Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Modeling the Shading Effect of Vancouver’s Urban Tree Canopy in Relation to Neighborhood Variations

Yuhao Lu, Justin McCarty, Jeri Sezto, Zhaohua Cheng, Nicholas Martino, Cynthia Girling, Adam Rysanek, Sara Barron and Giona Matasci
Arboriculture & Urban Forestry (AUF) March 2022, 48 (2) 95-112; DOI: https://doi.org/10.48044/jauf.2022.008
Yuhao Lu
Yuhao Lu (corresponding author), Elementslab, School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Justin McCarty
Justin McCarty, Building Decision Research Group, School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Jeri Sezto
Jeri Sezto, Elementslab, School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Zhaohua Cheng
Zhaohua Cheng, Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Nicholas Martino
Nicholas Martino, Elementslab, School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Cynthia Girling
Cynthia Girling, Elementslab, School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Adam Rysanek
Adam Rysanek, Building Decision Research Group, School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
Sara Barron
Sara Barron, School of Ecosystem and Forest Sciences, Faculty of Science, University of Melbourne, Burnley Campus, Victoria, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
Giona Matasci
Giona Matasci, MDA, 13800 Commerce Parkway, Richmond, BC, Canada
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Abstract

Listen

Background: Cities consume a disproportionate amount of energy for internal temperature regulation. Being able to reduce cities’ cooling load on hot summer days can decrease energy consumption while improving occupants’ thermal comfort. The urban canopy is an effective shading agent, adding cooling benefits to existing buildings and streets while providing other ecological and physiological values. Yet the building and street shading dynamic is a highly complex system that involves micro-level building components and macro-level variables. Introducing urban canopy to such a complex system creates another challenge, as urban canopy variables can also interact with buildings at both micro- and macro-levels. In order to accurately represent the urban canopy shading effect, it is necessary to account for the interactions among buildings, streets, and urban canopies. Methods: This study simulates the shading effect of urban canopy measured by aerial laser scanning (ALS) in the City of Vancouver, Canada, through the integration of a Radiance daylight simulation engine and geographic information system (GIS) data. All trees detected by ALS were included in the analysis. Results: The results indicate that street surfaces receive more solar irradiance reduction than building roofs and façades (i.e., exterior walls). Neighborhoods with less density and lower buildings were shaded noticeably better than areas with higher density and taller buildings. Among Vancouver’s 22 neighborhoods, 2 neighborhoods, Kitsilano and the West End, demonstrated a promising sign where both building density/height and urban canopies are maintained. There was evidence of high canopy shading and high-density urban morphologies. Conclusion: Overall, this work provided an authentic canopy assessment from single building to city scale, creating opportunities to investigate intracity urban canopy variations, equality, and the balance between urban greening and urban densification.

Keywords
  • 3D Tree Canopy Mode
  • Aerial Laser Scanning
  • Canopy Shading
  • Radiance Model
  • Street Trees
  • Urban Forestry

INTRODUCTION

Listen

Covering approximately 3% of the terrestrial surface, cities consume a disproportionate amount of energy and are therefore a major emitter of greenhouse gasses (GHGs). In Canada, cities are responsible for over 42% of the GHG emission (Torrie 2015). As a result, local municipalities have included various measures to reduce GHG emissions through either improving operational efficiency (i.e., higher building performance standards), reducing energy demand (i.e., discourage private vehicle usage), or both. Cities tend to have higher air and land surface temperatures than surrounding landscapes (known as the urban heat island, or UHI, effect), with a difference ranging from 1 to 3 °C (Rosenfeld et al. 1995), but sometimes can exceed 10 °C (Stone et al. 2010; Stone et al. 2012). Climate change, along with fast urbanization, has caused cities more intense and frequent heat waves, which are periods with exceptionally high temperatures (Li and Bou-Zeid 2013).

Currently, over 60% of the urban population is experiencing above-average temperatures in cities compared to nonurbanized areas (Estrada et al. 2017). City dwellers face increased heat-related health and safety risks due to the synergetic relationship between UHI and heat wave effects (Li and Bou-Zeid 2013), adversely impacting not only local and regional climates but also ecosystem function and human health (Grimm et al. 2008). For example, in the United States, extreme heat events have caused the highest number of climate-related fatalities (Stone et al. 2010). Climate change is only expected to exacerbate heat risk in the urban environment, which will lead to the use of space cooling technologies and consequently higher energy demand and GHG emissions (Sailor and Pavlova 2003). Urban canopy, including street, park, and private trees, is well known for its ecological values (Krayenhoff et al. 2020), its social values (Kweon et al. 1998; Lafortezza et al. 2009; Nesbitt et al. 2017), and its contribution to regulate microclimates and even lower cities’ GHG emissions (Palme et al. 2020; Pigliautile et al. 2020; Sabrin et al. 2021) due to its cooling and shading effects (Huang et al. 1987; Tooke et al. 2012; Morakinyo et al. 2017).

Key Characteristics of Urban Canopies in the Context of Shading

Urban canopy can lower air and surface temperature through evapotranspiration (Metselaar 2012) and casts shade that prevents solar radiation from heating the air and land surface (Bowler et al. 2010; Yu Q et al. 2020). As a natural cooling device for building occupants and pedestrians, urban canopy offers up to 9 °C reduction in building surface temperature, potentially lowering up to 30% of the overall cooling energy demand (Akbari et al. 1992; Berry et al. 2013).

In general, there are 4 key urban canopy characteristics that can influence shading ability. Firstly, the coverage and height of the canopy (i.e., canopy cover hereafter) directly determine the shaded area cast by a given tree crown. Ziter et al. (2019) suggested that a nonlinear relationship exists between temperature reduction and canopy cover size in a midsized city in the Upper Midwest United States. Middel et al. (2015) found that an increase in canopy cover from 10% to 25% can potentially reduce its surrounding air temperature by 2 °C in a residential neighborhood in the City of Phoenix, Arizona. Secondly, canopy cover density can interplay with shading, as trees closer together tend to have a lower solar permeability and therefore offer better shading quality (Aminipouri et al. 2019). Thirdly, the location of canopy can indirectly impact the overall shading quality (Palme et al. 2020). For example, in Melbourne, Australia, east-west oriented street trees often provide better shading (Norton et al. 2015), and trees located closer to a building or streets cast more direct shade than trees located farther away (Berry et al. 2013). Lastly, canopy shading ability can vary across different physiological traits of an urban canopy, such as its species, age, health condition, and height. Deciduous trees, compared to coniferous trees, can also have seasonal fluctuations between leaf-on and leaf-off months.

