Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

The Influence of Chitin- and Chitosan-Based Soil Amendments on Pathogen Severity of Apple and Pear Scab

Glynn C. Percival, Sean Graham, Christopher Percival and Jonathan Banks
Arboriculture & Urban Forestry (AUF) March 2023, 49 (2) 64-74; DOI: https://doi.org/10.48044/jauf.2023.006
Glynn C. Percival
Glynn C. Percival (corresponding author), Bartlett Tree Research Laboratory, Cutbush Lane East, Shinfield, Reading, United Kingdom,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Sean Graham
Sean Graham, Bartlett Tree Research Laboratory, Cutbush Lane East, Shinfield, Reading, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
Christopher Percival
Christopher Percival, Bartlett Tree Research Laboratory, Cutbush Lane East, Shinfield, Reading, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
Jonathan Banks
Jonathan Banks, Bartlett Tree Research Laboratory, Cutbush Lane East, Shinfield, Reading, United Kingdom
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Aćimović SG,
    2. VanWoerkom AH,
    3. Garavaglia T,
    4. Vandervoort C,
    5. Sundin GW,
    6. Wise JC
    . 2016. Seasonal and cross-seasonal timing of fungicide trunk injections in apple trees to optimize management of apple scab. Plant Disease. 100(8):1606-1616. https://doi.org/10.1094/PDIS-09-15-1061-RE
    OpenUrl
  2. ↵
    1. Banks JM
    . 2017. Continuous excitation chlorophyll fluorescence parameters: A review for practitioners. Tree Physiology. 37(8):1128-1136. https://doi.org/10.1093/treephys/tpx059
    OpenUrl
  3. ↵
    1. Bell AA,
    2. Hubbard JC,
    3. Liu L,
    4. Davis RM,
    5. Subbarao KV
    . 1998. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Disease. 82(3):322-328. https://doi.org/10.1094/PDIS.1998.82.3.322
    OpenUrl
  4. ↵
    1. Benhamou N,
    2. Lafontaine PJ,
    3. Nicole M
    . 1994. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology. 84:1432-1444. https://doi.org/10.1094/Phyto-84-1432
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Bevan J,
    2. Knight S
    . 2001. Organic apple production. 1st Ed. Kenilworth (UK): HDRA, Emmerson Press. 36 p.
  6. ↵
    1. Butt DJ,
    2. Swait AA,
    3. Robinson JD
    . 1990. Evaluation of fungicides against apple powdery mildew and scab. Annals of Applied Biology. 116(11):34-35.
    OpenUrl
  7. ↵
    1. Cuthbertson AGS,
    2. Murchie AK
    . 2003. The impact of fungicides to control apple scab (Venturia inaequalis) on the predatory mite Anystis baccarum and its prey Aculus schlechtendali (apple rust mite) in Northern Ireland Bramley orchards. Crop Protection. 22(9):1125-1130. https://doi.org/10.1016/S0261-2194(03)00147-9
    OpenUrl
  8. ↵
    1. D’Addabbo T
    . 1995. The nematicidal effect of organic amendments: A review of the literature, 1982-1994. Nematologia Mediterranea. 23(2):299-305. https://journals.flvc.org/nemamedi/article/view/63272/0
    OpenUrl
  9. ↵
    1. Deising HB,
    2. Reimann S,
    3. Pascholati SF
    . 2008. Mechanisms and significance of fungicide resistance. Brazilian Journal of Microbiology. 39(2):286-295. https://doi.org/10.1590/s1517-838220080002000017
    OpenUrlCrossRef
  10. ↵
    1. El Hadrami A,
    2. Adam LR,
    3. El Hadrami I,
    4. Daayf F
    . 2010. Chitosan in plant protection. Marine Drugs. 8(4):968-987. https://doi.org/10.3390/md8040968
    OpenUrl
  11. ↵
    1. Escudero N,
    2. Lopez-Moya F,
    3. Ghahremani Z,
    4. Zavala-Gonzalez EA,
    5. Alaguero-Cordovilla A,
    6. Ros-Ibañez C,
    7. Lacasa A,
    8. Sorribas FJ,
    9. Lopez-Llorca LV
    . 2017. Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Frontiers in Plant Science. 8:1-10. https://doi.org/10.3389/fpls.2017.01415
    OpenUrl
  12. ↵
    1. Hailey LE,
    2. Percival GC
    . 2014. Comparative assessment of phosphite formulations for apple scab (Venturia inaequalis) control. Arboriculture & Urban Forestry. 40(4):237-243. https://doi.org/10.48044/jauf.2014.024
    OpenUrl
  13. ↵
    1. Ilhan K,
    2. Arslan U,
    3. Karabulut OA
    . 2006. The effect of sodium bicarbonate alone or in combination with a reduced dose of tebuconazole on the control of apple scab. Crop Protection. 25(9):963-967. https://doi.org/10.1016/j.cropro.2006.01.002
    OpenUrl
  14. ↵
    1. Jørgensen LN,
    2. Thygesen K
    . 2006. Fungicide resistance and its impact on recommendations to farmers—Experiences from Denmark. Aspects of Applied Biology. 78:65-70.
