Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Which Plant Where: A Plant Selection Tool for Changing Urban Climates

Samiya Tabassum, Linda J. Beaumont, Farzin Shabani, Leigh Staas, Gwilym Griffiths, Alessandro Ossola and Michelle R. Leishman
Arboriculture & Urban Forestry (AUF) July 2023, 49 (4) 190-210; DOI: https://doi.org/10.48044/jauf.2023.014
Samiya Tabassum
School of Natural Sciences, Macquarie University, 6 Science Road, Room 204, North Ryde, NSW, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Linda J. Beaumont
School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
Farzin Shabani
Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
  • Find this author on Google Scholar
  • Search for this author on this site
Leigh Staas
School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
Gwilym Griffiths
School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
Alessandro Ossola
School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Michelle R. Leishman
School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Literature Cited

  1. ↵
    Australian Bureau of Statistics. 2011. Australian Statistical Geography Standard (ASGS). 3rd Ed. Belconnen (ACT, Australia): ABS. [Updated 2023 March]. https://www.abs.gov.au/statistics/statistical-geography/australian-statistical-geography-standard-asgs
  2. ↵
    1. Baumgartner JB,
    2. Esperón-Rodriguez M,
    3. Beaumont LJ.
    2018. Identifying in situ climate refugia for plant species. Ecography. 41(11):1850–1863. https://doi.org/10.1111/ecog.03431
    OpenUrl
  3. ↵
    1. Beaumont LJ,
    2. Hughes L,
    3. Pitman AJ.
    2008. Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters. 11(11):1135–1146. https://doi.org/10.1111/j.1461-0248.2008.01231.x
    OpenUrlPubMedWeb of Science
  4. ↵
    1. Booth TH.
    2017. Assessing species climatic requirements beyond the realised niche: Some lessons mainly from tree species distribution modelling. Climatic Change. 145(3):259–271. https://doi.org/10.1007/s10584-017-2107-9
    OpenUrlCrossRef
  5. ↵
    1. Bourne KS,
    2. Conway TM.
    2014. The influence of land use type and municipal context on urban tree species diversity. Urban Ecosystems. 17(1):329–348. https://doi.org/10.1007/s11252-013-0317-0
    OpenUrl
  6. ↵
    1. Brandt L,
    2. Lewis AD,
    3. Fahey R,
    4. Scott L,
    5. Darling L,
    6. Swanston C.
    2016. A framework for adapting urban forests to climate change. Environmental Science & Policy. 66:393–402. https://doi.org/10.1016/j.envsci.2016.06.005
    OpenUrl
  7. ↵
    1. Brandt LA,
    2. Johnson GR,
    3. North EA,
    4. Faje J,
    5. Rutledge A.
    2021. Vulnerability of street trees in upper Midwest cities to climate change. Frontiers in Ecology and Evolution. 9:721831. https://doi.org/10.3389/fevo.2021.721831
    OpenUrl
  8. ↵
    Bristol One City. 2019. One City Plan: A plan for Bristol to 2050. Bristol (United Kingdom): Bristol City Council. [Accessed 2022 October 7]. https://www.bristolonecity.com/wp-content/pdf/BD11190-One-CIty-Plan-web-version.pdf
  9. ↵
    1. Burley H,
    2. Beaumont LJ,
    3. Ossola A,
    4. Baumgartner JB,
    5. Gallagher R,
    6. Laffan S,
    7. Esperon-Rodriquez M,
    8. Manea A,
    9. Leishman MR.
    2019. Substantial declines in urban tree habitat predicted under climate change. Science of the Total Environment. 685:451–462. https://doi.org/10.1016/j.scitotenv.2019.05.287
    OpenUrl
  10. ↵
    City of Melbourne. 2013. Urban forest strategy: Making a great city greener 2021-2032. Melbourne (Victoria, Australia): City of Melbourne. [Accessed 2022 October 7]. https://www.melboume.vic.gov.au/SiteCollectionDocuments/urban-forest-strategy.pdf
  11. ↵
    City of Toronto. 2008. Ahead of the storm: Preparing Toronto for climate change. Toronto (ON, Canada): Toronto Environment Office. [Accessed 2022 October 7]. www.toronto.ca/legdocs/mmis/2008/pe/bgrd/backgroundfile-12951.pdf