Modeling Thermal Dynamics of Built Environment and Urban Canopy

The thermal dynamics of the built environment (i.e., building and street) is highly complex, including both micro-level building components and macro-level variables (e.g., building locations, street width/density, climate conditions, etc.). Additionally, urban canopy characteristics (e.g., size, density, location, species, etc.) are interwoven with micro- and macro-level urban built elements, creating additional complexity for researchers and urban planners. As a result, the majority of the previous research on urban canopy cooling focused on limited spatial extent (Yu Q et al. 2020). Even fewer empirical studies have been conducted to focus on canopy shading on both building and street level due to expensive field study costs, and they were often limited by small sample sizes and the ability to set up proper control experiments (Berry et al. 2013). The lack of reliable data and models therefore hinders the possibilities for future temporal studies.

Tree shade changes spatially across urban environments, yet there is no consistent method to effectively quantify the spatial variations of canopy shade, as it strongly depends on various complex factors such as spatial scale, location, and solar geometry (Yu X et al. 2020). Spectral information (e.g., the normalized difference vegetation index) from remotely sensed images has been commonly used to investigate the spatial (Jin et al. 2020) and temporal variations (Czekajlo et al. 2020) of urban vegetation. In general, remote sensing data are more consistent and temporally stable compared to manually collected field data (Shahtahmassebi et al. 2021). Yet multispectral or even hyperspectral data offer limited information on detailed 3D urban canopy structure (e.g., tree height) sensitive to the shading effect (Yu X et al. 2020).

Other remote sensing technologies such as aerial laser scanning (ALS, or commonly known as LiDAR) have become increasingly common in modeling urban canopies (Tooke et al. 2012; Plowright et al. 2017) and solving other urban vegetation–related challenges. Compared to multispectral remote sensing images, ALS is an attractive tool due to its capability of measuring urban canopy in 3D at a fine spatial resolution (e.g., sub 1 m). ALS also enables researchers to generate accurate digital surface models (DSMs) and individually delineated single canopy crowns in complex urban settings (Chance et al. 2016; Plowright et al. 2016; Plowright et al. 2017). Yet despite the advancement of ALS, understanding thermal dynamics between urban built environment and urban canopy still requires additional modeling capability to decode the interwoven relationships among buildings, streets surfaces, canopies, and local solar and climate conditions. Solely relying on ALS and other remote sensing data therefore cannot create an authentic model to simulate canopy shading effect accurately.

There is a need for a model capable of reconciling buildings, streets, and urban canopies when simulating canopy shading effect. This study uses ALS remote sensing to create a comprehensive 3D model of the urban canopy in Vancouver, British Columbia, Canada. Using a Radiance-based simulation engine (Ward 1994; Roudsari and Pak 2013), the shading impact of the modeled canopy is studied on various horizontal and vertical urban surfaces under local climate conditions. This work consolidates urban canopy modeling through the integration of building energy modeling, remote sensing, and urban design, offering practical planning and research opportunities in understanding urban canopy shading dynamics. The complete data coverage (citywide with over 245,000 trees modeled) and spatial resolution (< 1 m) also provide a solid foundation for researchers interested in urban greenness inequity, gentrification, and species adaptation (Gould and Lewis 2016; Nesbitt et al. 2019).

MATERIALS AND METHODS

Listen

The following sections introduce the study site, the processing of ALS, and solar irradiance simulation.

Study Area: Vancouver, BC

Located in the lower mainland of British Columbia (BC), Canada, the City of Vancouver (Vancouver hereafter) has a population of 675,000 and a size of 115 km2. The city has 2,645 ha of tree cover, giving its residents appropriately 23% canopy cover citywide. This canopy is distributed unevenly across the city, with a general east-west divide of low/high canopy cover (Vancouver Board of Parks and Recreation 2020).

Vancouver experiences a mix of an oceanic climate (Köppen climate classification Cfb) and a warm-summer Mediterranean climate (Csb). Its summer is typically dry with an average of 8 hours of sunlight, 18 °C in day temperature, and 9.3 °C at night in August (Environment and Climate Change Canada 2021). As summers become increasingly warmer, the use of air conditioning (AC) in BC has tripled to 34% since 2001, costing British Columbians around $300 in annual electricity bills per household (BC Hydro 2018). Shading from urban canopy can potentially eliminate the use of AC or at least allow a moderate AC usage (Akbari and Taha 1992). For every degree lower that an AC unit is set, the approximate cooling cost can increase by up to 3% (BC Hydro 2018). With its unique climate profile, variations of intracity canopy cover, and increasing energy demand for cooling, Vancouver is an ideal case study.

There are 22 neighborhood planning areas defined by the City of Vancouver. They vary in size from 217 to 907 ha. Building density and height are highest in and near Downtown areas, with the lowest-density neighborhoods being along the south and west edge of the city. Building heights range from 2 to 190 m, with the majority of buildings over 30 m located in the Downtown area.

Data Acquisition and Processing

In order to accurately simulate individual canopy shading effects on buildings and streets, 3 primary data layers were generated to represent buildings as a 3D model (including their location, heights, and orientation), streets as a 2D polygon (including their widths, lengths, and location), and lastly urban trees as a 3D model (including their height, crown sizes, densities, and shapes). A 3D building layer was derived by extruding the existing building footprints by their heights using Microsoft’s open building data (GitHub 2021) and BC Assessment Data (BC Assessment 2021). A 2D street raster surface was generated using Vancouver’s latest land cover and land use classification at 2-m spatial resolution (Metro Vancouver 2014). The advantage of using a raster-based street layer over a conventional vector-based (i.e., polylines) layer was to offer accurate measurement on the right-of-way (ROW), as a wider street will have more exposed surface than a narrow one. In addition, by including both a 3D building layer with building height information and a street ROW layer, the model can also take into account the aspect ratio (AR) defined by building height divided by the street width (H/W). Being able to accurately account for various ROWs was therefore critical to this model.

