Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

London Plane Bark Exfoliation and Tree-Ring Growth in Urban Environments

Jan Esper, Paolo Cherubini, David Kaltenbach and Ulf Büntgen
Arboriculture & Urban Forestry (AUF) November 2023, 49 (6) 299-312; DOI: https://doi.org/10.48044/jauf.2023.021
Jan Esper
Department of Geography, Johannes Gutenberg University, Mainz, Germany, Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic
  • Find this author on Google Scholar
  • Search for this author on this site
Paolo Cherubini
Swiss Federal Research Institute WSL, Birmensdorf, Switzerland, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
David Kaltenbach
Department of Geography, Johannes Gutenberg University, Mainz, Germany
  • Find this author on Google Scholar
  • Search for this author on this site
Ulf Büntgen
Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland, Department of Geography, University of Cambridge, Cambridge, United Kingdom, Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Adamska I.
    2019. Epidemic of Erysiphe platani in urban areas on the example of the Szczecin (NW Poland). Ecological Questions. 30(4):71–81. https://doi.org/10.12775/EQ.2019.029
    OpenUrl
  2. ↵
    1. Bowden JD,
    2. Bauerle WL.
    2008. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods. Tree Physiology. 28(11):1675–1683. https://doi.org/10.1093/treephys/28.11.1675
    OpenUrlPubMed
  3. ↵
    1. Browicz K.
    1964. On the geographical distribution of Platanus orientalis L. in Bulgaria. Arboretum Kórnickie. 9:37–58. https://rcin.org.pl/Content/141966/KOR001_145864.pdf
    OpenUrl
  4. ↵
    1. Büntgen U,
    2. Franke J,
    3. Frank D,
    4. Wilson R,
    5. González-Rouco F,
    6. Esper J.
    2010. Assessing the spatial signature of European climate reconstructions. Climate Research. 41(2):125–130. https://doi.org/10.3354/cr00848
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Büntgen U,
    2. Krusic PJ,
    3. Verstege A,
    4. Sangüesa-Barreda G,
    5. Wagner S,
    6. Camarero JJ,
    7. Ljungqvist FC,
    8. Zorita E,
    9. Oppenheimer C,
    10. Konter O,
    11. Tegel W,
    12. Gartner H,
    13. Cherubini P,
    14. Reinig F,
    15. Esper J.
    2017. New tree-ring evidence from the Pyrenees reveals Western Mediterranean climate variability since medieval times. Journal of Climate. 30(14):5295–5318. https://doi.org/10.1175/JCLI-D-16-0526.1
    OpenUrl
  6. ↵
    1. Cedro A,
    2. Nowak G.
    2006. Effects of climatic conditions on annual tree ring growth of the Platanus × hispanica “Acerifolia” under urban conditions of Szczecin. Dendrobiology. 55:11–17. https://www.idpan.poznan.pl/images/stories/dendrobiology/vol55/55_11_17.pdf
    OpenUrl
  7. ↵
    1. Cheung HN,
    2. Keenlyside N,
    3. Koenigk T,
    4. Yang S,
    5. Tian T,
    6. Xu Z,
    7. Gao Y,
    8. Ogawa F,
    9. Omrani NE,
    10. Qiao S,
    11. Zhou W.
    2022. Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections. Climate Dynamics. 59:433–454. https://doi.org/10.1007/s00382-022-06136-0
    OpenUrl
  8. ↵
    1. Deslauriers A,
    2. Rossi S,
    3. Anfodillo T.
    2007. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia. 25(2):113–124. https://doi.org/10.1016/j.dendro.2007.05.003
    OpenUrl
  9. ↵
    1. Dineva SB.
    2004. Comparative studies of the leaf morphology and structure of white ash Fraxinus americana L. and London plane tree Platanus acerifolia Willd growing in polluted area. Dendrobiology. 52:3–8. https://www.idpan.poznan.pl/images/stories/dendrobiology/vol52/52_3_8.pdf
    OpenUrl
  10. ↵
    1. Johnston M,
    2. Percival G
    1. Ennos R.
    2012. Quantifying the cooling benefits of urban trees. In: Johnston M, Percival G, editors. Trees, people and the built environment: Proceedings of the urban trees research conference. Birmingham (United Kingdom): Forestry Commission UK. p. 113–118. http://doi.org/10.13140/2.1.2755.4888
  11. ↵
    1. Esper J,
    2. Cook ER,
    3. Krusic PJ,
