Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Evaluating the Reproducibility of Tree Risk Assessment Ratings Across Commonly Used Methods

Ryan W. Klein, Andrew K. Koeser, Larsen McBride, Richard J. Hauer, Laura A. Warner, E. Thomas Smiley, Michael A. Munroe and Chris Harchick
Arboriculture & Urban Forestry (AUF) November 2023, 49 (6) 271-282; DOI: https://doi.org/10.48044/jauf.2023.019
Ryan W. Klein
Department of Environmental Horticulture, University of Florida, Fifield Hall, P.O. Box 110670, Gainesville, FL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Andrew K. Koeser
Department of Environmental Horticulture, University of Florida, Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma, FL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Larsen McBride
Department of Environmental Horticulture, University of Florida, Fifield Hall, P.O. Box 110670, Gainesville, FL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Richard J. Hauer
College of Natural Resources–Forestry, University of Wisconsin–Stevens Point, 800 Reserve Street, Stevens Point, Wisconsin, USA, Urban Forestry Research & Development, CNUC, 5930 Grand Ave, West Des Moines, IA, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Laura A. Warner
Department of Agricultural Education and Communication, University of Florida, 407 Rolfs Hall, P.O. Box 110540, Gainesville, FL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
E. Thomas Smiley
Bartlett Tree Research Laboratory, F.A. Bartlett Tree Expert Company, 13768 Hamilton Road, Charlotte, NC, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Michael A. Munroe
College of Journalism and Communications, University of Florida, Weimer Hall, 1885 Stadium Road, Gainesville, FL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Chris Harchick
Department of Environmental Horticulture, University of Florida, Fifield Hall, P.O. Box 110670, Gainesville, FL, USA
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    1. Ball DJ,
    2. Watt J.
    2013. The risk to the public of tree fall. Journal of Risk Research. 16(2):261–269. https://doi.org/10.1080/13669877.2012.737827
    OpenUrl
  2. ↵
    1. Blais AR,
    2. Weber EU.
    2006. A domain-specific risk-taking (DOSPERT) scale for adult populations. Judgment and Decision Making. 1(1):33–47. https://doi.org/10.1017/S1930297500000334
    OpenUrl
  3. ↵
    1. Bose J.
    2001. Nonresponse bias analyses at the National Center for Education Statistics. In: Proceedings of Statistics Canada Symposium 2001—Achieving data quality in a statistical agency: A methodological perspective. Statistics Canada Symposium 2001; 2001 October 17–19; Hull, Quebec, Canada. Ottawa (ON, Canada): Statistics Canada. https://nces.ed.gov/FCSM/pdf/IHSNG_StatsCan2_JB.pdf
  4. ↵
    1. Carmichael CE,
    2. McDonough MH.
    2019. Community stories: Explaining resistance to street tree-planting programs in Detroit, Michigan, USA. Society & Natural Resources. 32(5): 588–605. https://doi.org/10.1080/08941920.2018.1550229
    OpenUrl
  5. ↵
    1. Coelho-Duarte AP,
    2. Daniluk-Mosquera G,
    3. Gravina V,
    4. Vallejos-Barra Ó,
    5. Ponce-Donoso M.
    2021. Tree risk assessment: Component analysis of six visual methods applied in an urban park, Montevideo, Uruguay. Urban Forestry & Urban Greening. 59:127005. https://doi.org/10.1016/j.ufug.2021.127005
    OpenUrl
  6. ↵
    1. Dunster JA,
    2. Smiley ET,
    3. Matheny N,
    4. Lilly S.
    2017. Tree risk assessment manual. 2nd Ed. Champaign (IL, USA): International Society of Arboriculture. 194 p.
  7. ↵
    1. Ellison MJ.
    2005. Quantified tree risk assessment used in the management of amenity trees. Journal of Arboriculture. 31(2):57–65. https://doi.org/10.48044/jauf.2005.007
    OpenUrl
  8. ↵
    1. Ellison MJ.
    2019. Quantified Tree Risk Assessment User Manual: Version 5, 3.3. Cheshire (United Kingdom): QTRA. https://www.qtra.co.uk/cms
  9. ↵
    1. Fay N.
    2007. Towards reasonable tree risk decision-making? Arboricultural Journal. 30(2):143–161. https://doi.org/10.1080/03071375.2007.9747489
    OpenUrl
  10. ↵
    1. Pokorny JD
    1. Hauer RJ,
    2. Johnson GR.
    Tree risk management. 2003. In: Pokorny JD, coordinating author. Urban tree risk management: A community guide to program design and implementation. St. Paul (MN, USA): USDA Forest Service Northeastern Area State and Private Forestry. Technical Bulletin NA-TP-03-03. p. 5–10. https://www.fs.usda.gov/nrs/pubs/na/NA-TP-03-03.pdf
  11. ↵
    1. Hauer RJ,
    2. Peterson W.
    2016. Building and growing professionals for trees: Arboricultural standards and credentials. Arborist News. 25(1):42–46.