A 3D tree canopy model was generated using a set of aerial laser scanning (ALS) point clouds (City of Vancouver Open Data Portal 2013). In 2013, Vancouver acquired a citywide ALS for the extent of its legal jurisdiction with a minimal point density of 12 points/m2 and an average 50% overlap among flight paths. The resulting data have an overall accuracy of 18 cm (vertical) and 36 cm (horizontal) at 95% confidence level, respectively. The raw ALS point clouds were classified into 5 categories: bare earth and low grass, low vegetation, high vegetation, buildings, and water (Figure 1). Individual treetops and canopy crowns were identified and delineated based on Matasci et al. (2018) with an object-based image analysis approach relying on a DSM derived from the point clouds. As they offered minimal shading, low vegetation points were removed from subsequent analysis to boost processing speed.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Illustration of sample ALS (LiDAR) point cloud classes.

Urban Canopy Cover Density

In this project, one key attribute to accurately simulating canopy shading was canopy cover density. Canopy cover density determines the shading intensity cast by a given tree canopy. Based on the processed ALS point clouds and individual canopies delineated by Matasci et al. (2018), a simple yet intuitive canopy cover density measure was generated for each tree crown. Figure 2 illustrates this process where for individual crown, the return points classified as vegetation (> 3 m) and the total ground return points were used to estimate the amount of laser beams from LiDAR disrupted by the presence of a canopy, which in turn indicated the overall canopy cover density. For example, for a given canopy with 100 returns detected by LiDAR—20 of which were returned from the ground (G = 20), while 80 laser points were returned to the sensor because of leaves and branches within this canopy (V = 80)—the overall estimated canopy cover density would be 80% (i.e., 80/100). This procedure was applied to all trees except those in large forests located within the Pacific Spirit Park and Stanley Park, where only limited built structures and streets were present and therefore not relevant in this project. The canopy cover density metric (Figure 2) proposed in this work can act as a proxy to sky view factor without conducting manual field measurements. Our canopy cover density, unlike a leaf area index (LAI), directly accounted for the amount of the laser pulses that reached the ground and the laser pulses blocked by the canopy structure (e.g., branches and leaves). In other words, this metric is a measure of how much light can be seen under the canopy.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Canopy cover density calculation illustration.

Honeybee: A Radiance Engine

The aforementioned 3D buildings (roof and walls), 2D street surfaces, and 3D urban canopy layers were input into a Radiance engine to simulate the shading impact on buildings and streets from urban canopies. The simulation was performed using Radiance, a validated ray-tracing tool, through an environmental analysis program, Honeybee versions 0.66 and 0.69 (Radiance 2021). Honeybee is an open-source extension of the Ladybug toolkit developed by Roudsari and Pak (2013), which allows users to create, simulate, and visualize energy and daylight with validated building performance simulation (BPS) tools including Radiance, Daysim, and EnergyPlus/Open-Studio. Honeybee is highly customizable with modular components for users to set their desired parameters (Aksamija 2018).

Honeybee was developed in Rhino’s visual scripting interface Grasshopper, providing high efficiency in simulation workflow and design feedback. To perform a daylight simulation, Honeybee offers precise thermal zone surface adjacency solutions and flexibilities to substitute the window-to-wall ratio (WWR)(Lin et al. 2019) and simulated irradiance of surfaces of all buildings (i.e., roofs, façades/walls) and streets (Figure 3).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Surfaces (façades, roofs, and streets) simulated in this work. The amount of solar radiation with and without urban canopies will be generated and compared for each surface type.

To run Honeybee, this study first utilized geometries described above to develop the wall and roof geometries. Honeybee subdivided extruded building footprints by a standard floor height of 2.7 m. These subdivided masses were then assigned window areas based on the percentage of openings for each façade orientation (e.g., North = 20% WWR). This type of input setting is particularly well suited for urban-scale simulations, where the actual position of windows on façades is usually unknown, while their influence on the energy balance is still relevant (Peronato et al. 2017). The information of each input attribute can be displayed through synchronous graphics on the 3D model in Grasshopper, allowing the user to check the accuracy of their input prior to executing the simulation. In simulating irradiance, users generate test points on surfaces of interest, such as the roof of a building, defined as a grid with an adjustable density assigned to the surface and parameters specific to the Radiance engine that define the physical intersection of simulated photons, such as the number of bounces allowed for a beam of light, or the sampling density of the beams per time step (Roudsari and Pak 2013). For the surfaces in this study, a density of 1 sample point per 0.5 m2 was assigned and simulation parameters were set to more than accurate according to Radiance documentation, with the exception of ambient bounces (number of times a ray of light bounces from surface to surface before dissipating).

While Honeybee provides an interactive mode for the use of Radiance, it comes with drawbacks regarding computation resources. This can lead to lengthy simulation times in large simulation sets and, specifically in the case of this study, if using processing hardware with low RAM (< 32 GB), failed simulations were experienced. To compensate for lengthy processing times, ambient bounces were set to 1 to reduce overall simulation time without compromising the study aim of analyzing the impact canopy cover has on direct solar radiation. Ambient bounces control the amount of times a ray that has been cast is allowed to bounce across surfaces in the model. A higher value leads to more bounces and more ambient light resolution but does not impact measured radiation as a result of the initial canopy cover. A sample of key radiance parameters is shown in Table 1.

View this table:
  • View inline
  • View popup
Table 1.

Radiance parameters were set to the “High” quality in Honeybee, with the exception of ambient bounces. Key parameters are shown here.

The engine used hourly solar data, referenced from an EnergyPlus Weather (EPW) file for Vancouver’s climate (EnergyPlus 2016). This file was used to generate a cumulative sky to simulate hourly solar irradiation within the model (Robinson and Stone 2004). EPW files are constructed representative annual weather sets that typically describe a location’s climatologically typical weather parameters (National Renewable Energy Laboratory 2020). The simulation utilizes the location of the sun for every hour of the chosen analysis period to cast light rays onto the test surfaces and queries the EPW’s solar irradiance values to determine how much solar radiation the exterior surfaces may receive given any shading objects that obstruct their view of the sky type, grid size, grid distance off surface, and legend (low and high bound) (Aksamija 2018). After setting up the input parameters, the user can run the simulation from Grasshopper. Following the simulation run, users can visualize and customize the results in several different ways with Honeybee’s components (Roudsari and Pak 2013). For example, results can be displayed with intuitive colors on the surfaces (e.g., street, roof, and walls of the 3D model). Although hourly output could be generated for the entire year, the scope of this project considered a peak heat and an unobstructed direct sunlight week (mid-July). Surrounding buildings and context such as tree canopies were considered during this analysis as a baseline case of shading. Input parameters were kept consistent between the baseline cases (only building and context shading) and the experiment cases (including the urban canopy as a shading element). The scope of this project focuses on canopy shading, therefore shading cast by buildings on other buildings and street surfaces is not included when comparing solar irradiance reductions.

