Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Miniature UAVs and Photogrammetry—A Novel Approach to Collecting Aerial Inspection Data from Mature Broadleaf Trees

James Roberts and Duncan Slater
Arboriculture & Urban Forestry (AUF) March 2023, 49 (2) 75-89; DOI: https://doi.org/10.48044/jauf.2023.007
James Roberts
James Roberts, Myerscough College, Greenspace Department, Bilsborrow, Lancashire, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
Duncan Slater
Duncan Slater (corresponding author), Myerscough College, Greenspace Department, Bilsborrow, Lancashire, United Kingdom,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Anderson K,
    2. Gaston KJ
    . 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment. 11(3):138-146. https://doi.org/10.1890/120150
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Icold C
    1. Buffi G,
    2. Manciola P,
    3. de Lorenzis L,
    4. Gambi A
    . 2018. Influence of construction joints in arch-gravity dams modelling: The case of ridracoli. In: Icold C, editor. Twenty-sixth international congress on large dams. Vienna (Austria): CRC Press. p. 1047-1062. https://doi.org/10.1201/9780429465086
  3. ↵
    1. Cannon CH,
    2. Scher CL,
    3. Gao A,
    4. Khan T,
    5. Kua CS
    . 2018. Building a tree observatory. Acta Horticulturae. 1222:85-92. https://doi.org/10.17660/ActaHortic.2018.1222.12
    OpenUrl
  4. ↵
    1. Côté JF,
    2. Widlowski JL,
    3. Fournier RA,
    4. Verstraete MM
    . 2009. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sensing of Environment. 113(5):1067-1081. https://doi.org/10.1016/j.rse.2009.01.017
    OpenUrlCrossRef
  5. ↵
    1. Cox S,
    2. Melarange P
    . 2017. Aerial inspections: Guide to good practice. Stroud (United Kingdom): Arboricultural Association. AA Guidance Note 11. 43 p. http://www.treesource.co.uk/guidance-note-11-aerial-inspections-a-guide-to-good-practice~4723
  6. ↵
    1. Dunster JA,
    2. Smiley ET,
    3. Matheny N,
    4. Lilly S
    . 2017. Tree risk assessment manual. 2nd Ed. Champaign (IL, USA): International Society of Arboriculture. 194 p.
  7. ↵
    1. EDF R&D
    . 2022. Los Altos (CA, USA): CloudCompare.org. [Updated 2022 March 12; Accessed 2022 April 30]. https://www.danielgm.net/cc
  8. ↵
    1. Ganz S,
    2. Käber Y,
    3. Adler P
    . 2019. Measuring tree height with remote sensing—A comparison of photogrammetric and LiDAR data with different field measurements. Forests. 10(8):694. https://doi.org/10.3390/f10080694
    OpenUrl
  9. ↵
    1. Gatziolis D,
    2. Lienard JF,
    3. Vogs A,
    4. Strigul NS
    . 2015. 3D tree dimensionality assessment using photogrammetry and small unmanned aerial vehicles. PLOS ONE. 10(9):e0137765. https://doi.org/10.1371/journal.pone.0137765
    OpenUrl
  10. ↵
    1. Hobart M,
    2. Pflanz M,
    3. Weltzien C,
    4. Schirrmann M
    . 2020. Growth height determination of tree walls for precise monitoring in apple fruit production using UAV photogrammetry. Remote Sensing. 12(10):1656. https://doi.org/10.3390/rs12101656
    OpenUrl
  11. ↵
    1. Koh LP,
    2. Wich SA
    . 2012. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science. 5(2):121-132. https://doi.org/10.1177/194008291200500202
    OpenUrlCrossRef
  12. ↵
    1. Krause S,
    2. Sanders TGM,
    3. Mund JP,
    4. Greve K
    . 2019. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sensing. 11(7):758. https://doi.org/10.3390/rs11070758
    OpenUrl
  13. ↵
    1. Lipwoni V,
    2. Watt MS,
    3. Hartley RJL,
    4. Leonardo EMC,
    5. Morgenroth J
    . 2022. A comparison of photogrammetric software for deriving structure-from-motion 3D point clouds and estimating tree heights. New Zealand Journal of Forestry. 66(4):18-26. https://hdl.handle.net/10092/103888
    OpenUrl
  14. ↵
    1. Mokroš M,
    2. Liang X,
    3. Surový P,
    4. Valent P,
    5. Čerňava J,
    6. Chudý F,
    7. Tunák D,
    8. Saloň Š,
    9. Merganič J
    . 2018. Evaluation of close-range photogrammetry image collection methods for estimating tree diameters. ISPRS International Journal of Geo-Information. 7(3):93. https://doi.org/10.3390/ijgi7030093
    OpenUrl
  15. ↵
    1. Moreira BM,
    2. Goyanes G,
    3. Pina P,
    4. Vassilev O,
    5. Heleno S
    . 2021. Assessment of the influence of survey design and processing choices on the accuracy of tree diameter at breast height (DBH) measurements using UAV-based photogrammetry. Drones. 5(2):43. https://doi.org/10.3390/drones5020043
    OpenUrl
  16. ↵
    1. Moyano J,
    2. Nieto-Julián JE,
    3. Bienvenido-Huertas D,
    4. Marín-García D
    . 2020. Validation of close-range photogrammetry for architectural and archaeological heritage: Analysis of point density and 3D mesh geometry. Remote Sensing. 12(21): 3571. https://doi.org/10.3390/rs12213571