    OpenUrl
  12. IBM Corp. 2022. IBM SPSS Statistics for Mac. Version 29.0. Armonk (NY, USA): IBM Corp.
  13. ↵
    1. Judice A,
    2. Gordon J,
    3. Abrams J,
    4. Irwin K.
    2021. Community perceptions of tree risk and management. Land. 10(10):1096–1115. https://doi.org/10.3390/land10101096
    OpenUrl
  14. ↵
    1. Klein RW,
    2. Dutton CL,
    3. Koeser AK.
    2022a. Development of a low-cost traffic counter for assessing likelihood of impact for tree risk assessment. Arboricultural Journal. 45(1):49–71. https://doi.org/10.1080/03071375.2022.2030603
    OpenUrl
  15. ↵
    1. Klein RW,
    2. Koeser AK,
    3. Hansen G,
    4. Warner L,
    5. Dale A,
    6. Watt J.
    2021a. Professional expertise and its role in risk assessment. Arboriculture & Urban Forestry. 47(6):234–251. https://doi.org/10.48044/jauf.2021.021
    OpenUrl
  16. ↵
    1. Klein RW,
    2. Koeser AK,
    3. Hauer RJ,
    4. Hansen G,
    5. Escobedo FJ.
    2016. Relationship between perceived and actual occupancy rates in urban settings. Urban Forestry & Urban Greening. 19:194–201. https://doi.org/10.1016/j.ufug.2016.06.030
    OpenUrl
  17. ↵
    1. Klein RW,
    2. Koeser AK,
    3. Hauer RJ,
    4. Miesbauer JW,
    5. Hansen G,
    6. Warner L,
    7. Dale A,
    8. Watt J.
    2021b. Assessing the consequences of tree failure. Urban Forestry & Urban Greening. 65:127307. https://doi.org/10.1016/j.ufug.2021.127307
    OpenUrl
  18. ↵
    1. Klein RW,
    2. McLean DC,
    3. Koeser AK,
    4. Hauer RJ,
    5. Miesbauer JW,
    6. Salisbury AB.
    2022b. Visual estimation accuracy of tree part diameter and fall distance. Journal of Forestry. 120(5):483–490. https://doi.org/10.1093/jofore/fvac012
    OpenUrl
  19. ↵
    1. Koeser AK,
    2. Smiley ET
    1. Koeser AK.
    2009. Trees and risk researcher summit white paper. In: Koeser AK, Smiley ET, editors. Trees & risk. Champaign (IL, USA): International Society of Arboriculture. https://wwv.isa-arbor.com/education/resources/educ_Portal_Risk_Whitepaper.pdf
  20. ↵
    1. Koeser AK,
    2. Hasing G,
    3. McClean D,
    4. Northrop RJ.
    2016a. Tree risk assessment methods: A comparison of three evaluation forms. Gainesville (FL, USA): UF-IFAS Extension. ENH1226. https://ohiodnr.gov/static/documents/forestry/uftoolbox/TreeRiskAssessment-MethodsComparison.pdf
  21. ↵
    1. Koeser AK,
    2. Hauer RJ,
    3. Hillman A,
    4. Peterson W.
    2016b. Risk and storm management operations in the United States: How does your city compare? Arborist News. 25(2):20–23.
    OpenUrl
  22. ↵
    1. Koeser AK,
    2. Hauer RJ,
    3. Klein RW,
    4. Miesbauer JW.
    2017. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban Forestry & Urban Greening. 24:71–79. https://doi.org/10.1016/j.ufug.2017.03.024
    OpenUrl
  23. ↵
    1. Koeser AK,
    2. Hauer RJ,
    3. Miesbauer JW,
    4. Peterson W.
    2016c. Municipal tree risk assessment in the United States: Findings from a comprehensive survey of urban forest management. Arboricultural Journal. 38(4):218–229. https://doi.org/10.1080/03071375.2016.1221178
    OpenUrl
  24. ↵
    1. Koeser AK,
    2. Klein RW,
    3. Hasing G,
    4. Northrop RJ.
    2015. Factors driving professional and public urban tree risk perception. Urban Forestry & Urban Greening. 14(4):968–974. https://doi.org/10.1016/j.ufug.2015.09.004
    OpenUrl
  25. ↵
    1. Koeser AK,
    2. Smiley ET.
    2017. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban Forestry & Urban Greening. 24:109–115. https://doi.org/10.1016/j.ufug.2017.03.027
    OpenUrl
  26. ↵
    1. Kuhns MR,
    2. Bragg HA,
    3. Blahna DJ.
    2002. Involvement of women and minorities in the urban forestry profession. Journal of Arboriculture. 28(1):27–34. https://doi.org/10.48044/jauf.2002.004
    OpenUrl
  27. ↵
    1. Lindner JR,
    2. Murphy TH,
    3. Briers GE.
    2001. Handling nonresponse in social science research. Journal of Agricultural Education. 42(4):43–53. https://doi.org/10.5032/jae.2001.04043
    OpenUrlCrossRefWeb of Science
  28. ↵
    1. Lindner JR,
    2. Wingenbach GJ.
    2002. Communicating the handling of nonresponse error in journal of extension research in brief articles. Journal ofExtension. 40(6):6RIB1. https://tigerprints.clemson.edu/joe/vol40/iss6/9
    OpenUrl
  29. ↵
    1. Matheny N,
    2. Clark J.
    1994. A photographic guide to the evaluation of hazard trees in urban areas. Champaign (IL, USA): International Society of Arboriculture. 85 p.