RESULTS

Listen

Canopy Cover Density

As expected, neighborhoods showed considerable variations in terms of canopy cover (total canopy area/total neighborhood area) and total number of trees (Figure 4). A total of 245,645 trees were processed with an average canopy cover density of 53% (standard deviation of 22%) for the entire City of Vancouver.

Figure 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 4.

An overview of urban canopy conditions of Vancouver’s local area neighborhoods.

Well-treed neighborhoods such as Shaughnessy, Dunbar-Southlands, and Kerrisdale had over 20% canopy cover and over 20,000 trees, while neighborhoods such as Downtown, Strathcona, and Sunset had less than 10% canopy cover with about 5,000 trees. There was less variation in terms of average canopy crown diameter and tree height (Figure 4), however, poorly treed neighborhoods appeared to have slightly smaller trees.

Figure 5 illustrates samples of estimated ALS-derived canopy cover density from 4 distinctive neighborhoods. Typically, Downtown (Figure 5a) was representative of neighborhoods of dense and tall buildings with limited canopy cover. Downtown West End (Figure 5b), on the other hand, represented neighborhoods with both high population density and canopy cover. Victoria-Fraserview and Shaughnessy (Figure 5c and 5d) portrayed 2 distinctive urban canopy characteristics found in areas predominantly occupied by single-family and low-rise housing.

Figure 5.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 5.

Sample canopy density estimates of (a) Downtown, (b) Downtown West End, (c) Victoria-Fraserview, and (d) Shaughnessy. Each polygon is an individual canopy delineated using ALS points and colored based on its measured canopy density (0% to 100%).

Canopy Shading Impact: Streets

Average solar irradiance reduction (%) on street surfaces was summarized for each neighborhood (Figure 6). As expected, reductions on street surfaces varied from neighborhood to neighborhood in Vancouver. After adding canopy into the simulation, a street surface could receive up to 78% reduction in incoming solar irradiance. Typically, neighborhoods with more street trees (e.g., West Point Grey, Dunbar-Southlands) appeared to have more canopy shading on its street surface. Note that reduction values in Figure 6 did not necessarily mean such neighborhoods were shaded more than places such as Downtown, as shades cast by tall/large buildings (often seen in Downtown) could also provide shading but were not illustrated here.

Figure 6.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 6.

A bivariate (tree count and relative solar irradiance reduction) summary map of street-level solar irradiance changes (%) due to urban canopies. WPG = West Point Grey. DS = Dunbar-Southlands. KITS = Kitsilano. AR = Arbutus Ridge. KERR = Kerrisdale. WE = West End. FAIR = Fairview. SHAU = Shaughnessy. OAK = Oakridge. MARP = Marpole. CBD = Downtown. MP = Mount Pleasant. SC = South Cambie. RP = Riley Park. SUN = Sunset. STR = Strathcona. KC = Kensington-Cedar Cottage. VF = Victoria-Fraserview. HS = Hastings-Sunrise. RC = Renfrew-Collingwood. KIL = Killarney.

Canopy Shading Impact: Roofs

Similar to street surface, Figure 7 demonstrates shading differences on roofs while taking into account the overall building height, as taller buildings were less likely to receive shading from trees. This reveals contrasting roof shading characteristics among neighborhoods. Generally speaking, shading impact on roofs was influenced by a combination of both building height and overall canopy cover. For example, the majority of roofs in the east part of the city (e.g., Riley Park, Sunset) were not shaded nearly as well as the west-side neighborhoods (e.g., Dunbar-Southlands, Shaughnessy) despite having similar building heights. Roofs located in neighborhoods such as Kitsilano, Kerrisdale, and West End set an unusual example where both building height and shading reduction were relatively high (i.e., taller buildings yet with noticeable shading benefit from trees).

Figure 7.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 7.

A bivariate (building height and relative solar irradiance reduction) summary map of roof-level shading results. WPG = West Point Grey. DS = Dunbar-Southlands. KITS = Kitsilano. AR = Arbutus Ridge. KERR = Kerrisdale. WE = West End. FAIR = Fairview. SHAU = Shaughnessy. OAK = Oakridge. MARP = Marpole. CBD = Downtown. MP = Mount Pleasant. SC = South Cambie. RP = Riley Park. SUN = Sunset. STR = Strathcona. KC = Kensington-Cedar Cottage. VF = Victoria-Fraserview. HS = Hastings-Sunrise. RC = Renfrew-Collingwood. KIL = Killarney.

Canopy Shading Impact: Façades

Solar irradiance reduction was also simulated for all building façades in Vancouver. Figure 8 visualizes average reduction and the general building style/size in each neighborhood. Neighborhoods primarily with larger building façades (e.g., Downtown, Fairview) received relatively less irradiance reduction (%) than neighborhoods with shorter building façades.

Figure 8.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 8.

Average solar irradiance reduction on walls/façades by neighborhood. Building frontal views are used to illustrate the distribution of building types, amount of buildings, and reduction (%).

It was also noticeable that not all neighborhoods with small buildings were shaded equally. For example, Victoria-Fraserview, an area largely occupied by comparably sized buildings found in Dunbar-Southlands and Shaughnessy, received less than 10% irradiance reduction. There were, however, places where larger buildings also benefited up to 20% reduction in solar irradiance, namely Kitsilano, Mount Pleasant, Kerrisdale, and West Point Grey. Overall, the Downtown area, including West End, and Victoria-Fraserview were among the worst neighborhoods in terms of façade shading.

