Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Quantitative Tools for the Prediction of Pavement Damages Associated with Urban Trees

Louis S.H. Lee
Arboriculture & Urban Forestry (AUF) July 2022, 48 (4) 217-232; DOI: https://doi.org/10.48044/jauf.2022.016
Louis S.H. Lee
Louis S.H. Lee (corresponding author), Department of Environment Faculty of Design and Environment, Technological and Higher Education Institute of Hong Kong, 133 Shing Tai Road, Chai Wan, Hong Kong, China, +852-3890-8287,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Altdorff D,
    2. Botschek J,
    3. Honds M,
    4. van der Kruk J,
    5. Vereecken H
    . 2019. In situ detection of tree root systems under heterogeneous anthropogenic soil conditions using ground penetrating radar. Journal of Infrastructure Systems. 25(3):05019008. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000501
    OpenUrl
  2. ↵
    1. Arnold MA,
    2. McDonald GV,
    3. Bryan DL
    . 2005. Planting depth and mulch thickness affect establishment of green ash (Fraxinus pennsylvanica) and bougainvillea goldenraintree (Koelreuteria bipinnata). Journal of Arboriculture. 31(4):163–170. https://doi.org/10.48044/jauf.2005.021
    OpenUrl
  3. ↵
    1. Arnold MA,
    2. McDonald GV,
    3. Bryan DL,
    4. Denny GC,
    5. Watson WT,
    6. Lombardini L
    . 2007. Below-grade planting adversely affects survival and growth of tree species from five different families. Arboriculture & Urban Forestry. 33(1):64–69. https://doi.org/10.48044/jauf.2007.008
    OpenUrl
  4. ↵
    1. Barker PA,
    2. Peper PJ
    . 1995. Strategies to prevent damage to sidewalks by tree roots. Arboricultural Journal. 19(3):295–309. https://doi.org/10.1080/03071375.1995.9747072
    OpenUrl
  5. ↵
    1. Bartens J,
    2. Day SD,
    3. Harris JR,
    4. Wynn TM,
    5. Dove JE
    . 2009. Transpiration and root development of urban trees in structural soil stormwater reservoirs. Environ Manage. 44(4):646–657. https://doi.org/10.1007/s00267-009-9366-9
    OpenUrlPubMed
  6. ↵
    1. Benson AR,
    2. Koeser AK,
    3. Morgenroth J
    . 2019a. Responses of mature roadside trees to root severance treatments. Urban Forestry & Urban Greening. 46:126448. https://doi.org/10.1016/j.ufug.2019.126448
  7. ↵
    1. Benson AR,
    2. Morgenroth J,
    3. Koeser AK
    . 2019b. The effects of root pruning on growth and physiology of two Acer species in New Zealand. Urban Forestry & Urban Greening. 38:64–73. https://doi.org/10.1016/j.ufug.2018.11.006
    OpenUrl
  8. ↵
    1. Birdal AC,
    2. Avdan U,
    3. Türk T
    . 2017. Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Natural Hazards and Risk. 8(2):1144–1156. https://doi.org/10.1080/19475705.2017.1300608
    OpenUrl
  9. ↵
    1. Blunt SM
    . 2008. Trees and pavements—Are they compatible? Arboricultural Journal. 31(2):73–80. https://doi.org/10.1080/03071375.2008.9747522
    OpenUrl
  10. ↵
    1. Census and Statistics Department
    . 2018. 2016 Population By-census. Wan Chai (Hong Kong): The Government of the Hong Kong Special Administrative Region. [Accessed 2021 July 5]. https://www.censtatd.gov.hk/en/scode459.html
  11. ↵
    1. Chen Y,
    2. Wang X,
    3. Jiang B,
    4. Wen Z,
    5. Yang N,
    6. Li L
    . 2017. Tree survival and growth are impacted by increased surface temperature on paved land. Landscape and Urban Planning. 162:68–79. https://doi.org/10.1016/j.landurbplan.2017.02.001
    OpenUrl
  12. ↵
    1. Cheung PK,
    2. Jim CY
    . 2018. Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Building and Environment. 130:49–61. https://doi.org/10.1016/j.buildenv.2017.12.013
    OpenUrl
  13. ↵
    1. D’Amato NE,
    2. Sydnor TD,
    3. Knee M,
    4. Hunt R,
    5. Bishop B
    . 2002. Which comes first, the root or the crack? Journal of Arboriculture. 28(6):277–282. https://doi.org/10.48044/jauf.2002.041
    OpenUrl
  14. ↵
    1. Day SD,
    2. Harris JR
