Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Which Tree Species Best Withstand Urban Stressors? Ask the Experts

Maribel Carol-Aristizabal, Jérôme Dupras, Christian Messier and Rita Sousa-Silva
Arboriculture & Urban Forestry (AUF) January 2024, 50 (1) 57-75; DOI: https://doi.org/10.48044/jauf.2023.026
Maribel Carol-Aristizabal
Centre d’étude de la forêt (CEF), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Jérôme Dupras
Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, QC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
  • ORCID record for Jérôme Dupras
Christian Messier
Centre d’étude de la forêt (CEF), Université du Québec à Montréal (UQAM), Montréal, QC, Canada, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, QC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
  • ORCID record for Christian Messier
Rita Sousa-Silva
Centre d’étude de la forêt (CEF), Université du Québec à Montréal (UQAM), Montréal, QC, Canada, Young Academy for Sustainability Research (YAS), Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg im Breisgau, Germany
  • Find this author on Google Scholar
  • Search for this author on this site
  • ORCID record for Rita Sousa-Silva
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Beckman E,
    2. Meyer A,
    3. Pivorunas D,
    4. Hoban S,
    5. Westwood M.
    2021. Conservation gap analysis of Kentucky coffeetree. Lisle (IL, USA): The Morton Arboretum. 16 p. https://mortonarb.org/app/uploads/2021/08/conservation-gap-analysis-of-kentucky-coffeetree.pdf
  2. ↵
    1. Bertin RI,
    2. Manner ME,
    3. Larrow BF,
    4. Cantwell TW,
    5. Berstene EM.
    2005. Norway maple (Acer platanoides) and other non-native trees in urban woodlands of central Massachusetts. The Journal of the Torrey Botanical Society. 132:(2)225–235. https://doi.org/10.3159/1095-5674(2005)132[225:NMAPAO]2.0.CO;2
    OpenUrl
  3. ↵
    1. Borsuk AM,
    2. Brodersen CR.
    2019. The spatial distribution of chlorophyll in leaves. Plant Physiology. 180(3):1406–1417. https://doi.org/10.1104/pp.19.00094
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Brace I.
    2018. Questionnaire design: How to plan, structure and write survey material for effective market research. 4th Ed. Market Research in Practice Series. London (UK): Kogan Page Publishers. 384 p.
  5. ↵
    1. Burban LL,
    2. Anderson JW.
    1996. Storms over the urban forest: Planning, responding, and regreening—A community guide to natural disaster relief. Newtown Square (PA, USA): United States Department of Agriculture, Forest Service, Northern Area State and Private Forestry. 152 p.
  6. ↵
    CABI. 2019. Acer platanoides (Norway maple). CABI Compendium. 2883. https://doi.org/10.1079/cabicompendium.2883
  7. ↵
    1. Chalmers J,
    2. Armour M.
    2019. The Delphi technique. In: Liamputtong P, editor. Handbook of research methods in health social sciences. Singapore: Springer. p. 715–735. https://doi.org/10.1007/978-981-10-5251-4_99
  8. ↵
    1. Connor Desai S,
    2. Reimers S.
    2019. Comparing the use of open and closed questions for web-based measures of the continued-influence effect. Behavior Research Methods. 51(3):1426–1440. https://doi.org/10.3758/s13428-018-1066-z
    OpenUrlPubMed
  9. ↵
    1. Conway TM,
    2. Vander Vecht J.
    2015. Growing a diverse urban forest: Species selection decisions by practitioners planting and supplying trees. Landscape and Urban Planning. 138:1–10. https://doi.org/10.1016/j.landurbplan.2015.01.007
    OpenUrl
  10. ↵
    1. Correa J,
    2. Postma JA,
    3. Watt M,
    4. Wojciechowski T.
    2019. Soil compaction and the architectural plasticity of root systems. Journal of Experimental Botany. 70(21):6019–6034. https://doi.org/10.1093/jxb/erz383
