Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Role of Urban Trees in Enhancing the Thermal Comfort of Rapidly Urbanizing Cities: An Analysis of Tropical Asian Tree Species Based on Physiological Equivalent Temperature (PET)

V.M. Jayasooriya, A.P. Sirimanne, R.M. Silva and S. Muthukumaran
Arboriculture & Urban Forestry (AUF) September 2024, 50 (5) 326-345; DOI: https://doi.org/10.48044/jauf.2024.014
V.M. Jayasooriya
Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, Department of Geography, Geomatics and Environment, University of Toronto, Toronto, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
A.P. Sirimanne
Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
  • Find this author on Google Scholar
  • Search for this author on this site
R.M. Silva
Department of Statistics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
  • Find this author on Google Scholar
  • Search for this author on this site
S. Muthukumaran
Institute for Sustainable Industries and Livable Cities, Victoria University, Melbourne, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Ahmed KS.
    2003. Comfort in urban spaces: Defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy and Buildings. 35(1):103–110. https://doi.org/10.1016/S0378-7788(02)00085-3
    OpenUrl
  2. ↵
    American National Standards Institute, American Society of Heating, Refrigerating and Air-Conditioning Engineers [ANSI/ASHRAE]. 2017. Thermal environmental conditions for human occupancy (ANSI/ASHRAE Standard 55-2017). Atlanta (GA, USA): ANSI/ASHRAE. 62 p.
  3. ↵
    1. Blazejczyk K,
    2. Epstein Y,
    3. Jendritzky G,
    4. Staiger H,
    5. Tinz B.
    2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology. 56(3):515–535. https://doi.org/10.1007/s00484-011-0453-2
    OpenUrlPubMed
  4. ↵
    1. Chen X,
    2. Xue P,
    3. Liu L,
    4. Gao L,
    5. Liu J.
    2018. Outdoor thermal comfort and adaptation in severe cold area: A longitudinal survey in Harbin, China. Building and Environment. 143:548–560. https://doi.org/10.1016/j.buildenv.2018.07.041
    OpenUrl
  5. ↵
    1. Depietri Y,
    2. Renaud FG,
    3. Kallis G.
    2012. Heat waves and floods in urban areas: A policy-oriented review of ecosystem services. Sustainability Science. 7(1):95–107. https://doi.org/10.1007/s11625-011-0142-4
    OpenUrl
  6. ↵
    1. Elnabawi MH,
    2. Hamza N.
    2020. Behavioural perspectives of outdoor thermal comfort in urban areas: A critical review. Atmosphere. 11(1):51. https://doi.org/10.3390/atmos11010051
    OpenUrl
  7. ↵
    1. Fang Z,
    2. Feng X,
    3. Lin Z.
    2017. Investigation of PMV model for evaluation of the outdoor thermal comfort. Procedia Engineering. 205:2457–2462. https://doi.org/10.1016/j.proeng.2017.09.973
    OpenUrl
  8. ↵
    1. Hammer O,
    2. Harper DAT,
    3. Ryan PD.
    2001. PAST (Paleontological Statistics) [computer software]. Oslo (Norway): University of Oslo. https://www.nhm.uio.no/english/research/resources/past
  9. ↵
    1. Höppe P.
    1999. The physiological equivalent temperature–A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology. 43:71–75. https://doi.org/10.1007/s004840050118
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Hwang RL,
    2. Lin TP,
    3. Matzarakis A.
    2011. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and Environment. 46(4):863–870. https://doi.org/10.1016/j.buildenv.2010.10.017
    OpenUrl
  11. ↵
    1. Javan K,
    2. Nasiri F.
    2016. Evaluating the thermal comfort of humans by RayMan model in Lake Urmia Basin, Iran. Journal of Tourism Hospitality Research. 5(1):73–89.
    OpenUrl
  12. ↵
    1. Jeyaraj SK.
    2022. Sri Lanka - South Asia - P146314 - Climate resilience improvement project (CRIP) - Audited financial statement (English). Washington, DC (USA): World Bank Group. Report No. SCA0078751. http://documents.worldbank.org/curated/en/099335110202210691/P1463140fa793a03b0aa050350d5c38417b
  13. ↵
    1. Johansson E,
    2. Emmanuel R.
    2006. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. International Journal of Biometeorology. 51(2):119–133. https://doi.org/10.1007/s00484-006-0047-6
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Karimi A,
    2. Sanaieian H,
    3. Farhadi H,
    4. Norouzian-Maleki S.
    2020. Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a mediumsized urban park. Energy Reports. 6:1670–1684. https://doi.org/10.1016/j.egyr.2020.06.015
    OpenUrl
  15. ↵
    1. Krüger EL,
    2. Minella FO,
    3. Matzarakis A.
    2014. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of Biometeorology. 58(8):1727–1737. https://doi.org/10.1007/s00484-013-0777-1