    . 2008. Growth, survival, and root system morphology of deeply planted Corylus colurna 7 years after transplanting and the effects of root collar excavation. Urban Forestry & Urban Greening. 7(2):119–128. https://doi.org/10.1016/j.ufug.2007.12.004
    OpenUrl
  15. ↵
    1. Day SD,
    2. Watson G,
    3. Wiseman PE,
    4. Harris JR
    . 2009. Causes and consequences of deep structural roots in urban trees: From nursery production to landscape establishment. Arboriculture & Urban Forestry. 35(4):182–191. https://doi.org/10.48044/jauf.2009.031
    OpenUrl
  16. ↵
    1. Ebrahimian A,
    2. Gulliver JS,
    3. Wilson BN
    . 2018. Estimating effective impervious area in urban watersheds using land cover, soil character and asymptotic curve number. Hydrological Sciences Journal. 63(4):513–526. https://doi.org/10.1080/02626667.2018.1440562
    OpenUrl
  17. ↵
    1. Gilman EF,
    2. Grabosky J
    . 2011. Quercus virginiana root attributes and lateral stability after planting at different depths. Urban Forestry & Urban Greening. 10(1):3–9. https://doi.org/10.1016/j.ufug.2010.09.005
    OpenUrl
  18. ↵
    1. Giuliani F,
    2. Autelitano F,
    3. Degiovanni E,
    4. Montepara A
    . 2017. DEM modelling analysis of tree root growth in street pavements. International Journal of Pavement Engineering. 18(1):1–10. https://doi.org/10.1080/10298436.2015.1019495
    OpenUrl
  19. ↵
    1. Grabosky J,
    2. Bassuk N
    . 2016. Seventeen years’ growth of street trees in structural soil compared with a tree lawn in New York City. Urban Forestry & Urban Greening. 16:103–109. https://doi.org/10.1016/j.ufug.2016.02.002
    OpenUrl
  20. ↵
    1. Grabosky J,
    2. Gucunski N
    . 2019. Modelling the influence of root position and growth on pavement tensile crack failure when occurring under three thicknesses of asphaltic concrete. Urban Forestry & Urban Greening. 41:238–247. https://doi.org/10.1016/j.ufug.2019.04.006
    OpenUrl
  21. ↵
    1. Grabosky J,
    2. Haffner E,
    3. Bassuk N
    . 2009. Plant available moisture in stone-soil media for use under pavement while allowing urban tree root growth. Arboriculture & Urban Forestry. 35(5):271–278. https://doi.org/10.48044/jauf.2009.041
    OpenUrl
  22. ↵
    1. Greening, Landscape & Tree Management Section Development Bureau
    . 2021. Planting Record. Wan Chai (Hong Kong): The Government of the Hong Kong Special Administrative Region. [Updated 2021 December 10; Accessed 2021 July 5]. https://www.greening.gov.hk/en/greening-landscape/planting-record/index.html
  23. ↵
    1. Hilbert DR,
    2. North EA,
    3. Hauer RJ,
    4. Koeser AK,
    5. McLean DC,
    6. Northrop RJ,
    7. Andreu M,
    8. Parbs S
    . 2020. Predicting trunk flare diameter to prevent tree damage to infrastructure. Urban Forestry & Urban Greening. 49:126645. https://doi.org/10.1016/j.ufug.2020.126645
  24. ↵
    1. Islam MN,
    2. Rahman KS,
    3. Bahar MM,
    4. Habib MA,
    5. Ando K,
    6. Hattori N
    . 2012. Pollution attenuation by roadside greenbelt in and around urban areas. Urban Forestry & Urban Greening. 11(4):460–464. https://doi.org/10.1016/j.ufug.2012.06.004
    OpenUrl
  25. ↵
    1. Jim CY
    . 2003. Protection of urban trees from trenching damage in compact city environments. Cities. 20(2):87–94. https://doi.org/10.1016/S0264-2751(02)00096-3
    OpenUrl
  26. ↵
    1. Johnson T,
    2. Moore G,
    3. Cameron D,
    4. Brien C
    . 2019. An investigation of tree growth in permeable paving. Urban Forestry & Urban Greening. 43:126374. https://doi.org/10.1016/j.ufug.2019.126374
  27. ↵
    1. Keith TZ
    . 2019. Multiple regression and beyond: An introduction to multiple regression and structural equation modeling. 3rd Ed. New York (NY, USA): Routledge. https://doi.org/10.4324/9781315162348
  28. ↵
    1. Krainyukov A,
    2. Lyaksa I
    . 2016. Detection of tree roots in an urban area with the use of ground penetrating radar. Transport and Telecommunication Journal. 17(4):362–370. https://doi.org/10.1515/ttj-2016-0032
    OpenUrl
  29. ↵
    1. Kwong IHY,
    2. Fung T