    OpenUrlCrossRefPubMed
  11. ↵
    1. Cowett FD,
    2. Bassuk N.
    2017. Street tree diversity in three Northeastern U.S. States. Arboriculture & Urban Forestry. 43(1): 1–14. https://doi.org/10.48044/jauf.2017.001
    OpenUrl
  12. ↵
    1. Cunningham MA,
    2. Snyder E,
    3. Yonkin D,
    4. Ross M,
    5. Elsen T.
    2008. Accumulation of deicing salts in soils in an urban environment. Urban Ecosystems. 11(1):17–31. https://doi.org/10.1007/s11252-007-0031-x
    OpenUrlCrossRefGeoRef
  13. ↵
    1. Curran TJ,
    2. Gersbach LN,
    3. Edwards W,
    4. Krockenberger AK.
    2008. Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecology. 33(4):442–450. https://doi.org/10.1111/j.1442-9993.2008.01899.x
    OpenUrl
  14. ↵
    1. Czaja M,
    2. Kolton A,
    3. Muras P.
    2020. The complex issue of urban trees-stress factor accumulation and ecological service possibilities. Forests. 11(9):932. https://doi.org/10.3390/f11090932
    OpenUrl
  15. ↵
    1. Dale AG,
    2. Frank SD.
    2017. Warming and drought combine to increase pest insect fitness on urban trees. PLoS ONE. 12(3):e0173844. https://doi.org/10.1371/journal.pone.0173844
    OpenUrl
  16. ↵
    1. Daly C,
    2. Widrlechner MP,
    3. Halbleib MD,
    4. Smith JI,
    5. Gibson WP.
    2012. Development of a new USDA plant hardiness zone map for the United States. Journal of Applied Meteorology and Climatology. 51:242–264. https://doi.org/10.1175/2010JAMC2536.1
    OpenUrlCrossRefWeb of Science
  17. ↵
    1. Day SD,
    2. Seiler JR,
    3. Persaud N.
    2000. A comparison of root growth dynamics of silver maple and flowering dogwood in compacted soil at differing soil water contents. Tree Physiology. 20(4): 257–263. https://doi.org/10.1093/treephys/20.4.257
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Dmuchowski W,
    2. Brągoszewska P,
    3. Gozdowski D,
    4. Baczewska-Dąbrowska AB,
    5. Chojnacki T,
    6. Jozwiak A,
    7. Swiezewska E,
    8. Gworek B,
    9. Suwara I.
    2019. Strategy of Ginkgo biloba L. in the mitigation of salt stress in the urban environment. Urban Forestry & Urban Greening. 38:223–231. https://doi.org/10.1016/j.ufug.2019.01.003
    OpenUrl
  19. ↵
    1. Dmuchowski W,
    2. Brągoszewska P,
    3. Gozdowski D,
    4. Baczewska-Dąbrowska AH,
    5. Chojnacki T,
    6. Jozwiak A,
    7. Swiezewska E,
    8. Suwara I,
    9. Gworek B.
    2020. Strategies of urban trees for mitigating salt stress: A case study of eight plant species. Trees. 36(3):899–914. https://doi.org/10.1007/s00468-020-02044-0
    OpenUrl
  20. ↵
    1. Dupras J,
    2. Patry C,
    3. Tittler R,
    4. Gonzalez A,
    5. Alam M,
    6. Messier C.
    2016. Management of vegetation under electric distribution lines will affect the supply of multiple ecosystem services. Land Use Policy. 51:66–75. https://doi.org/10.1016/j.landusepol.2015.11.005
    OpenUrl
  21. ↵
    1. Egleston BL,
    2. Miller SM,
    3. Meropol NJ.
    2011. The impact of misclassification due to survey response fatigue on estimation and identifiability of treatment effects. Statistics in Medicine. 30(30):3560–3572. https://doi.org/10.1002/sim.4377