Neighborhood Comparison

Figure 9 summarizes solar irradiance reduction on all surfaces for all 22 neighborhoods in Vancouver. Street surfaces (Figure 9a) showed the strongest correlation (r = 0.94) between relative irradiance reduction and average canopy cover in all neighborhoods. Expectedly, irradiance reduction on wall surfaces (Figure 9b) also highly correlated with canopy cover (r = 0.90). Such pattern, however, was less evident for roofs (Figure 9c, r = 0.84), where minimal solar irradiance reduction was observed regardless of the canopy cover, even for well-treed neighborhoods. Overall, Figure 9d revealed that poorly canopied neighborhoods—particularly those with higher population density—did not enjoy as much shading benefits for their streets and building façades.

Figure 9.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 9.

Scatter maps comparing total neighborhood cover (%) to average solar irradiance reduction on (a) street, (b) wall (façade), (c) roof, and (d) all surfaces. Polygons are scaled to size and colored based on population density (1,000 people/ha).

DISCUSSION

Listen

Urban canopy offers not only ecological and social benefits to urban dwellers and wildlife, but it is increasingly being recommended as a shading agent to lower street temperature and overall building cooling load. Akbari et al. (1992) demonstrated that peak electricity load would increase 1.5% to 2% for every 1 °F (0.56 °C) increase in temperature in American cities with more than 100,000 residents. Preserving and/or enhancing urban canopy shading in already dense urban areas requires comprehensive and effective planning, which should be guided by informed and careful selection of planting locations, sufficient standards and robust legal framework, and collaborative decision-making processes. These all require innovative techniques to understand the complex relationships between urban canopy and the built environment. This work presents an attempt in building a long-term collective modeling environment by integrating remotely sensed ALS data with a Radiance engine to simulate urban canopy’s shading ability to guide science-based planning and urban design.

With cities growing larger, denser, and at a faster pace, compact urban forms with increased density have been consistently considered to be more sustainable than urban sprawl. Density is encouraged because it limits adverse impacts of urban expansion on surrounding natural areas while promoting accessibility and walkability, reducing driving mileages, and creating efficient use of urban land (Haaland and van den Bosch 2015). Yet densification often competes against other needs such as urban canopy and green spaces, in particular. Densification intensifies UHI due to increased impervious surfaces, lowered albedo, altered urban geometry, and reduced green spaces (Erlwein and Pauleit 2021). Such development patterns are evident in this work, and they present a major threat to urban canopy health such as loss of green spaces and urban canopy shading quality due to insufficient soil volume and competition with utilities below ground and above ground, compacted and degraded soil, and limited access to water (Haaland and van den Bosch 2015).

The outcome of this research can inform planners, urban foresters, and policy makers to better address urban densification and urban green space. Previous research has suggested that dense areas are not necessarily less green (Guo et al. 2019). (Re)development of properties occurring alongside the densification process might be one of the main culprits of the urban tree canopy decline due to its impacts on soil quality and volume, surface paving, and aerial and underground space available for trees (Haaland and van den Bosch 2015; Jim 2017; Guo et al. 2018; Guo et al. 2019). However, Metro Vancouver (2019) has indicated an increasing trend for tree canopy in newer and higher-density residential areas, while tree canopy on low-density existing housing parcels has declined from 36% in 1970 to 18% in 2000 on average. There has also been a declining trend in the levels of impervious surface in high-density housing parcels since the 1950s in Metro Vancouver (Metro Vancouver 2019). Although this study found some good examples of areas that can be both green and dense, it should be noted that the causes of urban canopy decline are complex. Managing urban canopy requires robust policy and community support, proactive planning and design, and adequate management, especially in cities that are going through densification. Densifying cities can also learn from the practices of cities and countries that manage to maintain a high level of both urban canopy and density, such as Hong Kong (Tan Z et al. 2016) and Singapore (Tan PY et al. 2013).

In addition, the modeling framework and outcome from this work demonstrate many potential research and planning implementation opportunities. For example, being able to systematically identify surfaces with limited shading, particularly on façades and roofs, planners and builders can prioritize constructions such as green roofs or walls (e.g., vertical greeneries) to improve overall shading quality and quantity. Green roofs, if applied at the city scale, may reduce the average ambient temperature by 0.3 to 3 °C. Vertical greeneries are another technique that has been increasingly adopted in cities for thermal comfort and energy conservation. Both green roofs and vertical greeneries provide an excellent opportunity to mitigate urban heats, enhance indoor thermal comfort, and potentially reduce building energy consumption for cooling. They also present new ways to increase green areas with various ecological and social co-benefits in underutilized spaces like roofs and walls, especially in densely populated areas where space is a major limiting factor (Alexandri and Jones 2008). Urban form, land use patterns, and even local social conditions can also play a role in overall shading efficacy. We found that although neighborhoods with lower building height (e.g., single-family residential areas) appear to benefit from more canopy shading, it was possible to maintain both residential density and tree canopy, and consequently, canopy shading benefits in some neighborhoods. This was mainly caused by the Vancouverism architectural style that features high floor area ratio (i.e., small lot sizes with tall buildings), preserving pervious surface for trees and other vegetation (Metro Vancouver 2019). According to an interview of Vancouver’s staff, neighborhoods like Kitsilano and West End are also older neighborhoods where native (although disturbed) soil has been preserved. However, there are no regulations to preserve native soil, which might be a contributing factor in some neighborhoods with limited canopy cover.

Moving forward, the authors have identified current caveats and future research directions that can further improve the current project and modeling capability. Firstly, this model currently uses constant weather and climate without considering the seasonal variations or other urban form features that could impact tree shading performance. Middel et al. (2021) presented possible research opportunities for this work and proposed a series of shade performance curves that characterize various urban tree shading efficacy for the City of Tempe, Arizona, offering a more comprehensive assessment of urban tree shade performance. Secondly, the canopy evapotranspiration was not included in the current modeling parameter, which likely caused an underestimation of the current shading impact on heat mitigation (Wong et al. 2010). Thirdly, current results were expressed in solar irradiance (e.g., kWh). Given the reduced solar exposure, it would also be beneficial to estimate the potential outdoor and indoor temperature differences by utilizing microclimate models. Lastly, the newest ALS acquired by the City of Vancouver during peak summer conditions (currently unreleased at the time of this project) can also improve the accuracy of canopy cover density measures and include smaller trees and tree species information that was previously omitted (the True Positive rate of ALS crown detection is 76.6%, Matasci et al. 2018).

