1139/X10-211
    OpenUrl
  29. ↵
    1. Kuntz PA,
    2. Christie RD,
    3. Venkata SS.
    2002. Optimal vegetation maintenance scheduling of overhead electric power distribution systems. IEEE Transactions on Power Delivery. 17(4):1164–1169. https://doi.org/10.1109/TPWRD.2002.804007
    OpenUrl
  30. ↵
    1. LeComte D.
    2021. U.S. weather highlights 2020: The most extreme year on record? Weatherwise. 74(3):14–25. https://doi.org/10.1080/00431672.2021.1896929
    OpenUrl
  31. ↵
    1. Lineweber D,
    2. McNulty S.
    2001. The costs of power disturbances to industrial and digital economy companies. Palo Alto (CA, USA): Electric Power Research Institute. No. 3002000476. 98 p. https://www.epri.com/research/products/3002000476
  32. ↵
    1. Loehle C.
    2016. Biomechanical constraints on tree architecture. Trees. 30(6):2061–2070. https://doi.org/10.1007/s00468-016-1433-2
    OpenUrl
  33. ↵
    MathWorks Inc. 2022. MATLAB (R2022a)[computer software]. Natick (MA, USA): MathWorks Inc. https://www.mathworks.com
  34. ↵
    1. Mitchell SJ.
    2013. Wind as a natural disturbance agent in forests: A synthesis. Forestry. 86(2):147–157. https://doi.org/10.1093/forestry/cps058
    OpenUrlCrossRefWeb of Science
  35. ↵
    1. Moore JR,
    2. Maguire DA.
    2005. Natural sway frequencies and damping ratios of trees: Influence of crown structure. Trees. 19(4):363–373. https://doi.org/10.1007/s00468-004-0387-y
    OpenUrl
  36. ↵
    National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information. 2024. Climate at a glance: County mapping. [Accessed 2024 April 14]. https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/mapping
  37. ↵
    National Weather Service. 2012. New England effects from the Hurricane Sandy hybrid storm. [Accessed 2024 July 5]. https://www.weather.gov/media/box/science/Sandy_summary_BOX.pdf
  38. ↵
    1. Parent JR,
    2. Meyer TH,
    3. Volin JC,
    4. Fahey RT,
    5. Witharana C.
    2019. An analysis of enhanced tree trimming effectiveness on reducing power outages. Journal of Environmental Management . 241:397–406. https://doi.org/10.1016/j.jenvman.2019.04.027
    OpenUrlPubMed
  39. ↵
    Python Software Foundation. 2021. Python version 3.10.0 [computer software]. Wilmington (DE, USA): Python Software Foundation. www.python.org
  40. ↵
    1. Raumonen P,
    2. Kaasalainen M,
    3. Åkerblom M,
    4. Kaasalainen S,
    5. Kaartinen H,
    6. Vastaranta M,
    7. Holopainen M,
    8. Disney M,
    9. Lewis P
    2013. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing. 5(2):491–520. https://doi.org/10.3390/rs5020491
    OpenUrl
  41. ↵
    1. Sellier D,
    2. Fourcaud T.
    2009. Crown structure and wood properties: Influence on tree sway and response to high winds. American Journal of Botany. 96(5):885–896. https://doi.org/10.3732/ajb.0800226
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Snepsts G,
    2. Kitenberga M,
    3. Elferts D,
    4. Donis J,
    5. Jansons A.
    2020. Stem damage modifies the impact of wind on Norway spruces. Forests. 11(4):463. https://doi.org/10.3390/f11040463
    OpenUrl
  43. ↵
    1. Spatz HC,
    2. Bruechert F.
    2000. Basic biomechanics of self-supporting plants: Wind loads and gravitational loads on a Norway spruce tree. Forest Ecology and Management. 135(1-3):33–44. https://doi.org/10.1016/S0378-1127(00)00296-6
    OpenUrlCrossRefWeb of Science
  44. ↵
    1. Taylor WO,
    2. Watson PL,
    3. Cerrai D,
    4. Anagnostou EN.
    2022. Dynamic modeling of the effects of vegetation management on weather-related power outages. Electric Power Systems Research. 207:107840. https://doi.org/10.1016/j.epsr.2022.107840
    OpenUrl
  45. ↵
    1. Terryn L.
    2022. lmterryn/ITSMe: submission release. Version v1.0.0 [Computer software]. https://doi.org/10.5281/zenodo.6769105
  46. ↵
    1. Terryn L,
    2. Calders K,
    3. Åkerblom M,
    4. Bartholomeus H,
    5. Disney M,
    6. Levick S,
    7. Origo N,
    8. Raumonen P,
    9. Verbeeck H.
    2023. Analysing individual 3D tree structure using the R package ITSMe. 14(1):231–241. https://doi.org/10.1111/2041-210X.14026
