Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Evaluation of Heat Tolerance in Foliar Tissue of Acer Genotypes

Glynn C. Percival and Christopher D. Percival
Arboriculture & Urban Forestry (AUF) March 2024, 50 (2) 157-168; DOI: https://doi.org/10.48044/jauf.2024.002
Glynn C. Percival
Bartlett Tree Research Laboratories, Charlotte, North Carolina, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Christopher D. Percival
Bartlett Tree Research Laboratory, Cutbush Lane East, Shinfield, Reading, UK
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Aguilera C,
    2. Stirling CM,
    3. Long SP.
    1997. Genotypic variation within Zea mays for susceptibility to and rate of recovery from chill-induced photoinhibition of photosynthesis. Physiologia Plantarum. 106(4):429–436. https://doi.org/10.1034/j.1399-3054.1999.106411.x
    OpenUrl
  2. ↵
    1. Allakhverdiev SI,
    2. Kreslavski VD,
    3. Klimov VV,
    4. Los DA,
    5. Carpentier R,
    6. Mohanty P.
    2008. Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis Research. 98(1-3):541–550. https://doi.org/10.1007/s11120-008-9331-0
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Banks JM,
    2. Hirons AD.
    2019. Alternative methods of estimating the water potential at turgor loss point in Acer genotypes. Plant Methods. 15(34):1–6. https://doi.org/10.1186/s13007-019-0410-3
    OpenUrlCrossRef
  4. ↵
    1. Banks JM,
    2. Percival GC,
    3. Rose G.
    2019. Variations in seasonal drought tolerance rankings. Trees. 33(4):1063–1072. https://doi.org/10.1007/s00468-019-01842-5
    OpenUrl
  5. ↵
    1. Bauerle WL,
    2. Dudley JB,
    3. Grimes LW.
    2003. Genotypic variability in photosynthesis, water use, and light absorption among red and freeman maple cultivars in response to drought stress. Journal of the American Society for Horticultural Science. 128(3):337–342. https://doi.org/10.21273/JASHS.128.3.0337
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Bhattara S,
    2. Harvey JT,
    3. Djidonou D,
    4. Leskovar DI.
    2021. Exploring morpho-physiological variation for heat stress tolerance in tomato. Plants. 10(2):347. https://doi.org/10.3390/plants10020347
    OpenUrl
  7. ↵
    1. Charng YY,
    2. Mitra S,
    3. Yu SJ.
    2023. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. The Plant Cell. 35(1):187–200. https://doi.org/10.1093/plcell/koac313
    OpenUrl
  8. ↵
    1. Coumou D,
    2. Robinson A.
    2013. Historic and future increase in the global land area affected by monthly heat extremes. Environmental Research Letters. 8(3):034018. https://doi.org/10.1088/1748-9326/8/3/034018
    OpenUrl
  9. ↵
    1. Curtis E,
    2. Knight C,
    3. Petrou K,
    4. Leigh A.
    2014. A comparative analysis of photosynthetic recovery from thermal stress: A desert plant case study. Oecologia. 175(4):1051–1061. https://doi.org/10.1007/s00442-014-2988-5
    OpenUrlCrossRefPubMed
  10. ↵
    1. Daas C,
    2. Montpied P,
    3. Hanchi B,
    4. Dreyer E.
    2008. Responses of photosynthesis to high temperatures in oak saplings assessed by chlorophyll-a fluorescence: Inter-specific diversity and temperature-induced plasticity. Annals of Forest Science. 65:304–306. https://doi.org/10.1051/forest:2008002
    OpenUrl
  11. ↵
    1. del Blanco IA,
    2. Rajaram S,
    3. Kronstad WE,
    4. Reynolds MP.
    2000. Physiological performance of synthetic hexaploid wheat-derived populations. Crop Science. 40(5):1257–1263. https://doi.org/10.2135/cropsci2000.4051257x