CONCLUSION

Listen

Urban canopy, when implemented appropriately, can become an effective shading agent for the built environment, in particular for streets and building façades. This work integrated remotely sensed ALS point clouds with a Radiance daylight simulation engine (Honeybee) to simulate the potential shading impact of urban canopies on Vancouver’s streets, building roofs, and façades. The results indicated that street surfaces received the most solar irradiance reduction compared to roofs and façades. Neighborhoods with less density and lower-rise buildings were shaded noticeably better than areas with higher density. Among Vancouver’s 22 local neighborhoods, Kitsilano and West End demonstrated a promising sign where both building density/height and canopy shading can be relatively high at the same time. This work not only generated a detailed citywide simulation on existing shading conditions for over 200,000 trees in Vancouver but also offered useful insights to planners and builders for implementing innovative urban green infrastructures such as green roofs and vertical greeneries. One key future research direction is that one should evaluate how a changing climate will impact the health of existing and/or future urban trees as well as the need for cooler streets and internal environments in extreme hot summer days.

ACKNOWLEDGMENTS

Listen

The authors thank the Social Sciences and Humanities Research Council (#892-2020-1038) and the Pacific Institute for Climate Solutions (PICS #36170–50280) for funding this research. The authors also thank Emma Ng for help visualizing results.

Footnotes

Listen
  • Conflicts of Interest:

    The authors reported no conflicts of interest.

  • © 2022, International Society of Arboriculture. All rights reserved.