    4. Peters K,
    5. Schweingruber FH.
    2003. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research. 59(2):81–98.
    OpenUrlGeoRef
  12. ↵
    1. Esper J,
    2. Frank D,
    3. Büntgen U,
    4. Verstege A,
    5. Hantemirov RM,
    6. Kirdyanov AV.
    2010. Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology. 16(1):386–398. https://doi.org/10.1111/j.1365-2486.2009.01913.x
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Esper J,
    2. Frank DC,
    3. Wilson RJ,
    4. Briffa KR.
    2005. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophysical Research Letters. 32(7): L07711. https://doi.org/10.1029/2004GL021236
    OpenUrlCrossRef
  14. ↵
    1. Esper J,
    2. George SS,
    3. Anchukaitis K,
    4. D’Arrigo R,
    5. Ljungqvist FC,
    6. Luterbacher J,
    7. Schneider L,
    8. Stoffel M,
    9. Wilson R,
    10. Büntgen U.
    2018. Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronolgia. 50:81–90. https://doi.org/10.1016/j.dendro.2018.06.001
    OpenUrl
  15. ↵
    1. Esper J,
    2. Krusic PJ,
    3. Ljungqvist FC,
    4. Luterbacher J,
    5. Carrer M,
    6. Cook E,
    7. Davi NK,
    8. Hartl-Meier C,
    9. Kirdyanov A,
    10. Konter O,
    11. Myglan V,
    12. Timonen M,
    13. Treydte K,
    14. Trouet V,
    15. Villalba R,
    16. Yang B,
    17. Büntgen U.
    2016. Ranking of tree-ring based temperature reconstructions of the past millennium. Quaternary Science Reviews. 145:134–151. https://doi.org/10.1016/j.quascirev.2016.05.009
    OpenUrl
  16. ↵
    1. Esper J,
    2. Niederer R,
    3. Bebi P,
    4. Frank D.
    2008. Climate signal age effects—Evidence from young and old trees in the Swiss Engadin. Forest Ecology and Management. 255(11):3783–3789. https://doi.org/10.1016/j.foreco.2008.03.015
    OpenUrlCrossRefWeb of Science
  17. ↵
    German Weather Service. 2021a. Precipitation: Long-term mean values 1981-2010. Offenbach (Germany): Deutscher Wetter-dienst Niederschlag. [Updated 2021 February 11; Accessed 2022 November 15]. https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_8110_fest_html.html?view=nasPublication&nn=16102
  18. ↵
    German Weather Service. 2021b. Temperature: Long-term mean values 1981-2010. Offenbach (Germany): Deutscher Wetter-dienst Temperatur. [Updated 2021 February 11; Accessed 2022 November 15]. https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/temp_8110_fest_html.html%3Fview%3DnasPublication
  19. ↵
    1. Gessler A,
    2. Ferrio JP,
    3. Hommel R,
    4. Treydte K,
    5. Werner RA,
    6. Monson RK.
    2014. Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiology. 34(8):796–818. https://doi.org/10.1093/treephys/tpu040
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Gillner S,
    2. Korn S,
    3. Roloff A.
    2015. Leaf-gas exchange of five tree species at urban street sites. Arboriculture & Urban Forestry. 41(3):113–124. https://doi.org/10.48044/jauf.2015.012
    OpenUrl
  21. ↵
    1. Gilman EF.
    2006. Deflecting roots near sidewalks. Arboriculture & Urban Forestry. 32(1):18–23. https://doi.org/10.48044/jauf.2006.003
    OpenUrl
  22. ↵
    1. Hellmann L,
    2. Agafonov L,
    3. Ljungqvist FC,
    4. Churakova O,
    5. Düthorn E,
    6. Esper J,
    7. Hülsmann L,
    8. Kirdyanov AV,
    9. Moiseev P,
    10. Myglan VS,
    11. Nikolaev AN,
    12. Reinig F,
    13. Schweingruber FH,
    14. Solomina O,
    15. Tegal W,
    16. Büntgen U.
    2016. Diverse growth trends and climate responses across Eurasia’s boreal forest. Environmental Research Letters. 11(7):074021. https://doi.org/10.1088/1748-9326/11/7/074021
    OpenUrl
  23. ↵
    1. Henry A,
    2. Flood MG.
    1919. The history of the London plane, Platanus acerifolia, with notes on the genus Platanus. In: Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science. Dublin (Ireland): Hodges, Figgis, and Co. 35:9–28. https://www.jstor.org/stable/20517052
    OpenUrl
  24. ↵
    1. Ivanová H,
    2. Bernadovičová S,
    3. Pastirčáková K.