  12. ↵
    1. Conway TM,
    2. Vecht JV.
    2015. Growing a diverse urban forest: Species selection decisions by practitioners planting and supplying trees. Landscape and Urban Planning. 138:1–10. https://doi.org/10.1016/j.landurbplan.2015.01.007
    OpenUrl
  13. ↵
    1. D’Amato NE,
    2. Sydnor TD,
    3. Struve DK.
    2002. Urban foresters identify Ohio’s tree needs. Journal of Arboriculture. 28(6): 291–301. https://doi.org/10.48044/jauf.2002.043
    OpenUrl
  14. ↵
    Department of Economic and Social Affairs, Population Division (UN)[DESA]. 2018 May. World Urbanization Prospects: The 2018 Revision. New York (USA): United Nations. ST/ESA/SER.A/420. https://population.un.org/wup/publications/Files/WUP2018-Report.pdf
  15. ↵
    1. Di Cola V,
    2. Broennimann O,
    3. Petitpierre B,
    4. Breiner F,
    5. D’Amen M,
    6. Randin C,
    7. Engler R,
    8. Pottier J,
    9. Pio D,
    10. Dubuis A,
    11. Pellissier L,
    12. Rubén MG,
    13. Hordijk W,
    14. Salamin N,
    15. Guisan A.
    2017. ecospat: An R package to support spatial analysis and modeling of species niches and distributions. Ecography. 40(6):774–787. https://doi.org/10.1111/ecog.02671
    OpenUrlCrossRef
  16. ↵
    1. Dimoudi A,
    2. Nikolopoulou M.
    2003. Vegetation in the urban environment: Microclimatic analysis and benefits. Energy and Buildings. 35(1):69–76. https://doi.org/10.1016/S0378-7788(02)00081-6
    OpenUrlCrossRefWeb of Science
  17. ↵
    1. Esperon-Rodriguez M,
    2. Baumgartner JB,
    3. Beaumont L,
    4. Lenoir J,
    5. Nipperess D,
    6. Power SA,
    7. Richard B,
    8. Rymer P,
    9. Tjoelker M,
    10. Gallagher R.
    2021. Climate-change risk analysis for global urban forests. Nature Climate Change. 12(10):950–955. https://doi.org/10.1038/s41558-022-01465-8
    OpenUrl
  18. ↵
    1. Elith J,
    2. Graham CH,
    3. Anderson RP,
    4. Dudík M,
    5. Ferrier S,
    6. Guisan A,
    7. Hijmans RJ,
    8. Huettmann F,
    9. Leathwick JR,
    10. Lehmann A,
    11. Li J,
    12. Lohmann LG,
    13. Loiselle BA,
    14. Manion G,
    15. Moritz C,
    16. Nakamura M,
    17. Nakazawa Y,
    18. Overton JMCM,
    19. Peterson AT,
    20. Phillips SJ,
    21. Richardson K,
    22. Scachetti-Pereira R,
    23. Schapire RE,
    24. Soberón J,
    25. Williams S,
    26. Wisz MS,
    27. Zimmermann NE.
    2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29(2):129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
    OpenUrlCrossRefWeb of Science
  19. ↵
    1. Elith J,
    2. Phillips SJ,
    3. Hastie T,
    4. Dudík M,
    5. Chee YE,
    6. Yates CJ.
    2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
    OpenUrl
  20. ↵
    Gardening Responsibly. 2021. NSW (Australia): NSW Government and Plant Sure. https://www.gardeningresponsibly.org.au
  21. ↵
    1. Gillner S,
    2. Korn S,
    3. Hofmann M,
    4. Roloff A.
    2017. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites. Urban Ecosystems. 20(4):853–865. https://doi.org/10.1007/s11252-016-0636-z
    OpenUrl
  22. ↵
    1. Haase D,
    2. Hellwig R.
    2022. Effects of heat and drought stress on the health status of six urban street tress species in Leipzig, Germany. Trees, Forests and People. 8:100252. https://doi.org/10.1016/j.tfp.2022.100252
    OpenUrl
  23. ↵
    1. Hayes KR,
    2. Barry SC.
    2007. Are there any consistent predictors of invasions success? Biological Invasions. 10(4):483–506. https://doi.org/10.1007/s10530-007-9146-5
    OpenUrl
  24. ↵
    1. Hilbert DR,
    2. Roman LA,
    3. Koeser AK,
    4. Vogt J,
    5. van Doorn NS.