    OpenUrl
  16. ↵
    1. Lai D,
    2. Lian Z,
    3. Liu W,
    4. Guo C,
    5. Liu W,
    6. Liu K,
    7. Chen Q.
    2020. A comprehensive review of thermal comfort studies in urban open spaces. Science of the Total Environment. 742:140092. https://doi.org/10.1016/j.scitotenv.2020.140092
    OpenUrl
  17. ↵
    1. Lin P,
    2. Song D,
    3. Qin H.
    2021. Impact of parking and greening design strategies on summertime outdoor thermal condition in old mid-rise residential estates. Urban Forestry & Urban Greening. 63:127200. https://doi.org/10.1016/j.ufug.2021.127200
    OpenUrl
  18. ↵
    1. Lin TP,
    2. Matzarakis A,
    3. Hwang RL.
    2010. Shading effect on longterm outdoor thermal comfort. Building and Environment. 45:213–221. https://doi.org/10.1016/j.buildenv.2009.06.002
    OpenUrl
  19. ↵
    1. Lin TP,
    2. Matzarakis A,
    3. Hwang RL.
    2022. A study on the relationship between thermal comfort indices and the assessment of outdoor thermal environments in Taiwan. International Journal of Biometeorology. 54(3):221–230.
    OpenUrl
  20. ↵
    1. Lin TP,
    2. Tsai KT,
    3. Hwang RL,
    4. Matzarakis A.
    2012. Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning. 107(2):137–146. https://doi.org/10.1016/j.landurbplan.2012.05.011
    OpenUrl
  21. ↵
    1. Lin YH,
    2. Tsai KT.
    2017. Screening of tree species for improving outdoor human thermal comfort in a Taiwanese city. Sustainability. 9:340.
    OpenUrl
  22. ↵
    1. Lindberg F,
    2. Grimmond C.
    2011. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theoretical and Applied Climatology. 105(3-4):311–323. https://doi.org/10.1007/s00704-010-0382-8
    OpenUrl
  23. ↵
    1. Matzarakis A,
    2. Rutz F,
    3. Mayer H.
    2007. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. International Journal of Biometeorology. 51(4):323–334. https://doi.org/10.1007/s00484-006-0061-8
    OpenUrlCrossRefPubMed
  24. ↵
    1. Matzarakis A,
    2. Rutz F,
    3. Mayer H.
    2010. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorology. 54(2):131–139. https://doi.org/10.1007/s00484-009-0261-0
    OpenUrlCrossRefPubMed
  25. ↵
    1. Mayer H,
    2. Höppe P.
    1987. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology. 38(1):43–49. https://doi.org/10.1007/BF00866252
    OpenUrlCrossRefWeb of Science
  26. ↵
    1. Morakinyo TE,
    2. Kong L,
    3. Lau KKL,
    4. Yuan C,
    5. NG E.
    2017. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Building and Environment. 115:1–17. https://doi.org/10.1016/j.buildenv.2017.01.005
    OpenUrl
  27. ↵
    1. Moss JL,
    2. Doick KJ,
    3. Smith S,
    4. Shahrestani M.
    2019. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban Forestry & Urban Greening. 37:65–73. https://doi.org/10.1016/j.ufug.2018.07.023
    OpenUrl
  28. ↵
    1. Narimani N,
    2. Karimi A,
    3. Brown RD.
    2022. Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecological Informatics. 69:101671. https://doi.org/10.1016/j.ecoinf.2022.101671
    OpenUrl
  29. ↵
    1. Nasrollahi N,
    2. Ghosouri A,
    3. Khodakarami J,
    4. Taleghani M.
    2020. Heat-mitigation strategies to improve pedestrian thermal comfort in urban environments: A review. Sustainability. 12(23):10000. https://doi.org/10.3390/su122310000
    OpenUrl
  30. ↵
    1. Pompei L,
    2. Nardecchia F,
    3. Gugliermetti L,
    4. Cinquepalmi F.
    2024. Design of three outdoor combined thermal comfort prediction models based on urban and environmental parameters. Energy and Buildings. 306:113946. https://doi.org/10.1016/j.enbuild.2024.113946
    OpenUrl
  31. ↵
    1. Potchter O,
    2. Cohen P,
    3. Lin TP,
    4. Matzarakis A.
    2018. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment. 631-632:390–406. https://doi.org/10.1016/j.scitotenv.2018.02.276
    OpenUrlCrossRef
  32. ↵
    1. Rahman MA,
    2. Armson D,
    3. Ennos A.
    2015. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosystems. 18(2):371–389. https://doi.org/10.1007/s11252-014-0407-7
    OpenUrlCrossRef
  33. ↵
    1. Rahman MA,
    2. Hartmann C,
    3. Moser-Reischl A,
    4. Von Strachwitz MF,
    5. Paeth H,
    6. Pretzsch H,
    7. Pauleit S,
    8. Rötzer T.
    2020. Tree cooling effects and human thermal comfort under contrasting species and sites. Agricultural and Forest Meteorology. 287:107947. https://doi.org/10.1016/j.agrformet.2020.107947
    OpenUrl
  34. ↵
    R Core Team. 2022. R: A language and environment for statistical computing. v. 4.2.2. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org
  35. ↵
    1. Santamouris M.
    2014. Cooling the cities–A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy. 103:682–703. https://doi.org/10.1016/j.solener.2012.07.003
    OpenUrlCrossRef
  36. ↵
    1. Taleghani M,
    2. Sailor DJ,
    3. Tenpierik M,
    4. van den Dobbelsteen A.