    2007. Influence of changed ecological conditions on occurrence of London plane (Platanus × hispanica Münchh.) anthracnose. Folia Oecologica. 34(1):1–8.
    OpenUrl
  25. ↵
    1. Jacquet JS,
    2. Bosc A,
    3. O’Grady A,
    4. Jactel H.
    2014. Combined effects of defoliation and water stress on pine growth and non-structural carbo-hydrates. Tree Physiology. 34(4):367–376. https://doi.org/10.1093/treephys/tpu018
    OpenUrlCrossRefPubMed
  26. ↵
    1. Konter O,
    2. Büntgen U,
    3. Carrer M,
    4. Timonen M,
    5. Esper J.
    2016. Climate signal age effects in boreal tree-rings: Lessons to be learned for paleoclimatic reconstructions. Quaternary Science Reviews. 142:164–172. https://doi.org/10.1016/j.quascirev.2016.04.020
    OpenUrl
  27. ↵
    1. Kozlowski TT,
    2. Pallardy SG.
    1997. Growth control in woody plants. San Diego (CA, USA): Academic Press. 641 p.
  28. ↵
    1. Lindén J,
    2. Fonti P,
    3. Esper J.
    2016. Temporal variations in microclimate cooling induced by urban trees in Mainz, Germany. Urban Forestry & Urban Greening. 20:198–209. https://doi.org/10.1016/j.ufug.2016.09.001
    OpenUrl
  29. ↵
    1. Lindén J,
    2. Simon H,
    3. Fonti P,
    4. Esper J,
    5. Bruse M.
    2015. Observed and modeled transpiration cooling from urban trees in Mainz, Germany. 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment; 2015 July 20–24; Toulouse, France. https://www.blogs.uni-mainz.de/fb09climatology/files/2012/03/Linde%CC%81n_2015_ICUC.pdf
  30. ↵
    1. Ljungqvist FC,
    2. Piermattei A,
    3. Seim A,
    4. Krusic PJ,
    5. Büntgen U,
    6. He M,
    7. Kirdyanov AV,
    8. Luterbacher J,
    9. Schneider L,
    10. Seftigen K,
    11. Stahle DW,
    12. Villalba,
    13. Yang B,
    14. Esper J.
    2020. Ranking of treering based hydroclimate reconstructions of the past millennium. Quaternary Science Reviews. 230:106074. https://doi.org/10.1016/j.quascirev.2019.106074
    OpenUrl
  31. ↵
    1. Ljungqvist FC,
    2. Seim A,
    3. Krusic PJ,
    4. González-Rouco JF,
    5. Werner JP,
    6. Cook ER,
    7. Zorita E,
    8. Luterbacher J,
    9. Xoplaki E,
    10. Destouni G,
    11. García-Bustamante E,
    12. Aguilar CAM,
    13. Seftigen K,
    14. Wang J,
    15. Gagen MH,
    16. Esper J,
    17. Solomina O,
    18. Fleitmann D,
    19. Büntgen U.
    2019. European warm-season temperature and hydroclimate since 850 CE. Environmental Research Letters. 14(8):084015. https://doi.org/10.1088/1748-9326/ab2c7e
    OpenUrl
  32. ↵
    1. Milks JR,
    2. Hibbard J,
    3. Rooney TP.
    2017. Exfoliating bark does not protect Platanus occidentalis from root-climbing lianas. Northeastern Naturalist. 24(4):520–525. https://doi.org/10.1656/045.024.0410
    OpenUrl
  33. ↵
    1. Mimet A,
    2. Pellissier V,
    3. Quénol H,
    4. Aguejdad R,
    5. Dubreuil V,
    6. Rozé F.
    2009. Urbanisation induces early flowering: Evidence from Platanus acerifolia and Prunus cerasus. International Journal of Biometeorology. 53(3):287–298. https://doi.org/10.1007/s00484-009-0214-7
    OpenUrlCrossRefPubMed
  34. ↵
    1. Morgenroth J.
    2011. Root growth response of Platanus orientalis to porous pavements. Arboriculture & Urban Forestry. 37(2): 45–50. https://doi.org/10.48044/jauf.2011.007
    OpenUrl
  35. ↵
    1. Morgenroth J,
    2. Visser R.
    2011. Aboveground growth response of Platanus orientalis to porous pavements. Arboriculture & Urban Forestry. 37(1):1–5. https://doi.org/10.48044/jauf.2011.001
    OpenUrl
  36. ↵
    1. Oberhuber W,
    2. Gruber A.
    2010. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees. 24(5):887–898. https://doi.org/10.1007/s00468-010-0458-1
    OpenUrl
  37. ↵
    1. Pourkhabbaz A,
    2. Rastin N,
    3. Olbrich A,
    4. Langenfeld-Heyser R,
    5. Polle A.
    2010. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L. Bulletin of Environmental Contamination and Toxicology. 85(3):251–255. https://doi.org/10.1007/s00128-010-0047-4
    OpenUrlPubMed