  30. ↵
    1. Norris M.
    2007. Tree risk assessments—What works—What does not—Can we tell? A review of a range of existing tree risk assessment methods. ISAAC Conference Perth 2007; 2007 May 1; Perth (Australia). p. 1–31.
  31. ↵
    1. Norris MB,
    2. Moore GM.
    2020. How tree risk assessment methods work: Sensitivity analyses of sixteen methods reveal the value of quantification and the impact of inputs on risk ratings. Arboriculture & Urban Forestry. 46(6):402–431. https://doi.org/10.48044/jauf.2020.030
    OpenUrl
  32. ↵
    1. Kuser JE
    1. Nowak DJ,
    2. Dwyer JF.
    2007. Understanding the benefits and costs of urban forest ecosystems. In: Kuser JE, editor. Urban and community forestry in the northeast. New York (NY, USA): Springer. p. 25–46.
    1. O’Henin K,
    2. Wiseman PE,
    3. Day SD,
    4. Hauer RJ.
    2020. Professional identity of urban foresters in the United States. Urban Forestry & Urban Greening. 54:126741. https://doi.org/10.1016/j.ufug.2020.126741
    OpenUrl
  33. ↵
    1. Pokorny JD.
    2003. Urban tree risk management: A community guide to program design and implementation. St. Paul (MN, USA): USDA Forest Service Northeastern Area State and Private Forestry. Technical Bulletin NA-TP-03-03. 204 p. https://www.fs.usda.gov/nrs/pubs/na/NA-TP-03-03.pdf
  34. ↵
    Quantified Tree Risk Assessment. 2023. Cheshire (England, United Kingdom): Quantified Tree Risk Assessment. https://www.qtra.co.uk
  35. ↵
    R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org
  36. ↵
    1. Reyes de la Barra J,
    2. Ponce-Donoso M,
    3. Vallejos-Barra Ó,
    4. Daniluk G,
    5. Coelho Duarte AP.
    2018. Comparison of four methods of visual risk assessment of urban trees. Colombia Forestal. 21(2):161–173.
    OpenUrl
  37. ↵
    1. Sampaio ACF,
    2. Duarte FG,
    3. Silva EGC,
    4. De Angelis BLD,
    5. Blum CT.
    2010. Risk tree assessment in public street afforestation in Nova Olímpiá, Parana. Magazine of the Brazilian Society of Urban Afforestation. 5(2):82–104. https://revistas.ufpr.br/revsbau/article/view/66278/38151
    OpenUrl
  38. ↵
    1. Smiley ET,
    2. Matheny N,
    3. Lilly S.
    2017. Tree risk assessment. 2nd Ed. Best Management Practices. Champaign (IL, USA): International Society of Arboriculture. 86 p.
  39. ↵
    Trees Are Good. 2023. Find an Arborist. Atlanta (GA, USA): International Society of Arboriculture. [Accessed 2020 October 8]. https://www.treesaregood.org/findanarborist/findanarborist
  40. ↵
    1. Vogt J,
    2. Hauer RJ,
    3. Fischer BC.
    2015. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboriculture & Urban Forestry. 41(6):293–323. https://doi.org/10.48044/jauf.2015.027
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 49 (6)
Arboriculture & Urban Forestry (AUF)
Vol. 49, Issue 6
November 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluating the Reproducibility of Tree Risk Assessment Ratings Across Commonly Used Methods
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Evaluating the Reproducibility of Tree Risk Assessment Ratings Across Commonly Used Methods
Ryan W. Klein, Andrew K. Koeser, Larsen McBride, Richard J. Hauer, Laura A. Warner, E. Thomas Smiley, Michael A. Munroe, Chris Harchick
Arboriculture & Urban Forestry (AUF) Nov 2023, 49 (6) 271-282; DOI: 10.48044/jauf.2023.019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Evaluating the Reproducibility of Tree Risk Assessment Ratings Across Commonly Used Methods
Ryan W. Klein, Andrew K. Koeser, Larsen McBride, Richard J. Hauer, Laura A. Warner, E. Thomas Smiley, Michael A. Munroe, Chris Harchick
Arboriculture & Urban Forestry (AUF) Nov 2023, 49 (6) 271-282; DOI: 10.48044/jauf.2023.019
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Acknowledgements
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • Hazard Tree
  • Likelihood of Failure
  • Professional Judgement
  • Risk Management
  • Risk Perception
  • Tree Safety
  • Urban Forestry

© 2025 International Society of Arboriculture

Powered by HighWire