LITERATURE CITED

Listen
  1. ↵
    1. Akbari H,
    2. Davis S,
    3. Dorsano S,
    4. Huang J,
    5. Winnett S
    . 1992. Cooling our communities: A guidebook on tree planting and light-colored surfacing. Washington (DC, USA): US Environmental Protection Agency. 264 p.
  2. ↵
    1. Akbari H,
    2. Taha H
    . 1992. The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities. Energy. 17(2):141–149. https://doi.org/10.1016/0360-5442(92)90063-6
    OpenUrlCrossRef
  3. ↵
    1. Aksamija A
    . 2018. Methods for integrating parametric design with building performance analysis. EAAE/ARCC International 2018 Conference; 2018 May 16–18; Philadelphia, PA, USA. ARCC Conference Repository. https://www.arcc-journal.org/index.php/repository/article/view/459
  4. ↵
    1. Alexandri E,
    2. Jones P
    . 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment. 43(4):480–493. https://doi.org/10.1016/j.buildenv.2006.10.055
    OpenUrl
  5. ↵
    1. Aminipouri M,
    2. Rayner D,
    3. Lindberg F,
    4. Thorsson S,
    5. Knudby AJ,
    6. Zickfeld K,
    7. Middel A,
    8. Krayenhoff ES
    . 2019. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones. Building and Environment. 158:226–236. https://doi.org/10.1016/j.buildenv.2019.05.022
    OpenUrl
  6. ↵
    1. BC Assessment
    . 2021. Check your property with assessment search and compare it to others. [Accessed 2019 December 20]. https://www.bcassessment.ca
  7. ↵
    1. BC Hydro
    . 2018. Cold comfort: The rising use (and cost) of air conditioning in B.C. Vancouver (BC, Canada): BC Hydro Power Smart. BCH18-712. https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/news-and-features/air-conditioning-report-july-2018.pdf
  8. ↵
    1. Berry R,
    2. Livesley SJ,
    3. Aye L
    . 2013. Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Building and Environment. 69:91–100. https://doi.org/10.1016/j.buildenv.2013.07.009
    OpenUrl
  9. ↵
    1. Bowler DE,
    2. Buyung-Ali L,
    3. Knight TM,
    4. Pullin AS
    . 2010. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning. 97(3): 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
    OpenUrlCrossRef
  10. ↵
    1. Chance CM,
    2. Coops NC,
    3. Plowright AA,
    4. Tooke TR,
    5. Christen A,
    6. Aven N
    . 2016. Invasive shrub mapping in an urban environment from hyperspectral and LiDAR-derived attributes. Frontiers in Plant Science. 7:1528. https://doi.org/10.3389/fpls.2016.01528
  11. ↵
    1. City of Vancouver Open Data Portal
    . 2013. LiDAR 2013. [Accessed 2021 May 27]. https://opendata.vancouver.ca/explore/dataset/lidar-2013/information
  12. ↵
    1. Czekajlo A,
    2. Coops NC,
    3. Wulder MA,
    4. Hermosilla T,
    5. Lu Y,
    6. White JC,
    7. van den Bosch M
    . 2020. The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics. International Journal of Applied Earth Observation and Geoinformation. 93:102210. https://doi.org/10.1016/j.jag.2020.102210
  13. ↵
    1. EnergyPlus
    . 2016. Weather data for simulation. Washington (DC, USA): US Department of Energy Building Technologies Office, National Renewable Energy Laboratory. [Accessed 2021 May 27]. https://energyplus.net/weather/simulation
  14. ↵
    1. Environment and Climate Change Canada
    . 2021. Temperature—Monthly data for Vancouver. Vancouver (BC, Canada): Environment and Climate Change Canada. [Accessed 2021 May 27]. https://vancouver.weatherstats.ca/charts/temperature-monthly.html
  15. ↵
    1. Erlwein S,
    2. Pauleit S
    . 2021. Trade-offs between urban green space and densification: Balancing outdoor thermal comfort, mobility, and housing demand. Urban Planning. 6(1):5–19. https://doi.org/10.17645/up.v6i1.3481
    OpenUrl
  16. ↵
    1. Estrada F,
    2. Botzen WJW,
    3. Tol RSJ
    . 2017. A global economic assessment of city policies to reduce climate change impacts. Nature Climate Change. 7(6):403–406. https://doi.org/10.1038/nclimate3301
    OpenUrl
  17. ↵
    1. GitHub
    . 2021. Computer generated building footprints for Canada. [Accessed 2021 May 27]. https://github.com/microsoft/CanadianBuildingFootprints
  18. ↵
    1. Gould KA,
    2. Lewis TL
    . 2016. Green gentrification: Urban sustainability and the struggle for environmental justice. 1st Ed. London (UK): Taylor & Francis. 192 p. https://doi.org/10.4324/9781315687322
  19. ↵
    1. Grimm NB,
    2. Faeth SH,
    3. Golubiewski NE,
    4. Redman CL,
    5. Wu J,
    6. Bai X,
    7. Briggs JM
    . 2008. Global change and the ecology of cities. Science. 319(5864):756–760. https://doi.org/10.1126/science.1150195
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Guo T,
    2. Morgenroth J,
    3. Conway T
    . 2018. Redeveloping the urban forest: The effect of redevelopment and property-scale variables on tree removal and retention. Urban Forestry & Urban Greening. 35:192–201. https://doi.org/10.1016/j.ufug.2018.08.012
    OpenUrl
  21. ↵
    1. Guo T,
    2. Morgenroth J,
    3. Conway T,
    4. Xu C
    . 2019. City-wide canopy cover decline due to residential property redevelopment in Christchurch, New Zealand. Science of the Total Environment. 681:202–210. https://doi.org/10.1016/j.scitotenv.2019.05.122
    OpenUrlPubMed
  22. ↵
    1. Haaland C,
    2. van den Bosch CK
    . 2015. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban Forestry & Urban Greening. 14(4):760–771. https://doi.org/10.1016/j.ufug.2015.07.009
    OpenUrl
  23. ↵
    1. Huang YJ,
    2. Akbari H,
    3. Taha H,
    4. Rosenfeld AH
    . 1987. The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Climate and Applied Meteorology. 26(9):1103–1116. https://doi.org/10.1175/1520-0450(1987)026<1103:tpovir>2.0.co;2
    OpenUrlCrossRef
  24. ↵
    1. Jim C
    . 2017. Constraints to urban trees and their remedies in the built environment. In: Routledge handbook of urban forestry. 1st Ed. London (UK): Routledge. p. 273–290. https://doi.org/10.4324/9781315627106-19
  25. ↵
    1. Jin J,
    2. Gergel SE,
    3. Lu Y,
    4. Coops NC,
    5. Wang C
    . 2020. Asian cities are greening while some North American cities are browning: Long-term greenspace patterns in 16 cities of the Pan-Pacific region. Ecosystems. 23:383–399. https://doi.org/10.1007/s10021-019-00409-2
    OpenUrl
  26. ↵
    1. Krayenhoff ES,
    2. Jiang T,
    3. Christen A,
    4. Martilli A,
    5. Oke TR,
    6. Bailey BN,
    7. Nazarian N,
    8. Voogt JA,
    9. Giometto MG,
    10. Stastny A,
    11. Crawford BR
    . 2020. A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban Climate. 32:100590. https://doi.org/10.1016/j.uclim.2020.100590
  27. ↵
    1. Kweon BS,
    2. Sullivan WC,
    3. Wiley AR
    . 1998. Green common spaces and the social integration of inner-city older adults. Environment and Behavior. 30(6):832–858. https://doi.org/10.1177/001391659803000605
    OpenUrlCrossRef
  28. ↵
    1. Lafortezza R,
    2. Carrus G,
    3. Sanesi G,
    4. Davies C
    . 2009. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry & Urban Greening. 8(2):97–108. https://doi.org/10.1016/j.ufug.2009.02.003
    OpenUrlCrossRef
  29. ↵
    1. Li D,
    2. Bou-Zeid E
    . 2013. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology. 52(9):2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
    OpenUrl
  30. ↵
    1. Lin CH,
    2. Chen BR,
    3. Tsay YS