    OpenUrlPubMed
  22. ↵
    1. Endreny TA.
    2018. Strategically growing the urban forest will improve our world. Nature Communications. 9:1160. https://doi.org/10.1038/s41467-018-03622-0
    OpenUrl
  23. ↵
    1. Equiza MA,
    2. Calvo-Polanco M,
    3. Cirelli D,
    4. Señorans J,
    5. Wartenbe M,
    6. Saunders C,
    7. Zwiazek JJ.
    2017. Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban Forestry & Urban Greening. 21:16–28. https://doi.org/10.1016/j.ufug.2016.11.003
    OpenUrl
  24. ↵
    1. Escobedo FJ,
    2. Luley CJ,
    3. Bond J,
    4. Staudhammer C,
    5. Bartel C.
    2009. Hurricane debris and damage assessment for Florida urban forests. Arboriculture & Urban Forestry. 35(2):100–106. https://doi.org/10.48044/jauf.2009.018
    OpenUrl
  25. ↵
    1. Esperon-Rodriguez M,
    2. Ordoñez C,
    3. van Doorn NS,
    4. Hirons A,
    5. Messier C.
    2022. Using climate analogues and vulnerability metrics to inform urban tree species selection in a changing climate: The case for Canadian cities. Landscape and Urban Planning. 228:104578. https://doi.org/10.1016/j.ldandurbplan.2022.104578
    OpenUrl
  26. ↵
    1. Gaertner M,
    2. Larson BMH,
    3. Irlich UM,
    4. Holmes PM,
    5. Stafford L,
    6. van Wilgen BW,
    7. Richardson DM.
    2016. Managing invasive species in cities: A framework from Cape Town, South Africa. Landscape and Urban Planning. 151:1–9. http://doi.org/10.1016/j.landurbplan.2016.03.010
    OpenUrl
  27. ↵
    1. Gilman EF,
    2. Masters F,
    3. Grabosky JC.
    2008. Pruning affects tree movement in hurricane force wind. Arboriculture & Urban Forestry. 34(1):20–28. https://doi.org/10.48044/jauf.2008.004
    OpenUrl
  28. ↵
    1. Gregg JW,
    2. Jones CG,
    3. Dawson TE.
    2003. Urbanization effects on tree growth in the vicinity of New York City. Nature. 424:183–187. https://doi.org/10.1038/nature01728
    OpenUrlCrossRefPubMed
  29. ↵
    1. Grimm NB,
    2. Pickett STA,
    3. Hale RL,
    4. Cadenasso ML.
    2017. Does the ecological concept of disturbance have utility in urban social–ecological–technological systems? Ecosystem Health and Sustainability. 3:e01255. https://doi.org/10.1002/ehs2.1255
    OpenUrl
  30. ↵
    1. Guàrdia M,
    2. Díaz R,
    3. Savé R,
    4. Aletà N.
    2013. Autumn frost resistance on several walnut species: Methods comparison and impact of leaf fall. Forest Science. 59(5):559–565. https://doi.org/10.5849/forsci.12-094
    OpenUrl
  31. ↵
    1. Hallowell MR,
    2. Gambatese JA.
    2010. Qualitative research: Application of the Delphi method to CEM research. Journal of Construction Engineering and Management. 136(1):99–107. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000137
    OpenUrlCrossRefWeb of Science
  32. ↵
    1. Harris RMB,
    2. Beaumont LJ,
    3. Vance TR,
    4. Tozer CR,
    5. Remenyi TA,
    6. Perkins-Kirkpatrick SE,
    7. Mitchell PJ,
    8. Nicotra AB,
    9. McGregor S,
    10. Andrew NR,
    11. Letnic M,
    12. Kearney MR,
    13. Wernberg T,
    14. Hutley LB,
    15. Chambers LE,
    16. Fletcher MS,
    17. Keatley MR,
    18. Woodward CA,
    19. Williamson G,
    20. Duke NC,
    21. Bowman DMJS.
    2018. Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change. 8(7):579–587. https://doi.org/10.1038/s41558-018-0187-9