    OpenUrlWeb of Science
  12. ↵
    1. Diem JE,
    2. Stauber CE,
    3. Rothenberg R.
    2017. Heat in the southeastern United States: Characteristics, trends, and potential health impact. PLoS ONE. 12(5):e0177937. https://doi.org/10.1371/journal.pone.0177937
    OpenUrl
  13. ↵
    1. Dreyer E,
    2. Le Roux X,
    3. Montpied P,
    4. Daudet FA,
    5. Masson F.
    2001. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiology. 21(4):223–232. https://doi.org/10.1093/treephys/21.4.223
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Filewod B,
    2. Thomas SC.
    2014. Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Global Change Biology. 20(2):360–371. https://doi.org/10.1111/gcb.12354
    OpenUrl
  15. ↵
    1. Galmes J,
    2. Medrano H,
    3. Flexas J.
    2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist. 175(1): 81–93. https://doi.org/10.1111/j.1469-8137.2007.02087.x
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Ghouil H,
    2. Montpied P,
    3. Epron D,
    4. Ksontini M,
    5. Hanchi B,
    6. Dreyer E.
    2003. Thermal optima of photosynthetic functions and thermostability of photochemistry in cork oak seedlings. Tree Physiology. 23(15):1031–1039. https://doi.org/10.1093/treephys/23.15.1031
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Greaves JA,
    2. Wilson J.M.
    1987. Chlorophyll fluorescence analysis—An aid to plant breeders. Biologist. 34:209–214.
    OpenUrl
  18. ↵
    1. Hamerlynck EP,
    2. Knapp AK.
    1994. Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae) species: Implications for tree distribution patterns. Forest Ecology Management. 68(2-3):149–159. https://doi.org/10.1016/0378-1127(94)90042-6
    OpenUrl
  19. ↵
    1. Haque MS,
    2. Kjaer KH,
    3. Rosenqvist E,
    4. Sharma DK,
    5. Ottosen CO.
    2014. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environmental and Experimental Botany. 99:1–8. https://doi.org/10.1016/j.envexpbot.2013.10.017
    OpenUrl
  20. ↵
    1. Hassan MU,
    2. Chattha MU,
    3. Khan I,
    4. Chattha MB,
    5. Barbanti L,
    6. Aamer M,
    7. Iqbal MM,
    8. Nawaz M,
    9. Mahmood A,
    10. Ali A,
    11. Aslam MT.
    2020. Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—A review. Plant Biosystems. 155(2):1–56. https://doi.org/10.1080/11263504.2020.1727987
    OpenUrl
  21. ↵
    1. He C,
    2. Murray F,
    3. Lyons T.
    2000. Monoterpene and isoprene emissions from 15 Eucalyptus species. Atmosphere Environment. 34(4):645–655. https://doi.org/10.1016/S1352-2310(99)00219-8
    OpenUrl
  22. ↵
    1. Húdoková H,
    2. Petrik P,
    3. Petek-Petrik A,
    4. Konôpková A,
    5. Lestianška A,
    6. Střelcová K,
    7. Kmet’ J,
    8. Kurjak D.
    2022. Heat-stress response of photosystem II in five ecologically important tree species of European temperate forests. Biologia. 77(3):671–680. https://doi.org/10.1007/s11756-021-00958-9
    OpenUrl
  23. ↵
    1. Hu S,
    2. Ding Y,
    3. Zhu C.
    2020. Sensitivity and responses of chloroplasts to heat stress in plants. Frontiers in Plant Science. 11:375. https://doi.org/10.3389/fpls.2020.00375
    OpenUrl
  24. ↵
    IPCC. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change.