    OpenUrl
  15. ↵
    1. Kuchitsu K,
    2. Kikuyama M,
    3. Shibuya N
    . 1993. N-Acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma. 174:79-81. https://doi.org/10.1007/BF01404046
    OpenUrlCrossRefWeb of Science
  16. ↵
    1. Kulikov SN,
    2. Chirkov SN,
    3. Il’ina AV,
    4. Lopatin SA,
    5. Varlamov VP
    . 2006. Effect of the molecular weight of chitosan on its antiviral activity in plants. Prikl Biokhim Mikrobiol. 42(2):224-228. https://doi.org/10.1134/S0003683806020165
    OpenUrlCrossRefPubMed
  17. ↵
    1. Laflamme P,
    2. Benhamou N,
    3. Bussiéres G,
    4. Dessureault M
    . 2000. Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Canadian Journal of Botany. 77(10):1460-1468. https://doi.org/10.1139/b99-111
    OpenUrl
  18. ↵
    1. Lafontaine PJ,
    2. Benhamou N
    . 1996. Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicislycopersici. Biocontrol Science and Technology. 6(1):111-124. https://doi.org/10.1080/09583159650039575
    OpenUrlCrossRefWeb of Science
  19. ↵
    1. Lainsbury MA
    . 2020. The UK pesticide guide 2020. 33rd Ed. Cambridge (UK): British Crop Protection Council. 721 p. https://ukpesticideguide.co.uk
  20. ↵
    1. Li K,
    2. Xing R,
    3. Liu S,
    4. Li P
    . 2020. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry. 68(44):12203-12211. https://doi.org/10.1021/acs.jafc.0c05316
    OpenUrl
  21. ↵
    1. Murphy JG,
    2. Rafferty SM,
    3. Cassells AC
    . 2000. Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by addition of shellfish waste to the growth substrate: Interaction between mycorrhization, substrate amendment and susceptibility to red core (Phytophthora fragariae). Applied Soil Ecology. 15(2):153-158. https://doi.org/10.1016/S0929-1393(00)00091-3
    OpenUrl
  22. ↵
    1. Muzzarelli R,
    2. Tarsi R,
    3. Filippini O,
    4. Giovanetti E,
    5. Biagini G,
    6. Varaldo PE
    . 1990. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial Agents and Chemotherapy. 34(10): 2019-2023. https://doi.org/10.1128/aac.34.10.2019
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. O’Herlihy EA,
    2. Duffy EM,
    3. Cassells AC
    . 2003. The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobotanica. 38:201-207. https://doi.org/10.1007/BF02803152
    OpenUrl
  24. ↵
    1. Ozbay N,
    2. Newman SE
    . 2004. Fusarium crown and root rot of tomato and control methods. Plant Pathology. 3(1):9-18. https://doi.org/10.3923/ppj.2004.9.18
    OpenUrl
  25. ↵
    1. Percival GC
    . 2018. Evaluation of silicon fertilizers and a resistance inducing agent for control of apple and pear scab under field conditions. Arboriculture & Urban Forestry. 44(5):205-214. https://doi.org/10.48044/jauf.2018.017
    OpenUrl
  26. ↵
    1. Percival GC,
    2. Boyle S
    . 2005. Evaluation of microcapsule trunk injections for the control of apple scab and powdery mildew. Annals of Applied Biology. 147(1):119-127. https://doi.org/10.1111/J.1744-7348.2005.00019.X
    OpenUrl
  27. ↵
    1. Percival GC,
    2. Graham S
    . 2021. Evaluation of inducing agents and synthetic fungicide combinations for management of foliar pathogens of urban trees. Arboriculture & Urban Forestry. 47(2):85-95. https://doi.org/10.48044/jauf.2021.008
    OpenUrl
  28. ↵
    1. Percival GC,
    2. Noviss K,
    3. Haynes I
    . 2009. Field evaluation of systemic inducing resistance chemicals at different growth stages for the control of apple (Venturia inaequalis) and pear (Venturia pirina) scab. Crop Protection. 28(8):629-633. https://doi.org/10.1016/j.cropro.2009.03.010
    OpenUrl
  29. ↵
    1. Rabea EI,
    2. Badawy ME,
    3. Rogge TM,
    4. Stevens CV,
    5. Höfte M,
    6. Steurbaut W,
    7. Smagghe G
    . 2005. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Management Science. 61(10):951-960. https://doi.org/10.1002/ps.1085
    OpenUrlCrossRefPubMed
  30. ↵
    1. Rabea EI,
    2. Badawy ME,
    3. Stevens CV,
    4. Smagghe G,
    5. Steurbaut W
    . 2003. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 4(6):1457-1465. https://doi.org/10.1021/bm034130m
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Radwan MA,
    2. Farrag SAA,
    3. Abu-Elamayem MM,
    4. Ahmed NS
    . 2012. Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biology and Fertility of Soils. 48:463-468. https://doi.org/10.1007/s00374-011-0632-7
    OpenUrl
  32. ↵
    1. Reglinski T,
    2. Taylor JT,
    3. Dick MA