    OpenUrl
  33. ↵
    1. Hauer RJ,
    2. Dawson JO,
    3. Werner LP.
    2006. Trees and ice storms: The development of ice storm-resistant urban tree populations. 2nd Ed. Stevens Point (WI, USA): College of Natural Resources, University of Wisconsin-Stevens Point, and the Champaign (IL, USA): Department of Natural Resources and Environmental Sciences and the Office of Continuing Education, University of Illinois at Urbana-Champaign. 20 p. http://digitalcommons.unl.edu/usdafsfacpub/295
  34. ↵
    1. Hilbert D,
    2. Roman L,
    3. Koeser AK,
    4. Vogt J.
    2019. Urban tree mortality: A literature review. Arboriculture & Urban Forestry. 45(5):167–200. https://doi.org/10.48044/jauf.2019.015
    OpenUrl
  35. ↵
    1. Hsieh HF,
    2. Shannon SE.
    2005. Three approaches to qualitative content analysis. Qualitative Health Research. 15(9):1277–1288. https://doi.org/10.1177/1049732305276687
    OpenUrlCrossRefPubMedWeb of Science
  36. ↵
    1. Huff E,
    2. Johnson M,
    3. Roman L,
    4. Sonti N,
    5. Pregitzer C,
    6. Campbell L,
    7. McMillen H.
    2020. A literature review of resilience in urban forestry. Arboriculture & Urban Forestry. 46(3):185–196. https://doi.org/10.48044/jauf.2020.014
    OpenUrl
  37. ↵
    Intergovernmental Panel on Climate Change (IPCC). 2022. Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge (UK): Cambridge University Press. https://doi.org/10.1017/9781009325844
  38. ↵
    1. Jim CY,
    2. Konijnendijk C,
    3. Chen WY.
    2018. Acute challenges and solutions for urban forestry in compact and densifying cities. Journal of Urban Planning and Development. 144(3):04018025. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000466
    OpenUrl
  39. ↵
    1. Kalayci Önaç A,
    2. Birişçi T.
    2019. Transformation of urban landscape value perception over time: A Delphi technique application. Environmental Monitoring and Assessment. 191(12):1–24. https://doi.org/10.1007/s10661-019-7935-9
    OpenUrlCrossRef
  40. ↵
    1. Khan T,
    2. Conway TM.
    2020. Vulnerability of common urban forest species to projected climate change and practitioners perceptions and responses. Environmental Management. 65(4):534–547. https://doi.org/10.1007/s00267-020-01270-z
    OpenUrl
  41. ↵
    1. Kim YS,
    2. Lee JK,
    3. Chung GC.
    1997. Tolerance and susceptibility of Ginkgo to air pollution. In: Hori T, Ridge RW, Tulecke W, Del Tredici P, Trémouillaux-Guiller J, Tobe H, editors. Ginkgo biloba—A global treasure. Tokyo (Japan): Springer. p. 233–242. https://doi.org/10.1007/978-4-431-68416-9_18
  42. ↵
    1. Kolbe RH,
    2. Burnett MS.
    1991. Content-analysis research: An examination of applications with directives for improving research reliability and objectivity. Journal of Consumer Research. 18(2):243–250. https://doi.org/10.1086/209256
    OpenUrlCrossRef
  43. ↵
    1. Konijnendijk CC,
    2. Ricard RM,
    3. Kenney A,
    4. Randrup TB.
    2006. Defining urban forestry—A comparative perspective of North America and Europe. Urban Forestry & Urban Greening. 4(3-4):93–103. https://doi.org/10.1016/j.ufug.2005.11.003
    OpenUrl
  44. ↵
    1. Leksungnoen N.
    2012. The relationship between salinity and drought tolerance in turfgrasses and woody species [dissertation]. Logan (UT, USA): Utah State University. 227 p.