    . 2020. Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest. International Journal of Remote Sensing. 41(14): 5228–5256. https://doi.org/10.1080/01431161.2020.1731002
    OpenUrl
  30. ↵
    1. Lee LS,
    2. Cheung PK,
    3. Fung CK,
    4. Jim CY
    . 2020. Improving street walkability: Biometeorological assessment of artificial-partial shade structures in summer sunny conditions. International Journal of Biometeorology. 64(4):547–560. https://doi.org/10.1007/s00484-019-01840-9
    OpenUrl
  31. ↵
    1. Lee LSH,
    2. Zhang H,
    3. Jim CY
    . 2021. Serviceable tree volume: An alternative tool to assess ecosystem services provided by ornamental trees in urban forests. Urban Forestry & Urban Greening. 59:127003. https://doi.org/10.1016/j.ufug.2021.127003
  32. ↵
    1. Li J,
    2. Guo L
    . 2017. Field investigation and numerical analysis of residential building damaged by expansive soil movement caused by tree root drying. Journal of Performance of Constructed Facilities. 31(1):D4016003. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000908
    OpenUrl
  33. ↵
    1. Loprencipe G,
    2. Pantuso A
    . 2017. A specified procedure for distress identification and assessment for urban road surfaces based on PCI. Coatings. 7(5):65. https://doi.org/10.3390/coatings7050065
    OpenUrl
  34. ↵
    1. Lucke T,
    2. Beecham S
    . 2019. An infiltration approach to reducing pavement damage by street trees. Science of the Total Environment. 671:94–100. https://doi.org/10.1016/j.scitotenv.2019.03.357
    OpenUrl
  35. ↵
    1. Mann PS
    . 2007. Introductory statistics. 6th Ed. Hoboken (NJ, USA): John Wiley & Sons.
  36. ↵
    1. Marziliano PA,
    2. Lafortezza R,
    3. Colangelo G,
    4. Davies C,
    5. Sanesi G
    . 2013. Structural diversity and height growth models in urban forest plantations: A case-study in northern Italy. Urban Forestry & Urban Greening. 12(2):246–254. https://doi.org/10.1016/j.ufug.2013.01.006
    OpenUrl
  37. ↵
    1. Morgenroth J,
    2. Buchan GD
    . 2009. Soil moisture and aeration beneath pervious and impervious pavements. Arboriculture and Urban Forestry. 35(3):135–141. https://doi.org/10.48044/jauf.2009.024
    OpenUrl
  38. ↵
    1. Mullaney J,
    2. Lucke T,
    3. Trueman SJ
    . 2015. A review of benefits and challenges in growing street trees in paved urban environments. Landscape and Urban Planning. 134:157–166. https://doi.org/10.1016/j.landurbplan.2014.10.013
    OpenUrl
  39. ↵
    1. North EA,
    2. Johnson GR,
    3. Burk TE
    . 2015. Trunk flare diameter predictions as an infrastructure planning tool to reduce tree and sidewalk conflicts. Urban Forestry & Urban Greening. 14(1):65–71. https://doi.org/10.1016/j.ufug.2014.11.009
    OpenUrl
  40. ↵
    1. Oldfield EE,
    2. Felson AJ,
    3. Auyeung DSN,
    4. Crowther TW,
    5. Sonti NF,
    6. Harada Y,
    7. Maynard DS,
    8. Sokol NW,
    9. Ashton MS,
    10. Warren RJ II.,
    11. Hallett RA,
    12. Bradford MA
    . 2015. Growing the urban forest: Tree performance in response to biotic and abiotic land management. Restoration Ecology. 23(5):707–718. https://doi.org/10.1111/rec.12230
    OpenUrl
  41. ↵
    1. O’Sullivan OS,
    2. Holt AR,
    3. Warren PH,
    4. Evans KL
    . 2017. Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management. Journal of Environmental Management. 191:162–171. https://doi.org/10.1016/j.jenvman.2016.12.062
    OpenUrl
  42. ↵
    1. Ow LF,
    2. Ghosh S
    . 2017. Urban tree growth and their dependency on infiltration rates in structural soil and structural cells. Urban Forestry & Urban Greening. 26:41–47. https://doi.org/10.1016/j.ufug.2017.06.005
    OpenUrl
  43. ↵
    1. Ozer S,
    2. Irmak MA,
    3. Yilmaz H
    . 2008. Determination of roadside noise reduction effectiveness of Pinus sylvestris L. and Populus nigra L. in Erzurum, Turkey. Environmental Monitoring and Assessment. 144(1-3):191–197. https://doi.org/10.1007/s10661-007-9978-6
    OpenUrlCrossRefPubMed
  44. ↵
    1. Panagiotidis D,
    2. Abdollahnejad A,
    3. Surový P,