    2014. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and Environment. 73:138–150. https://doi.org/10.1016/j.buildenv.2013.12.006
    OpenUrl
  37. ↵
    1. Tan Z,
    2. Ng E.
    2016. Enhancing outdoor comfort and climate resilience with mitigation strategies: Optimized planning methods for tree planting in subtropical high-density cities. In: 4th International Conference on Countermeasures to Urban Heat Island (IC2UHI). 4th IC2UHI; 2016 May 30–June 1; Singapore.
  38. ↵
    1. Wang J,
    2. Guo W,
    3. Wang C,
    4. Yao Y,
    5. Kou K,
    6. Xian D,
    7. Zhang Y.
    2021. Tree crown geometry and its performances on human thermal comfort adjustment. Journal of Urban Management. 10(1):16–26. https://doi.org/10.1016/j.jum.2021.02.001
    OpenUrl
  39. ↵
    1. Weerakoon L,
    2. Perera N.
    2021. Vegetation cover effects on outdoor thermal comfort around high-rise developments a case study of Havelock City, Colombo, Sri Lanka. FARU Journal. 8(1):46–56. https://doi.org/10.4038/faruj.v8i1.86
    OpenUrl
  40. ↵
    1. Wickramasinghe L,
    2. Subasinghe S,
    3. Ranwala S.
    2016. Spatial and temporal changes of the green cover of Colombo City in Sri Lanka from 1956 to 2010. Journal of Environmental Professionals Sri Lanka. 5(1):53–66. https://doi.org/10.4038/jepsl.v5i1.7868
    OpenUrl
  41. ↵
    1. Yahia MW,
    2. Johansson E.
    2014. Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Landscape and Urban Planning. 125:1–16. https://doi.org/10.1016/j.landurbplan.2014.01.014
    OpenUrl
  42. ↵
    1. Yang W,
    2. Wong NH,
    3. Jusuf SK.
    2013. Thermal comfort in outdoor urban spaces in Singapore. Building and Environment. 59:426–435. https://doi.org/10.1016/j.buildenv.2012.09.008
    OpenUrl
  43. ↵
    1. Zeng L,
    2. Lu J,
    3. Li W,
    4. Li Y.
    2018. A fast approach for large-scale Sky View Factor estimation using street view images. Building and Environment. 135:74–84. https://doi.org/10.1016/j.buildenv.2018.03.009
    OpenUrl
  44. ↵
    1. Zhang J,
    2. Gou Z,
    3. Zhang F,
    4. Shutter L.
    2020. A study of tree crown characteristics and their cooling effects in a subtropical city of Australia. Ecological Engineering. 158:106027. https://doi.org/10.1016/j.ecoleng.2020.106027
    OpenUrl
  45. ↵
    1. Zhao T,
    2. Fong K.
    2017. Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement and modelling. Sustainable Cities and Society. 32:523–531. https://doi.org/10.1016/j.scs.2017.03.025
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry: 50 (5)
Arboriculture & Urban Forestry (AUF)
Vol. 50, Issue 5
September 2024
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Role of Urban Trees in Enhancing the Thermal Comfort of Rapidly Urbanizing Cities: An Analysis of Tropical Asian Tree Species Based on Physiological Equivalent Temperature (PET)
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Role of Urban Trees in Enhancing the Thermal Comfort of Rapidly Urbanizing Cities: An Analysis of Tropical Asian Tree Species Based on Physiological Equivalent Temperature (PET)
V.M. Jayasooriya, A.P. Sirimanne, R.M. Silva, S. Muthukumaran
Arboriculture & Urban Forestry (AUF) Sep 2024, 50 (5) 326-345; DOI: 10.48044/jauf.2024.014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Role of Urban Trees in Enhancing the Thermal Comfort of Rapidly Urbanizing Cities: An Analysis of Tropical Asian Tree Species Based on Physiological Equivalent Temperature (PET)
V.M. Jayasooriya, A.P. Sirimanne, R.M. Silva, S. Muthukumaran
Arboriculture & Urban Forestry (AUF) Sep 2024, 50 (5) 326-345; DOI: 10.48044/jauf.2024.014
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Background
    • Materials and Methods
    • Results
    • DISCUSSION
    • Conclusion
    • Conflicts of Interest
    • Appendix
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • Outdoor Thermal Comfort
  • Physiologically Equivalent Temperature (PET)
  • Rayman Model
  • Sky View Factor (SVF)
  • Urban Greening

© 2025 International Society of Arboriculture

Powered by HighWire