    OpenUrl
  47. ↵
    1. Terryn L,
    2. Calders K,
    3. Disney M,
    4. Origo N,
    5. Malhi Y,
    6. Newnham G,
    7. Raumonen P,
    8. Åkerblom M,
    9. Verbeeck H.
    2020. Tree species classification using structural features derived from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing. 168:170–181. https://doi.org/10.1016/j.isprsjprs.2020.08.009
    OpenUrl
  48. ↵
    1. Walker M,
    2. Dahle G.
    2023. Literature review of unmanned aerial systems and LIDAR with application to distribution utility vegetation management. Arboriculture & Urban Forestry. 49(3):144–156. https://doi.org/10.48044/jauf.2023.011
    OpenUrl
  49. ↵
    1. Kabrick JM,
    2. Dey DC,
    3. Knapp BO,
    4. Larsen DR,
    5. Shifley SR,
    6. Stelzer HE
    1. Ward JS,
    2. Worthley TE,
    3. Degnan TJ,
    4. Barsky JP.
    2017. Stormwise: Integrating arboriculture and silviculture to create storm-resilient roadside forests. In: Kabrick JM, Dey DC, Knapp BO, Larsen DR, Shifley SR, Stelzer HE, editors. Proceedings of the 20th Central Hardwood Forest Conference. 20th Central Hardwood Forest Conference; 2016 March 28–April 1; Columbia, MO. General Technical Report NRS-P-1670. Newtown Square (PA, USA): USDA Forest Service, Northern Research Station: 119–132.
  50. ↵
    1. Warwick WM,
    2. Hardy TD,
    3. Hoffman MG,
    4. Homer JS.
    2016. Electricity Distribution System Baseline Report. Richland (WA, USA): Pacific Northwest National Laboratory. Report No. PNNL-25178. https://www.energy.gov/sites/prod/files/2017/01/f34/Electricity%20Distribution%20System%20Baseline%20Report.pdf
  51. ↵
    1. Wedagedara H,
    2. Witharana C,
    3. Fahey R,
    4. Cerrai D,
    5. Joshi D,
    6. Parent J.
    2023. Modeling the impact of local environmental variables on tree-related power outages along distribution powerlines. Electric Power Systems Research. 221:109486. https://doi.org/10.1016/j.epsr.2023.109486
    OpenUrl
  52. ↵
    1. Yahner R,
    2. Hutnik R.
    2005. Integrated vegetation management on an electric transmission right-of-way in Southeastern Pennsylvania, U.S. Journal of Arboriculture. 31(5):263–268. https://doi.org/10.48044/jauf.2005.034
    OpenUrl
  53. ↵
    1. Yang Z,
    2. Hui KW,
    3. Abbas S,
    4. Zhu R,
    5. Kwok CYT,
    6. Heo J,
    7. Ju S,
    8. Wong MS.
    2021. A review of dynamic tree behaviors: Measurement methods on tree sway, tree tilt, and root–plate movement. Forests. l2(3):379. https://doi.org/10.3390/112030379
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 50 (6)
Arboriculture & Urban Forestry (AUF)
Vol. 50, Issue 6
November 2024
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tree Trimming Effects on 3-Dimensional Crown Structure and Tree Biomechanics: A Pilot Project
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Tree Trimming Effects on 3-Dimensional Crown Structure and Tree Biomechanics: A Pilot Project
Nicholas Cranmer, Robert T. Fahey, Thomas Worthley, Chandi Witharana, Brandon Alveshere, Amanda Bunce
Arboriculture & Urban Forestry (AUF) Nov 2024, 50 (6) 395-413; DOI: 10.48044/jauf.2024.020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Tree Trimming Effects on 3-Dimensional Crown Structure and Tree Biomechanics: A Pilot Project
Nicholas Cranmer, Robert T. Fahey, Thomas Worthley, Chandi Witharana, Brandon Alveshere, Amanda Bunce
Arboriculture & Urban Forestry (AUF) Nov 2024, 50 (6) 395-413; DOI: 10.48044/jauf.2024.020
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Conflicts of Interest
    • Acknowledgements
    • Appendix
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Urban Trees and Cooling: A Review of the Recent Literature (2018 to 2024)
  • Aerial Imagery as a Tool for Monitoring Urban Tree Retention: Applications, Strengths and Challenges for Backyard Tree Planting Programs
  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
Show more Articles

Similar Articles

Keywords

  • Biomechanics
  • Displacement
  • Terrestrial Laser Scanning
  • Trimming
  • Utility Vegetation Management

© 2025 International Society of Arboriculture

Powered by HighWire