  38. ↵
    1. Römer P,
    2. Hartl C,
    3. Schneider L,
    4. Bräuning A,
    5. Szymczak S,
    6. Huneau F,
    7. Lebre S,
    8. Reinig F,
    9. Büntgen U,
    10. Esper J.
    2021. Reduced temperature sensitivity of maximum latewood density formation in high-elevation Corsican pines under recent warming. Atmosphere. 12(7):804. https://doi.org/10.3390/atmos12070804
    OpenUrl
  39. ↵
    1. Sala A,
    2. Woodruff DR,
    3. Meinzer FC.
    2012. Carbon dynamics in trees: Feast or famine? Tree Physiology. 32(6):764–775. https://doi.org/10.1093/treephys/tpr143
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Sanusi R,
    2. Livesley SJ.
    2020. London Plane trees (Platanus × acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban Forestry & Urban Greening. 54(25):126746. https://doi.org/10.1016/j.ufug.2020.126746
    OpenUrl
  41. ↵
    1. Sax K.
    1933. Species hybrids in Platanus and Campsis. Journal of the Arnold Arboretum. 14(3):274–278. https://www.jstor.org/stable/43780681
    OpenUrl
  42. ↵
    1. Schmidt C.
    2018. Mainzer platanen lassen die huellen fallen trockenstress sorgt fuer verlust der rinde. Mainz (Germany): Allgemeine Zeitung. [Updated 2018 July 11; Accessed 2022 November 15]. https://www.allgemeine-zeitung.de/lokales/mainz/nachrichten-mainz/mainzer-platanen-lassen-die-hullen-fallen-trockenstress-sorgt-fur-verlust-der-rinde_18911238
  43. ↵
    1. Smith KD,
    2. May PB,
    3. Moore GM.
    2001. The influence of compaction and soil strength on the establishment of four Australian landscape trees. Journal of Arboriculture. 27(1):1–7. https://doi.org/10.48044/jauf.2001.001
    OpenUrl
  44. ↵
    Stadt Mainz. 2022. London plane tree. Mainz (Germany): Umweltamt Mainz. [Accessed 2022 November 15]. https://www.mainz.de/leben-und-arbeit/umwelt/ahornblaettrige-platane.php
  45. ↵
    1. Tejedor E,
    2. de Luis M,
    3. Cuadrat JM,
    4. Esper J,
    5. Saz MÁ.
    2016. Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694. International Journal of Biometeorology. 60(3):361–372. https://doi.org/10.1007/s00484-015-1033-7
    OpenUrl
  46. ↵
    1. Yang J,
    2. Chang Y,
    3. Yan P.
    2015. Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmospheric Pollution Research. 6(2):267–277. https://doi.org/10.5094/APR.2015.031
    OpenUrl
  47. ↵
    1. Zweifel R,
    2. Häsler R.
    2001. Dynamics of water storage in mature subalpine Picea abies: Temporal and spatial patterns of change in stem radius. Tree Physiology. 21(9):561–569. https://doi.org/10.1093/treephys/21.9.561
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 49 (6)
Arboriculture & Urban Forestry (AUF)
Vol. 49, Issue 6
November 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
London Plane Bark Exfoliation and Tree-Ring Growth in Urban Environments
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
London Plane Bark Exfoliation and Tree-Ring Growth in Urban Environments
Jan Esper, Paolo Cherubini, David Kaltenbach, Ulf Büntgen
Arboriculture & Urban Forestry (AUF) Nov 2023, 49 (6) 299-312; DOI: 10.48044/jauf.2023.021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
London Plane Bark Exfoliation and Tree-Ring Growth in Urban Environments
Jan Esper, Paolo Cherubini, David Kaltenbach, Ulf Büntgen
Arboriculture & Urban Forestry (AUF) Nov 2023, 49 (6) 299-312; DOI: 10.48044/jauf.2023.021
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusions
    • Conflicts of Interest
    • Acknowledgements
    • Appendix
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
  • Right Appraisal for the Right Purpose: Comparing Techniques for Appraising Heritage Trees in Australia and Canada
  • Urban Tree Mortality: The Purposes and Methods for (Secretly) Killing Trees Suggested in Online How-To Videos and Their Diagnoses
Show more Articles

Similar Articles

Keywords

  • Dendrochronology
  • Mainz, Germany
  • Platanus × acerifolia
  • Urban Warming

© 2025 International Society of Arboriculture

Powered by HighWire