    2019. Urban tree mortality: A literature review. Arboriculture & Urban Forestry. 45(5):167–200. https://doi.org/10.48044/jauf.2019.015
    OpenUrl
  25. ↵
    1. Hirons AD,
    2. Sjöman H.
    2019. Tree species selection for green infrastructure: A guide for specifiers. Issue 1.3. Trees & Design Action Group. [Accessed 2022 October 7]. https://www.tdag.org.uk/tree-species-selection-for-green-infrastructure.html
  26. ↵
    1. Hoffman BD,
    2. Broadhurst LM.
    2016. The economic cost of managing invasive species in Australia. NeoBiota. 31:1–18. https://doi.org/10.3897/neobiota.31.6960
    OpenUrl
  27. ↵
    IPCC. 2022. Climate change 2022: Impacts, adaptation, and vulnerability. Cambridge (United Kingdom) and New York (NY, USA): Cambridge University Press. 3056 p. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii
  28. ↵
    1. Karger DN,
    2. Conrad O,
    3. Böhner J,
    4. Kawohl T,
    5. Kreft H,
    6. Soria-Auza RW,
    7. Zimmerman NE,
    8. Linder HP,
    9. Kessler M.
    2017. Climatologies at high resolution for the earth’s land surface area. Scientific Data. 4(1):170122. https://doi.org/10.1038/sdata.2017.122
    OpenUrl
  29. ↵
    1. Kendal D,
    2. Dobbs C,
    3. Gallagher RV,
    4. Beaumont LJ,
    5. Baumann J,
    6. Williams NSG,
    7. Livesley SJ.
    2018. A global comparison of the climatic niches of urban and native tree populations. Global Ecology and Biogeography. 27(5):629–637. https://doi.org/10.1111/geb.12728
    OpenUrl
  30. ↵
    1. Kendal D,
    2. Dobbs C,
    3. Lohr VI.
    2014. Global patterns of diversity in the urban forest: Is there evidence to support the 10/20/30 rule? Urban Forestry & Urban Greening. 13(3):411–417. https://doi.org/10.1016/j.ufug.2014.04.004
    OpenUrl
  31. ↵
    1. Kendal D,
    2. Farrar A,
    3. Plant L,
    4. Threlfall CG,
    5. Bush J,
    6. Baumann J.
    2017. Risks to Australia’s urban forest from climate change to urban heat. Melbourne (Australia): Clean Air and Urban Landscapes Hub. [Accessed 2022 August 5]. https://apo.org.au/sites/default/files/resource-files/2017-11/apo-nid136871.pdf
  32. ↵
    1. Khan T,
    2. Conway M.
    2020. Vulnerability of common urban forest species to projected climate change and practitioners perceptions and responses. Environmental Management. 65(4):534–547. https://doi.org/10.1007/s00267-020-01270-z
    OpenUrl
  33. ↵
    1. Knight CA,
    2. Ackerly DD.
    2002. An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. Oecologia. 130:505–514. https://doi.org/10.1007/s00442-001-0841-0
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Marchin RM,
    2. Ossola A,
    3. Leishman MR,
    4. Ellsworth DS.
    2020. A simple method for simulating drought effects on plants. Frontiers in Plant Science. 10:1715. https://doi.org/10.3389/fpls.2019.01715
    OpenUrl
  35. ↵
    New South Wales Government. 2022. Greening our city. The Department of Planning and Environment. [Accessed 2022 July 22]. https://www.dpie.nsw.gov.au/premiers-priorities/greening-our-city
  36. ↵
    1. Nowak DJ.
    1994. Understanding the structure of urban forests. Journal of Forestry. 92(10):42–46. https://doi.org/10.1093/jof/92.10.42
    OpenUrl
  37. ↵
    1. Nowak DJ,
    2. Maco S,
    3. Binkley M.
    2018. i-Tree: Global tools to assess tree benefits and risks to improve forest management. Arboricultural Consultant. 51(4):10–13. https://www.fs.usda.gov/nrs/pubs/jrnl/2018/nrs_2018_nowak_006.pdf