  45. ↵
    1. Locosselli GM,
    2. de Camargo EP,
    3. Moreira TCL,
    4. Todesco E,
    5. Andrade MF,
    6. de André CDS,
    7. de André PA,
    8. Singer JM,
    9. Ferreira LS,
    10. Saldiva PHN,
    11. Buckeridge MS.
    2019. The role of air pollution and climate on the growth of urban trees. Science of the Total Environment. 666:652–661. https://doi.org/10.1016/j.scitotenv.2019.02.291
    OpenUrl
  46. ↵
    1. Martin PH,
    2. Marks PL.
    2006. Intact forests provide only weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). Journal of Ecology. 94:1070–1079. https://doi.org/10.1111/j.1365-2745.2006.01159.x
    OpenUrlCrossRefWeb of Science
  47. ↵
    1. McPherson EG,
    2. Berry AM,
    3. van Doorn NS.
    2018. Performance testing to identify climate-ready trees. Urban Forestry & Urban Greening. 29:28–39. https://doi.org/10.1016/j.ufug.2017.09.003
    OpenUrl
  48. ↵
    1. Meineke E,
    2. Youngsteadt E,
    3. Dunn RR,
    4. Frank SD.
    2016. Urban warming reduces aboveground carbon storage. Proceedings of the Royal Society B: Biological Sciences. 283(1840): 20161574. https://doi.org/10.1098/rspb.2016.1574
    OpenUrlCrossRefPubMed
  49. ↵
    1. Meineke EK,
    2. Frank SD.
    2018. Water availability drives urban tree growth responses to herbivory and warming. Journal of Applied Ecology. 55(4):1701–1713. https://doi.org/10.1111/1365-2664.13130
    OpenUrl
  50. ↵
    1. Mukherjee N,
    2. Hugé J,
    3. Sutherland WJ,
    4. Mcneill J,
    5. Van Opstal M,
    6. Dahdouh-Guebas F,
    7. Koedam N.
    2015. The Delphi technique in ecology and biological conservation: Applications and guidelines. Methods in Ecology and Evolution. 6(9):1097–1109. https://doi.org/10.1111/2041-210X.12387
    OpenUrl
  51. ↵
    Natural Resources Canada. 2016. Plant hardiness of Canada. Natural Resources Canada. [Updated 2022 November 21; Accessed 2022 March 26]. http://planthardiness.gc.ca/index.pl?m=1
  52. ↵
    1. Nitschke CR,
    2. Nichols S,
    3. Allen K,
    4. Dobbs C,
    5. Livesley SJ,
    6. Baker PJ,
    7. Lynch Y.
    2017. The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change. Landscape and Urban Planning. 167(8):275–287. https://doi.org/10.1016/j.landurbplan.2017.06.012
    OpenUrl
  53. ↵
    1. Nock CA,
    2. Paquette A,
    3. Follett M,
    4. Nowak DJ,
    5. Messier C.
    2013. Effects of urbanization on tree species functional diversity in eastern North America. Ecosystems. 16(8):1487–1497. https://doi.org/10.1007/s10021-013-9697-5
    OpenUrlCrossRef
  54. ↵
    1. Nowak DJ,
    2. Hoehn RE,
    3. Bodine AR,
    4. Greenfield EJ,
    5. O’Neil-Dunne J.
    2016. Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosystems. 19(4):1455–1477. https://doi.org/10.1007/s11252-013-0326-z
    OpenUrl
  55. ↵
    1. Nykänen ML,
    2. Peltola H,
    3. Quine C,
    4. Kellomäki S,
    5. Broadgate M.
    1997. Factors affecting snow damage of trees with particular reference to European conditions. Silva Fennica. 31(2):193–213. https://doi.org/10.14214/sf.a8519
    OpenUrlCrossRef
  56. ↵
    1. Odum EP,
    2. Finn JT,
    3. Franz EH.
    1979. Perturbation theory and the subsidy-stress gradient. BioScience. 29(6):349–352. https://doi.org/10.2307/1307690
    OpenUrlCrossRefWeb of Science
  57. ↵
    1. Okoli C,
    2. Pawlowski SD.
    2004. The Delphi method as a research tool: An example, design considerations and applications. Information and Management. 42(1):15–29. https://doi.org/10.1016/j.im.2003.11.002