    4. Chiteculo V
    . 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing. 38(8-10):2392–2410. https://doi.org/10.1080/01431161.2016.1264028
    OpenUrl
  45. ↵
    1. Planning Department
    . 2020. Land Utilization in Hong Kong 2020. Wan Chai (Hong Kong): The Government of the Hong Kong Special Administrative Region. [Accessed 2021 July 5]. https://www.pland.gov.hk/pland_en/info_serv/statistic/landu.html
  46. ↵
    1. Rahardjo H,
    2. Gofar N,
    3. Amalia N,
    4. Leong EC,
    5. Ow LF
    . 2016. Structural cell contribution to resistance of trees to uprooting. Trees. 30(5):1843–1853. https://doi.org/10.1007/s00468-016-1417-2
    OpenUrl
  47. ↵
    1. Rotherham ID
    . 2010. Thoughts on the politics and economics of urban street trees. Arboricultural Journal. 33(2):69–75. https://doi.org/10.1080/03071375.2010.9747596
    OpenUrl
  48. ↵
    1. Semenzato P,
    2. Cattaneo D,
    3. Dainese M
    . 2011. Growth prediction for five tree species in an Italian urban forest. Urban Forestry & Urban Greening. 10(3):169–176. https://doi.org/10.1016/j.ufug.2011.05.001
    OpenUrl
  49. ↵
    1. Smiley ET
    . 2008. Comparison of methods to reduce sidewalk damage from tree roots. Arboriculture & Urban Forestry. 34(3):179–183. https://doi.org/10.48044/jauf.2008.024
    OpenUrl
  50. ↵
    1. Stovin VR,
    2. Jorgensen A,
    3. Clayden A
    . 2008. Street trees and stormwater management. Arboricultural Journal. 30(4):297–310. https://doi.org/10.1080/03071375.2008.9747509
    OpenUrl
  51. ↵
    1. Timm A,
    2. Kluge B,
    3. Wessolek G
    . 2018. Hydrological balance of paved surfaces in moist mid-latitude climate–A review. Landscape and Urban Planning. 175:80–91. https://doi.org/10.1016/j.landurbplan.2018.03.014
    OpenUrl
  52. ↵
    1. Torresan C,
    2. Berton A,
    3. Carotenuto F,
    4. Di Gennaro SF,
    5. Gioli B,
    6. Matese A,
    7. Miglietta F,
    8. Vagnoli C,
    9. Zaldei A,
    10. Wallace L
    . 2017. Forestry applications of UAVs in Europe: A review. International Journal of Remote Sensing. 38(8-10):2427–2447. https://doi.org/10.1080/01431161.2016.1252477
    OpenUrl
  53. ↵
    1. Watson GW,
    2. Hewitt AM,
    3. Custic M,
    4. Lo M
    . 2014. The management of tree root systems in urban and suburban settings II: A review of strategies to mitigate human impacts. Arboriculture & Urban Forestry. 40(5):249–271. https://doi.org/10.48044/jauf.2014.025
    OpenUrl
  54. ↵
    1. Zheng B,
    2. Myint SW,
    3. Fan C
    . 2014. Spatial configuration of anthropogenic land cover impacts on urban warming. Landscape and Urban Planning. 130:104–111. https://doi.org/10.1016/j.landurbplan.2014.07.001.
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 48 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 48, Issue 4
July 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Tools for the Prediction of Pavement Damages Associated with Urban Trees
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Quantitative Tools for the Prediction of Pavement Damages Associated with Urban Trees
Louis S.H. Lee
Arboriculture & Urban Forestry (AUF) Jul 2022, 48 (4) 217-232; DOI: 10.48044/jauf.2022.016

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Quantitative Tools for the Prediction of Pavement Damages Associated with Urban Trees
Louis S.H. Lee
Arboriculture & Urban Forestry (AUF) Jul 2022, 48 (4) 217-232; DOI: 10.48044/jauf.2022.016
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Hardscape of Soil Surface Surrounding Urban Trees Alters Stem Carbon Dioxide Efflux
  • Literature Review of Unmanned Aerial Systems and LIDAR with Application to Distribution Utility Vegetation Management
  • Borrowed Credentials and Surrogate Professional Societies: A Critical Analysis of the Urban Forestry Profession
Show more Articles

Similar Articles

Keywords

  • Pavement Damage
  • Protruding Roots
  • tree care
  • Tree Pit
  • Trunk Flare
  • Urban Green Infrastructure

© 2023 International Society of Arboriculture

Powered by HighWire