    OpenUrl
  38. ↵
    1. Ordóñez C,
    2. Duinker PN.
    2015. Climate change vulnerability assessment of the urban forest in three Canadian cities. Climatic Change. 131(4):531–543. https://doi.org/10.1007/s10584-015-1394-2
    OpenUrl
  39. ↵
    1. Phillips SJ,
    2. Anderson RP,
    3. Schapire RE.
    2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling. 190(3-4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
    OpenUrlCrossRefWeb of Science
  40. ↵
    1. Pyšek P,
    2. Richardson D.
    2008. Traits associated with invasiveness in plants: Where do we stand? In: Nentwig W, editor. Biological Invasions. Berlin (Germany): Springer. p. 97–125. https://doi.org/10.1007/978-3-540-36920-2_7
  41. ↵
    R Core Team. 2019. R: A language and environment for statistical computing. [computer software]. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org
  42. ↵
    1. Ramsfield TD,
    2. Bentz BJ,
    3. Faccoli M,
    4. Jactel H,
    5. Brockerhoff EG.
    2016. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry. 89(3):245–252. https://doi.org/10.1093/forestry/cpw018
    OpenUrlCrossRef
  43. ↵
    1. Roman LA,
    2. Pearsall H,
    3. Eisenman TS,
    4. Conway TM,
    5. Fahey RT,
    6. Landry S,
    7. Vogt J,
    8. van Doorn NS,
    9. Grove JM,
    10. Locke DH,
    11. Bardekjian AC,
    12. Battles JJ,
    13. Cadenasso ML,
    14. Konijnendijk van den Bosch CC,
    15. Avolio M,
    16. Berland A,
    17. Jenerette GD,
    18. Mincey SK,
    19. Pataki DE,
    20. Staudhammer C.
    2018. Human and biophysical legacies shape contemporary urban forests: A literature synthesis. Urban Forestry & Urban Greening. 31:157–168. https://doi.org/10.1016/j.ufug.2018.03.004
    OpenUrl
  44. ↵
    1. Sæbø A,
    2. Benedikz T,
    3. Randrup TB.
    2003. Selection of trees for urban forestry in the Nordic countries. Urban Forestry & Urban Greening. 2(2):101–114. https://doi.org/10.1078/1618-8667-00027
    OpenUrl
  45. ↵
    1. Sanderson BM,
    2. Knutti R,
    3. Caldwell P.
    2015. A representative democracy to reduce interdependency in a multimodel ensemble. Journal of Climate. 28(13):5171–5194. https://doi.org/10.1175/JCLI-D-14-00362.1
    OpenUrl
  46. ↵
    1. Santamour FS.
    1990. Trees for urban planting: Diversity, uniformity, and common sense. In: Proceedings of the Seventh Conference of the Metropolitan Tree Improvement Alliance (METRIA). p. 57–65.
  47. ↵
    1. Sjöman H,
    2. Nielson AB.
    2010. Selecting trees for urban paved sites in Scandinavia—A review of information on stress tolerance and its relation to the requirements of tree planners. Urban Forestry & Urban Greening. 9(4):281–293. https://doi.org/10.1016/j.ufug.2010.04.001
    OpenUrl
  48. ↵
    1. Sydnor TD,
    2. Subburayalu S,
    3. Bumgardner M.
    2010. Contrasting Ohio nursery stock availability with community planting needs. Arboriculture & Urban Forestry. 36(1):47–54. https://doi.org/10.48044/jauf.2010.007
    OpenUrl
  49. ↵
    1. Tabassum S,
    2. Manea A,
    3. Ossola A,
    4. Thomy B,
    5. Blackham D,
    6. Leishman MR.
    2021a. The angriest summer on record: Assessing canopy damage and economic costs of an extreme climatic event. Urban Forestry & Urban Greening. 63:127221. https://doi.org/10.1016/j.ufug.2021.127221
    OpenUrl
  50. ↵
    1. Tabassum S,
    2. Ossola A,
    3. Manea A,
    4. Cinantya A,
    5. Winzer LF,
    6. Leish-man MR.
    2020. Using ecological knowledge for landscaping with plants in cities. Ecological Engineering. 158:106049. https://doi.org/10.1016/j.ecoleng.2020.106049