    OpenUrlCrossRefWeb of Science
  58. ↵
    1. Ordóñez C,
    2. Duinker PN.
    2014. Assessing the vulnerability of urban forests to climate change. Environmental Reviews. 22(3): 311–321. https://doi.org/10.1139/er-2013-0078
    OpenUrl
  59. ↵
    1. Ordóñez-Barona C,
    2. Sabetski V,
    3. Millward AA,
    4. Steenberg J.
    2018. De-icing salt contamination reduces urban tree performance in structural soil cells. Environmental Pollution. 234:562–571. https://doi.org/10.1016/j.envpol.2017.11.101
    OpenUrl
  60. ↵
    1. Ossola A,
    2. Cadenasso ML,
    3. Meineke EK.
    2021. Valuing the role of time in urban ecology. Frontiers in Ecology and Evolution. 9:620620. https://doi.org/10.3389/fevo.2021.620620
    OpenUrl
  61. ↵
    1. Pan L,
    2. Ren L,
    3. Chen F,
    4. Feng Y,
    5. Luo Y.
    2016. Antifeedant activity of Ginkgo biloba secondary metabolites against Hyphantria cunea larvae: Mechanisms and applications. PLoS ONE. 11:e0155682. https://doi.org/10.1371/journal.pone.0155682
    OpenUrl
  62. ↵
    1. Paquette A,
    2. Sousa-Silva R,
    3. Maure F,
    4. Cameron E,
    5. Belluau M,
    6. Messier C.
    2021. Praise for diversity: A functional approach to reduce risks in urban forests. Urban Forestry & Urban Greening. 62:127157. https://doi.org/10.1016/j.ufug.2021.127157
    OpenUrl
  63. ↵
    1. Pearse IS,
    2. Karban R.
    2013. Leaf drop affects herbivory in oaks. Oecologia. 173(3):925–932. https://doi.org/10.1007/s00442-013-2689-5
    OpenUrl
  64. ↵
    1. Percival GC,
    2. Keary IP,
    3. AL-Habsi S.
    2006. An assessment of the drought tolerance of Fraxinus genotypes for urban landscape plantings. Urban Forestry & Urban Greening. 5(1):17–27.
    OpenUrl
  65. ↵
    1. Perla RJ,
    2. Carifio J.
    2009. Toward a general and unified view of educational research and educational evaluation: Bridging philosophy and methodology. Journal of MultiDisciplinary Evaluation. 6(11):38–55. https://doi.org/10.56645/jmde.v6i11.200
    OpenUrl
  66. ↵
    1. Potter KM,
    2. Escanferla ME,
    3. Jetton RM,
    4. Man G.
    2019. Important insect and disease threats to United States tree species and geographic patterns of their potential impacts. Forests. 10(4):304. https://doi.org/10.3390/f10040304
    OpenUrl
  67. ↵
    1. Powell C.
    2003. The Delphi technique: Myths and realities. Journal of Advanced Nursing. 41:376–382. https://doi.org/10.1046/j.1365-2648.2003.02537.x
    OpenUrlCrossRefPubMedWeb of Science
  68. ↵
    1. Roloff A,
    2. Korn S,
    3. Gillner S.
    2009. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban Forestry & Urban Greening. 8(4):295–308. https://doi.org/10.1016/j.ufug.2009.08.002