    1. Stocker TF,
    2. Qin D,
    3. Plattner GK,
    4. Tignor M,
    5. Allen SK,
    6. Boschung J,
    7. Nauels A,
    8. Xia Y,
    9. Bex V,
    10. Midgley PM
    , editors. Cambridge (United Kingdom) and New York (NY, USA): Cambridge University Press. 1535 p. https://doi.org/10.1017/CBO9781107415324
  25. ↵
    1. Kitao M,
    2. Lei TT,
    3. Koike T.
    1998. Application of chlorophyll fluorescence to evaluate Mn tolerance of deciduous broad-leaved tree seedlings native to northern Japan. Tree Physiology. 18(2):135–140. https://doi.org/10.1093/treephys/18.2.135
    OpenUrlCrossRefPubMed
  26. ↵
    1. Kleist E,
    2. Mentel TF,
    3. Andres S,
    4. Bohne A,
    5. Folkers A,
    6. Kiendler-Scharr A,
    7. Rudich Y,
    8. Springer M,
    9. Tillmann R,
    10. Wildt J.
    2012. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences. 9(12):5111–5123. https://doi.org/10.5194/bg-9-5111-2012
    OpenUrl
  27. ↵
    1. Knight CA,
    2. Ackerly DD.
    2002. An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. Oecologia. 130(4):505–514. https://doi.org/10.1007/s00442-001-0841-0
    OpenUrlCrossRefWeb of Science
  28. ↵
    1. Knight CA,
    2. Ackerly DD.
    2003. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: Congeneric species from desert and coastal environments. New Phytologist. 160(2):337–347. https://doi.org/10.1046/j.1469-8137.2003.00880.x
    OpenUrlCrossRefWeb of Science
  29. ↵
    1. Lahr EC,
    2. Dunn RR,
    3. Frank SD.
    2018. Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States. PLoSOne. 35(5):e0197866. https://doi.org/10.1371/journal.pone.0197866
    OpenUrl
  30. ↵
    1. Lichtenthaler HK,
    2. Wellburn AR.
    1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 11(5):591–593. https://doi.org/10.1042/bst0110591
    OpenUrlFREE Full Text
  31. ↵
    1. Liu X,
    2. Huang B.
    2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science. 40(2): 503–510. https://doi.org/10.2135/cropsci2000.402503x
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Maxwell K,
    2. Johnson GN.
    2001. Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany. 51(345): 659–668. https://doi.org/10.1093/jexbot/51.345.659
    OpenUrl
  33. ↵
    1. O’Sullivan OS,
    2. Heskel MA,
    3. Reich PB,
    4. Tjoelker MG,
    5. Weerasinghe LK,
    6. Penillard A,
    7. Zhu L,
    8. Egerton JJG,
    9. Bloomfield KJ,
    10. Creek D,
    11. Bahar NHA,
    12. Griffin KL,
    13. Hurry V,
    14. Meir P,
    15. Turnbull MH,
    16. Atkin OK.
    2017. Thermal limits of leaf metabolism across biomes. Global Change Biology. 23(1):209–223. https://doi.org/10.1111/gcb.13477
    OpenUrlCrossRef
  34. ↵
    1. Percival GC,
    2. Graham S.
    2021. Evaluation of inducing agents and synthetic fungicide combinations for management of foliar pathogens of urban trees. Arboriculture & Urban Forestry. 47(2):85–95. https://doi.org/10.48044/jauf.2021.008
    OpenUrl
  35. ↵
    1. Percival GC,
    2. Percival CD.
    2022. When selecting trees for heat tolerance keep a cool mind. ARB Magazine. 197:41–45. https://www.trees.org.uk/Membership/ARB-Magazine
    OpenUrl
  36. ↵
    1. Raupp MJ,
    2. Buckelew Cumming A,
    3. Raupp EC.
    2006. Street tree diversity in Eastern North America and its potential for tree loss to exotic borers. Arboriculture & Urban Forestry. 32(6): 297–304. https://doi.org/10.48044/jauf.2006.038
    OpenUrl
  37. ↵
    1. Reynolds MP,
    2. Saint Pierre C,
    3. Saad Abu SI,
    4. Vargas M,
    5. Condon AG.
    2007. Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science. 47(S3): S172–S189. https://doi.org/10.2135/cropsci2007.10.0022IPBS