    OpenUrl
  17. ↵
    1. Nezami S,
    2. Khoramshahi E,
    3. Nevalainen O,
    4. Pölönen I,
    5. Honkavaara E
    . 2020. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sensing. 12(7):1070. https://doi.org/10.3390/rs12071070
    OpenUrl
  18. ↵
    1. Nitoslawski SA,
    2. Wong-Stevens K,
    3. Steenberg JWN,
    4. Witherspoon K,
    5. Nesbitt L,
    6. Konijnendijk van den Bosch CC
    . 2021. The digital forest: Mapping a decade of knowledge on technological applications for forest ecosystems. Earth’s Future. 9(8):e2021EF002123. https://doi.org/10.1029/2021EF002123
    OpenUrl
  19. ↵
    1. Pfeifer N,
    2. Falkner J,
    3. Bayr A,
    4. Eysn L,
    5. Ressl C
    . 2021. Test charts for evaluating imaging and point cloud quality of mobile mapping systems for urban street space acquisition. Remote Sensing. 13(2):237. https://doi.org/10.3390/rs13020237
    OpenUrl
  20. ↵
    1. Williams G
    1. Priestley S
    . 2017. An introduction to innovation in arboriculture. In: Williams G, editor. TREENET proceedings of the 18th national street tree symposium. 18th National Street Tree Symposium; 2017 September 7–8; Adelaide, South Australia. Adelaide (Australia): The University of Adelaide. p. 61-66. [Accessed 2022 April 30]. https://cdn.treenet.org/wp-content/uploads/2021/10/TREENET-2017-Symposium-Proceedings_FINAL.pdf
  21. ↵
    1. Ramalho de Oliveira LF,
    2. Lassiter HA,
    3. Wilkinson B,
    4. Whitley T,
    5. Ifju P,
    6. Logan SR,
    7. Peter GF,
    8. Vogel JG,
    9. Martin TA
    . 2021. Moving to automated tree inventory: Comparison of UAS-derived lidar and photogrammetric data with manual ground estimates. Remote Sensing. 13(1):72. https://doi.org/10.3390/rs13010072
    OpenUrl
  22. ↵
    1. Scher CL,
    2. Griffoul E,
    3. Cannon CH
    . 2019. Drone-based photogrammetry for the construction of high-resolution models of individual trees. Trees. 33:1385-1397. https://doi.org/10.1007/s00468-019-01866-x
    OpenUrl
  23. ↵
    1. Schmitt U,
    2. Lüer B,
    3. Dujesiefken D,
    4. Koch G
    . 2014. The Massaria disease of plane trees: Its wood decay mechanism. IAWA Journal. 35(4):395-406. https://doi.org/10.1163/22941932-00000074
    OpenUrl
  24. ↵
    1. Seo J,
    2. Duque L,
    3. Wacker J
    . 2018. Drone-enabled bridge inspection methodology and application. Automation in Construction. 94:112-126. https://doi.org/10.1016/j.autcon.2018.06.006
    OpenUrl
  25. ↵
    1. Slater D
    . 2022. Branch junctions: A classification system for arborists. Stroud (United Kingdom): Arboricultural Association. AA Guidance Note 14. https://www.trees.org.uk/Book-Shop/Products/GN14-Branch-Junctions-A-Classification-System-for-Arborists-en
  26. ↵
    1. The UK Civil Aviation Authority
    . 2019. The Drone and Model Aircraft Code. West Sussex (United Kingdom): Civil Aviation Authority. [Updated 2022 December 1; Accessed 2022 April 30]. https://register-drones.caa.co.uk/drone-code/where-you-can-fly
  27. ↵
    1. 3Dflow SRL
    . 2022. Version 8.6.0. Verona (Italy): 3Dflow SRL. [Updated 2022 March 25; Accessed 2022 April 30]. https://www.3dflow.net/3df-zephyr-photogrammetry-software
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 49 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 49, Issue 2
March 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Miniature UAVs and Photogrammetry—A Novel Approach to Collecting Aerial Inspection Data from Mature Broadleaf Trees
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Miniature UAVs and Photogrammetry—A Novel Approach to Collecting Aerial Inspection Data from Mature Broadleaf Trees
James Roberts, Duncan Slater
Arboriculture & Urban Forestry (AUF) Mar 2023, 49 (2) 75-89; DOI: 10.48044/jauf.2023.007

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Miniature UAVs and Photogrammetry—A Novel Approach to Collecting Aerial Inspection Data from Mature Broadleaf Trees
James Roberts, Duncan Slater
Arboriculture & Urban Forestry (AUF) Mar 2023, 49 (2) 75-89; DOI: 10.48044/jauf.2023.007
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Hardscape of Soil Surface Surrounding Urban Trees Alters Stem Carbon Dioxide Efflux
  • Literature Review of Unmanned Aerial Systems and LIDAR with Application to Distribution Utility Vegetation Management
  • Borrowed Credentials and Surrogate Professional Societies: A Critical Analysis of the Urban Forestry Profession
Show more Articles

Similar Articles

Keywords

  • 3D Modelling
  • Arboriculture
  • Drones
  • Tree Risk Management
  • Tree Surveying
  • UAV
  • Visual Tree Inspection

© 2023 International Society of Arboriculture

Powered by HighWire