    OpenUrl
  69. ↵
    1. Rustad LE,
    2. Campbell JL,
    3. Marion GM,
    4. Norby RJ,
    5. Mitchell MJ,
    6. Hartley AE,
    7. Cornelissen JHC,
    8. Gurevitch J,
    9. Alward R,
    10. Beier C,
    11. Burke I,
    12. Canadell J,
    13. Callaghan T,
    14. Christensen TR,
    15. Fahnestock J,
    16. Fernandez I,
    17. Harte J,
    18. Hollister R,
    19. John H,
    20. Ineson P,
    21. Johnson MG,
    22. Jonasson S,
    23. John L,
    24. Linder S,
    25. Lukewille A,
    26. Masters G,
    27. Melillo J,
    28. Mickelsen A,
    29. Neill C,
    30. Olszyk DM,
    31. Press M,
    32. Pregitzer K,
    33. Robinson C,
    34. Rygiewiez PT,
    35. Sala O,
    36. Schmidt IK,
    37. Shaver G,
    38. Thompson K,
    39. Tingey DT,
    40. Verburg P,
    41. Wall D,
    42. Welker J,
    43. Wright R.
    2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia. 126:543–562. https://doi.org/10.1007/s004420000544
    OpenUrlCrossRefWeb of Science
  70. ↵
    1. Sæbø A,
    2. Benedikz T,
    3. Randrup TB.
    2003. Selection of trees for urban forestry in the Nordic countries. Urban Forestry & Urban Greening. 2(2):101–114. https://doi.org/10.1078/1618-8667-00027
    OpenUrl
  71. ↵
    1. Scalenghe R,
    2. Ajmone-Marsan F.
    2009. The anthropogenic sealing of soils in urban areas. Landscape & Urban Planning. 90(2):1–10. https://doi.org/10.1016/j.landurbplan.2008.10.011
    OpenUrl
  72. ↵
    1. Schmidt RC.
    1997. Managing Delphi surveys using nonparametric statistical techniques. Decision Sciences. 28:763–774. https://doi.org/10.1111/j.1540-5915.1997.tb01330.x
    OpenUrlCrossRefWeb of Science
  73. ↵
    1. Schmitz C.
    2003. LimeSurvey: An open source survey tool. Hamburg (Germany): LimeSurvey GmbH. http://www.limesurvey.org
  74. ↵
    1. Seidl R,
    2. Thom D,
    3. Kautz M,
    4. Martin-Benito D,
    5. Peltoniemi M,
    6. Vacchiano G,
    7. Wild J,
    8. Ascoli D,
    9. Petr M,
    10. Honkaniemi J,
    11. Lexer MJ,
    12. Trotsiuk V,
    13. Mairota P,
    14. Svoboda M,
    15. Fabrika M,
    16. Nagel TA,
    17. Reyer CPO.
    2017. Forest disturbances under climate change. Nature Climate Change. 7:395–402. https://doi.org/10.1038/nclimate3303
    OpenUrl
  75. ↵
    1. Simms EL.
    2000. Defining tolerance as a norm of reaction. Evolutionary Ecology. 14:563–570. https://doi.org/10.1023/A:1010956716539
    OpenUrl
  76. ↵
    1. Sjöman H,
    2. Hirons AD,
    3. Bassuk NL.
    2015. Urban forest resilience through tree selection—Variation in drought tolerance in Acer. Urban Forestry & Urban Greening. 14(4):858–865. https://doi.org/10.1016/j.ufug.2015.08.004
    OpenUrl
  77. ↵
    1. Sjöman H,
    2. Nielsen AB.
    2010. Selecting trees for urban paved sites in Scandinavia — A review of information on stress tolerance and its relation to the requirements of tree planners. Urban Forestry & Urban Greening. 9(4):281–293. https://doi.org/10.1016/j.ufug.2010.04.001
    OpenUrl
  78. ↵
    1. Sousa-Silva R,
    2. Duflos M,
    3. Ordóñez Barona C,
    4. Paquette A.
    2023. Keys to better planning and integrating urban tree planting initiatives. Landscape and Urban Planning. 231:104649. https://doi.org/10.1016/j.landurbplan.2022.104649
    OpenUrl
  79. ↵
    1. Steenberg JWN,
    2. Millward AA,
    3. Nowak DJ,
    4. Robinson PJ.
    2017. A conceptual framework of urban forest ecosystem vulnerability. Environmental Reviews. 25(1):115–126. https://doi.org/10.1139/er-2016-0022