    OpenUrl
  38. ↵
    1. Rosyara UR,
    2. Subedi S,
    3. Duveiller E,
    4. Sharma RC.
    2010. Photochemical efficiency and SPAD value as indirect selection criteria for combined selection of spot blotch and terminal heat stress in wheat. Journal Phytopathology. 158(11–12):813–821. https://doi.org/10.1111/j.1439-0434.2010.01703.x
    OpenUrl
  39. ↵
    1. Sairam RK,
    2. Tyagi A.
    2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science. 86(3): 407–421. https://www.jstor.org/stable/24108735
    OpenUrlWeb of Science
  40. ↵
    1. Santamour FS.
    1990. Trees for urban planting: Diversity, uniformity, and common sense. In: Proceedings of the 7th Conference of the Metropolitan Tree Improvement Alliance (METRIA). METRIA 7: Trees for the Nineties; 1990 June 11-12; Lisle, Illinois, United States. Minneapolis (MN, USA): University of Minnesota. p. 57–65.
  41. ↵
    1. Teskey R,
    2. Wertin T,
    3. Bauweraerts I,
    4. Ameye M,
    5. McGuire MA,
    6. Steppe K.
    2015. Responses of tree species to heat waves and extreme heat events. Plant Cell Environment. 38(9):1699–1712. https://doi.org/10.1111/pce.12417
    OpenUrlCrossRefPubMed
  42. ↵
    1. Tian F,
    2. Hu XL,
    3. Yao T,
    4. Yang X,
    5. Chen JG,
    6. Lu MZ,
    7. Zhang J.
    2021. Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Frontiers in Plant Science. 12:704905. https://doi.org/10.3389/fpls.2021.704905
    OpenUrl
  43. ↵
    1. Uddling J,
    2. Gelang-Alfredsson J,
    3. Piikki K,
    4. Pleije H.
    2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research. 91:37–46. https://doi.org/10.1007/s11120-006-9077-5
    OpenUrlCrossRefPubMedWeb of Science
  44. ↵
    1. Vose RS,
    2. Easterling DR,
    3. Kunkel KE,
    4. LeGrande AN,
    5. Wehner MF.
    2017. Temperature changes in the United States. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, editors. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Washington DC (USA): US Global Change Research Program. p. 185–206. https://doi.org/10.7930/J0N29V45
  45. ↵
    1. Wahid A,
    2. Gelani S,
    3. Ashraf M,
    4. Foolad MR.
    2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61(3):199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Wang Z,
    2. Huang B.
    2004. Physiological recovery of Kentucky Bluegrass from simultaneous drought and heat stress. Crop Science. 44(5):1729–1736. https://doi.org/10.2135/cropsci2004.1729
    OpenUrlWeb of Science
  47. ↵
    1. Willits DH,
    2. Peet MM.
    1999. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato. Acta Horticulturae. 507:311–315. https://doi.org/10.17660/ActaHortic.1999.507.36
    OpenUrl
  48. ↵
    1. Zhu L,
    2. Bloomfield KJ,
    3. Hocart CH,
    4. Egerton JJG,
    5. O’Sullivan OS,
    6. Penillard A,
    7. Weerasinghe LK,
    8. Atkin OK.
    2018. Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environment. 41(6):1251–1262. https://doi.org/10.1111/pce.13133
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 50 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 50, Issue 2
March 2024
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of Heat Tolerance in Foliar Tissue of Acer Genotypes
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Evaluation of Heat Tolerance in Foliar Tissue of Acer Genotypes
Glynn C. Percival, Christopher D. Percival
Arboriculture & Urban Forestry (AUF) Mar 2024, 50 (2) 157-168; DOI: 10.48044/jauf.2024.002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evaluation of Heat Tolerance in Foliar Tissue of Acer Genotypes
Glynn C. Percival, Christopher D. Percival
Arboriculture & Urban Forestry (AUF) Mar 2024, 50 (2) 157-168; DOI: 10.48044/jauf.2024.002
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conflicts of Interest
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • Heat Waves
  • Maple
  • Photosynthesis
  • Photosystem II
  • Species Selection
  • Urban Heat Island Effect
  • Urban Trees

© 2025 International Society of Arboriculture

Powered by HighWire