    OpenUrl
  51. ↵
    1. Tabassum S,
    2. Ossola A,
    3. Marchin RM,
    4. Ellsworth DS,
    5. Leishman MR.
    2021b. Assessing the relationship between trait-based and horticultural classifications of plant responses to drought. Urban Forestry & Urban Greening. 61:127109. https://doi.org/10.1016/j.ufug.2021.127109
    OpenUrl
  52. ↵
    1. Taylor KE,
    2. Stouffer RJ,
    3. Meehl GA.
    2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society. 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. Tubby KV,
    2. Webber JF.
    2010. Pests and diseases threatening urban trees under a changing climate. Forestry. 83(4):451–459. https://doi.org/10.1093/forestry/cpq027
    OpenUrlCrossRef
  54. ↵
    1. van Kleunen M,
    2. Essl F,
    3. Pergl J,
    4. Brundu G,
    5. Carboni M,
    6. Dullinger S,
    7. Early R,
    8. González-Moreno P,
    9. Groom QJ,
    10. Hulme PE,
    11. Kueffer C,
    12. Kühn I,
    13. Máguas C,
    14. Maurel N,
    15. Novoa A,
    16. Parepa M,
    17. Pyšek P,
    18. Seebens H,
    19. Tanner R,
    20. Touza J,
    21. Verbrugge L,
    22. Weber E,
    23. Dawson W,
    24. Kreft H,
    25. Weigelt P,
    26. Winter M,
    27. Klonner G,
    28. Talluto MV,
    29. Dehnen-Schmutz K.
    2018. The changing role of ornamental horticulture in alien plant invasions. Biological Reviews. 93(3):1421–1437. https://doi.org/10.1111/brv.12402
    OpenUrlCrossRef
  55. ↵
    1. van Kleunen M,
    2. Weber E,
    3. Fischer M.
    2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters. 13(2):235–245. https://doi.org/10.1111/j.1461-0248.2009.01418.x
    OpenUrlCrossRefPubMedWeb of Science
  56. ↵
    1. Vogt J,
    2. Gillner S,
    3. Hofmann M,
    4. Tharang A,
    5. Dettman S,
    6. Gerstenberg T,
    7. Schmidt C,
    8. Gebauer H,
    9. van de Riet K,
    10. Berger U,
    11. Roloff A.
    2017. Citree: A database supporting tree selection for urban areas in temperate climate. Landscape and Urban Planning. 157:14–25. https://doi.org/10.1016/j.landurbplan.2016.06.005
    OpenUrl
  57. ↵
    1. Yang J.
    2009. Assessing the impact of climate change on urban tree species selection: A case study in Philadelphia. Journal of Forestry. 107(7):364–372. https://doi.org/10.1093/jof/107.7.364
    OpenUrl
  58. ↵
    1. Zhang B,
    2. Brack CL.
    2021. Urban forest responses to climate change: A case study in Canberra. Urban Forestry & Urban Greening. 57:126910. https://doi.org/10.1016/j.ufug.2020.126910
    OpenUrl
  59. ↵
    1. Živojinović I,
    2. Wolfslehner B.
    2015. Perceptions of urban forestry stakeholders about climate change adaptation—A Q-method application in Serbia. Urban Forestry & Urban Greening. 14(4):1079–1087. https://doi.org/10.1016/j.ufug.2015.10.007
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 49 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 49, Issue 4
July 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Which Plant Where: A Plant Selection Tool for Changing Urban Climates
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Which Plant Where: A Plant Selection Tool for Changing Urban Climates
Samiya Tabassum, Linda J. Beaumont, Farzin Shabani, Leigh Staas, Gwilym Griffiths, Alessandro Ossola, Michelle R. Leishman
Arboriculture & Urban Forestry (AUF) Jul 2023, 49 (4) 190-210; DOI: 10.48044/jauf.2023.014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Which Plant Where: A Plant Selection Tool for Changing Urban Climates
Samiya Tabassum, Linda J. Beaumont, Farzin Shabani, Leigh Staas, Gwilym Griffiths, Alessandro Ossola, Michelle R. Leishman
Arboriculture & Urban Forestry (AUF) Jul 2023, 49 (4) 190-210; DOI: 10.48044/jauf.2023.014
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflicts of Interest
    • Acknowledgements
    • Appendix
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Energy Potential of Urban Tree Pruning Waste
Show more Articles

Similar Articles

Keywords

  • Climate Suitability
  • Ecosystem Services
  • Species Selection
  • Urban Greening
  • Urban Management

© 2025 International Society of Arboriculture

Powered by HighWire