    . 2004. Chitosan induces resistance to pitch canker in Pinus radiata. New Zealand Journal of Forestry Science. 34(1):49-58. https://www.scionresearch.com/__data/assets/pdf_file/0003/59178/04_REGLINSKI.pdf
    OpenUrl
  33. ↵
    1. Scortichini M
    . 2014. Field efficacy of chitosan to control Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. European Journal of Plant Pathology. 140:887-892. https://doi.org/10.1007/s10658-014-0515-5
    OpenUrl
  34. ↵
    1. Sharif R,
    2. Mujtaba M,
    3. Rahman MU,
    4. Shalmani A,
    5. Ahmad H,
    6. Anwar T,
    7. Tianchan D,
    8. Wang X
    . 2018. The multifunctional role of chitosan in horticultural crops; A review. Molecules. 23(4):872. https://doi.org/10.3390/molecules23040872
    OpenUrl
  35. ↵
    1. Sharp RG
    . 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 3(4):757-793. https://doi.org/10.3390/agronomy3040757
    OpenUrl
  36. ↵
    1. Swait AAJ,
    2. Butt DJ
    . 1990. Fungicides as antisporulants against apple powdery mildew and scab. Annals of Applied Biology. 116(11):36-37.
    OpenUrl
  37. ↵
    1. Vasyukova NI,
    2. Zinov’eva SV,
    3. Il’inskaya LI,
    4. Perekhod EA,
    5. Chalenko GI,
    6. Gerasimova NG,
    7. Il’ina AV,
    8. Varlamov VP,
    9. Ozeretskovskaya OL
    . 2001. Modulation of plant resistance to diseases by water-soluble chitosan. Applied Biochemistry and Microbiology. 37:103-109. https://doi.org/10.1023/A:1002865029994
    OpenUrl
  38. ↵
    1. Villalta ON,
    2. Washington WS,
    3. McGregor G
    . 2004. Susceptibility of European and Asian pears to pear scab. Plant Protection Quarterly. 19(1):2-4. https://caws.org.nz/PPQ1819/PPQ%2019-1%20pp002-4%20Villalta.pdf
    OpenUrl
  39. ↵
    1. Volpe V,
    2. Carotenuto G,
    3. Berzero C,
    4. Cagnina L,
    5. Puech-Pages V,
    6. Genre A
    . 2020. Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydrate Polymers. 229:115505. https://doi.org/10.1016/j.carbpol.2019.115505
    OpenUrl
  40. ↵
    1. Walker R,
    2. Morris S,
    3. Brown P,
    4. Gracie A
    . 2004. Evaluation of potential for chitosan to enhance plant defence. Devonport (Tasmania, Australia): Rural Industries Research and Development Corporation. RIRDC Publication No. 04/RIRDC Project No. RSAG-4A. 55 p.
  41. ↵
    1. Wojdyla AT
    . 2004. Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases. Communications in Agricultural and Applied Biological Sciences. 69(4):705-715.
    OpenUrlPubMed
  42. ↵
    1. Xu J,
    2. Zhao X,
    3. Han X,
    4. Du Y
    . 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology. 87(3):220-228. https://doi.org/10.1016/j.pestbp.2006.07.013
    OpenUrl
  43. ↵
    1. Zhang M,
    2. Tan T,
    3. Yuan H,
    4. Rui C
    . 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. Journal of Bioactive and Compatible Polymers. 18(5):391-400. https://doi.org/10.1177/0883911503039019
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 49 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 49, Issue 2
March 2023
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Influence of Chitin- and Chitosan-Based Soil Amendments on Pathogen Severity of Apple and Pear Scab
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
The Influence of Chitin- and Chitosan-Based Soil Amendments on Pathogen Severity of Apple and Pear Scab
Glynn C. Percival, Sean Graham, Christopher Percival, Jonathan Banks
Arboriculture & Urban Forestry (AUF) Mar 2023, 49 (2) 64-74; DOI: 10.48044/jauf.2023.006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The Influence of Chitin- and Chitosan-Based Soil Amendments on Pathogen Severity of Apple and Pear Scab
Glynn C. Percival, Sean Graham, Christopher Percival, Jonathan Banks
Arboriculture & Urban Forestry (AUF) Mar 2023, 49 (2) 64-74; DOI: 10.48044/jauf.2023.006
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Hardscape of Soil Surface Surrounding Urban Trees Alters Stem Carbon Dioxide Efflux
  • Literature Review of Unmanned Aerial Systems and LIDAR with Application to Distribution Utility Vegetation Management
  • Borrowed Credentials and Surrogate Professional Societies: A Critical Analysis of the Urban Forestry Profession
Show more Articles

Similar Articles

Keywords

  • Fungicides
  • Integrated Disease Management
  • Orchard Management
  • Pathogen Control
  • Plant Health Care
  • Urban Landscapes
  • Venturia inaequalis
  • V. pirina

© 2023 International Society of Arboriculture

Powered by HighWire