    OpenUrl
  80. ↵
    1. Teskey R,
    2. Wertin T,
    3. Bauweraerts I,
    4. Ameye M,
    5. McGuire MA,
    6. Steppe K.
    2015. Responses of tree species to heat waves and extreme heat events. Plant, Cell, & Environment. 38(9):1699–1712. https://doi.org/10.1111/pce.12417
    OpenUrlCrossRefPubMed
  81. ↵
    1. Tubby KV,
    2. Webber JF.
    2010. Pests and diseases threatening urban trees under a changing climate. Forestry. 83(4):451–459. https://doi.org/10.1093/forestry/cpq027
    OpenUrlCrossRef
  82. ↵
    1. Vinebrooke RD,
    2. Cottingham KL,
    3. Norberg J,
    4. Scheffer M,
    5. Dodson SI,
    6. Maberly SC,
    7. Sommer U.
    2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos. 104(3):451–457. https://doi.org/10.1111/j.0030-1299.2004.13255.x
    OpenUrlCrossRefWeb of Science
  83. ↵
    1. Vogt J,
    2. Gillner S,
    3. Hofmann M,
    4. Tharang A,
    5. Dettmann S,
    6. Gerstenberg T,
    7. Schmidt C,
    8. Gebauer H,
    9. Van de Riet K,
    10. Berger U,
    11. Roloff A.
    2017. Citree: A database supporting tree selection for urban areas in temperate climate. Landscape and Urban Planning. 157:14–25. https://doi.org/10.1016/j.landurbplan.2016.06.005
    OpenUrl
  84. ↵
    1. Wang XM,
    2. Wang XK,
    3. Su YB,
    4. Zhang HX.
    2019. Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment. 653:120–130. https://doi.org/10.1016/j.scitotenv.2018.10.281
    OpenUrl
  85. ↵
    1. Wangen SR,
    2. Webster CR.
    2006. Potential for multiple lag phases during biotic invasions: Reconstructing an invasion of the exotic tree Acer platanoides. Journal of Applied Ecology. 43:258–268. https://doi.org/10.1111/j.1365-2664.2006.01138.x
    OpenUrlCrossRefWeb of Science
  86. ↵
    1. Wong NH,
    2. Tan CL,
    3. Kolokotsa DD,
    4. Takebayashi H.
    2021. Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment. 2:166–181. https://doi.org/10.1038/s43017-020-00129-5
    OpenUrl
  87. ↵
    1. Yang J,
    2. Chang Y,
    3. Yan P.
    2014. Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmospheric Pollution Research. 6(2):267–277. https://doi.org/10.5094/APR.2015.031
    OpenUrl
  88. ↵
    1. Yang J,
    2. La Sorte FA,
    3. Pyšek P,
    4. Yan P,
    5. Nowak D,
    6. Mcbride J.
    2015. The compositional similarity of urban forests among the world’s cities is scale dependent. Global Ecology and Biogeography. 24(12):1413–1423. https://doi.org/10.1111/geb.12376
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 50 (1)
Arboriculture & Urban Forestry (AUF)
Vol. 50, Issue 1
January 2024
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Which Tree Species Best Withstand Urban Stressors? Ask the Experts
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Which Tree Species Best Withstand Urban Stressors? Ask the Experts
Maribel Carol-Aristizabal, Jérôme Dupras, Christian Messier, Rita Sousa-Silva
Arboriculture & Urban Forestry (AUF) Jan 2024, 50 (1) 57-75; DOI: 10.48044/jauf.2023.026

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Which Tree Species Best Withstand Urban Stressors? Ask the Experts
Maribel Carol-Aristizabal, Jérôme Dupras, Christian Messier, Rita Sousa-Silva
Arboriculture & Urban Forestry (AUF) Jan 2024, 50 (1) 57-75; DOI: 10.48044/jauf.2023.026
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials And Methods
    • Results
    • Discussion
    • Conclusions
    • Conflicts of Interest
    • Acknowledgements
    • Appendix.
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • Delphi Method
  • Expert Knowledge
  • Resilience
  • Stress Tolerance
  • Tree Management
  • Tree Vulnerability
  • Urban Forestry
  • Urban Trees

© 2025 International Society of Arboriculture

Powered by HighWire