    . 2019. Study on the applicability of building energy simulation graphic user interfaces in the design process. 2018 Conference on Innovative Low-Carbon and Green Buildings in Subtropical Area; 2018 October 14–17; Taipei, Taiwan. p. 99–105. https://www.researchgate.net/publication/333616628
  31. ↵
    1. Matasci G,
    2. Coops NC,
    3. Williams DAR,
    4. Page N
    . 2018. Mapping tree canopies in urban environments using airborne laser scanning (ALS): A Vancouver case study. Forest Ecosystems. 5:31. https://doi.org/10.1186/s40663-018-0146-y
  32. ↵
    1. Metro Vancouver
    . 2014. Land cover classification 2014. Burnaby (BC, Canada): Metro Vancouver. [Accessed 2021 May 27]. http://www.metrovancouver.org/data/regional-planning/Land Cover Classification 2014 - 2m LiDAR (Raster)
  33. ↵
    1. Metro Vancouver
    . 2019. Regional tree canopy cover and impervious surfaces: Analysis of tree canopy cover and impervious surfaces in Metro Vancouver. Burnaby (BC, Canada): Metro Vancouver. 44 p. http://www.metrovancouver.org/services/regional-planning/PlanningPublications/EcologicalHealth-TreeCanopyCoverImperviousSurfaces.pdf
  34. ↵
    1. Metselaar K
    . 2012. Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resources, Conservation and Recycling. 64:49–55. https://doi.org/10.1016/j.resconrec.2011.12.009
    OpenUrl
  35. ↵
    1. Middel A,
    2. Alkhaled S,
    3. Schneidr FA,
    4. Hagen B,
    5. Coseo P
    . 2021. 50 grades of shade. Bulletin of the American Meteorological Society. 102(9):E1805–E1820. https://doi.org/https://doi.org/10.1175/BAMS-D-20-0193.1
    OpenUrl
  36. ↵
    1. Middel A,
    2. Chhetri N,
    3. Quay R
    . 2015. Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening. 14(1):178–186. https://doi.org/10.1016/j.ufug.2014.09.010
    OpenUrl
  37. ↵
    1. Morakinyo TE,
    2. Kong L,
    3. Lau KKL,
    4. Yuan C,
    5. Ng E
    . 2017. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Building and Environment. 115:1–17. https://doi.org/10.1016/j.buildenv.2017.01.005
    OpenUrl
  38. ↵
    1. National Renewable Energy Laboratory
    . 2020. National Solar Radiation Database. Typical meteorological year (TMY). Washington (DC, USA): US Department of Energy. [Accessed 2021 May 27]. https://nsrdb.nrel.gov/about/tmy.html
  39. ↵
    1. Nesbitt L,
    2. Hotte N,
    3. Barron S,
    4. Cowan J,
    5. Sheppard SRJ
    . 2017. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban Forestry & Urban Greening. 25:103–111. https://doi.org/10.1016/j.ufug.2017.05.005
    OpenUrl
  40. ↵
    1. Nesbitt L,
    2. Meitner MJ,
    3. Girling C,
    4. Sheppard SRJ,
    5. Lu Y
    . 2019. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landscape and Urban Planning. 181:51–79. https://doi.org/10.1016/J.LANDURBPLAN.2018.08.007
    OpenUrl
  41. ↵
    1. Norton BA,
    2. Coutts AM,
    3. Livesley SJ,
    4. Harris RJ,
    5. Hunter AM,
    6. Williams NSG
    . 2015. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning. 134:127–138. https://doi.org/10.1016/j.landurbplan.2014.10.018
    OpenUrlCrossRef
  42. ↵
    1. Palme M,
    2. Privitera R,
    3. La Rosa D
    . 2020. The shading effects of Green Infrastructure in private residential areas: Building Performance Simulation to support urban planning. Energy and Buildings. 229:110531. https://doi.org/10.1016/j.enbuild.2020.110531
  43. ↵
    1. Brotas L,
    2. Roaf S,
    3. Fergus N
    1. Peronato G,
    2. Kämpf JH,
    3. Rey E,
    4. Andersen M
    . 2017. Integrating urban energy simulation in a parametric environment: A Grasshopper interface for CitySim. In: Brotas L, Roaf S, Fergus N, editors. Design to Thrive—PLEA 2017 Conference Proceedings, Volume II. Passive Low Energy Architecture 2017 Edinburgh—Design to Thrive; 2017 July 2–5; Edinburgh, Scotland. Network for Comfort and Energy Use in Buildings. p. 2124–2131. https://plea2017.net
  44. ↵
    1. Pigliautile I,
    2. Pisello AL,
    3. Bou-Zeid E
    . 2020. Humans in the city: Representing outdoor thermal comfort in urban canopy models. Renewable and Sustainable Energy Reviews. 133:110103. https://doi.org/10.1016/j.rser.2020.110103
  45. ↵
    1. Plowright AA,
    2. Coops NC,
    3. Chance CM,
    4. Sheppard SRJ,
    5. Aven NW
    . 2017. Multi-scale analysis of relationship between imperviousness and urban tree height using airborne remote sensing. Remote Sensing of Environment. 194:391–400. https://doi.org/10.1016/j.rse.2017.03.045
    OpenUrl
  46. ↵
    1. Plowright AA,
    2. Coops NC,
    3. Eskelson BNI,
    4. Sheppard SRJ,
    5. Aven NW
    . 2016. Assessing urban tree condition using airborne light detection and ranging. Urban Forestry & Urban Greening. 19:140–150. https://doi.org/10.1016/j.ufug.2016.06.026
    OpenUrl
  47. ↵
    1. Radiance
    . 2021. Setting rendering options. [Accessed 2021 May 31]. https://floyd.lbl.gov/radiance/refer/Notes/rpict_options.html
  48. ↵
    1. Robinson D,
    2. Stone A
    . 2004. Irradiation modelling made simple: The cumulative sky approach and its applications. In: Plea2004—The 21st Conference on Passive and Low Energy Architecture; 2004 September 19–22; Eindhoven, The Netherlands. 5 p.
  49. ↵
    1. Rosenfeld AH,
    2. Akbari H,
    3. Bretz S,
    4. Fishman BL,
    5. Kurn DM,
    6. Sailor D,
    7. Taha H
    . 1995. Mitigation of urban heat islands: Materials, utility programs, updates. Energy and Buildings. 22(3):255–265. https://doi.org/10.1016/0378-7788(95)00927-P
    OpenUrlCrossRef
  50. ↵
    1. Roudsari MS,
    2. Pak M
    . 2013. Ladybug: A parametric environmental plugin for Grasshopper to help designers create an environmentally-conscious design. In: Proceedings of BS2013. 13th Conference of the International Building Performance Simulation Association; 2013 August 26–28; Chambery, France. Toronto (Canada): IBPSA. p. 3128–3135. http://www.ibpsa.org/proceedings/BS2013/p_2499.pdf
  51. ↵
    1. Sabrin S,
    2. Karimi M,
    3. Nazari R,
    4. Pratt J,
    5. Bryk J
    . 2021. Effects of different urban-vegetation morphology on the canopy-level thermal comfort and the cooling benefits of shade trees: Case-study in Philadelphia. Sustainable Cities and Society. 66:102684. https://doi.org/10.1016/j.scs.2020.102684
  52. ↵
    1. Sailor DJ,
    2. Pavlova AA
    . 2003. Air conditioning market saturation and long-term response of residential cooling energy demand to climate change. Energy. 28(9):941–951. https://doi.org/10.1016/S0360-5442(03)00033-1
    OpenUrlCrossRef
  53. ↵
    1. Shahtahmassebi AR,
    2. Li C,
    3. Fan Y,
    4. Wu Y,
    5. lin Y,
    6. Gan M,
    7. Wang K,
    8. Malik A,
    9. Blackburn GA
    . 2021. Remote sensing of urban green spaces: A review. Urban Forestry & Urban Greening. 57:126946. https://doi.org/10.1016/j.ufug.2020.126946
  54. ↵
    1. Stone B,
    2. Hess JJ,
    3. Frumkin H
    . 2010. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives. 118(10):1425–1428. https://doi.org/10.1289/ehp.0901879
    OpenUrlCrossRefPubMed
  55. ↵
    1. Stone B,
    2. Vargo J,
    3. Habeeb D
    . 2012. Managing climate change in cities: Will climate action plans work? Landscape and Urban Planning. 107(3):263–271. https://doi.org/10.1016/j.landurbplan.2012.05.014
    OpenUrlCrossRef
  56. ↵
    1. Tan PY,
    2. Wang J,
    3. Sia A
    . 2013. Perspectives on five decades of the urban greening of Singapore. Cities. 32:24–32. https://doi.org/10.1016/j.cities.2013.02.001
    OpenUrlCrossRef
  57. ↵
    1. Tan Z,
    2. Lau KKL,
    3. Ng E
    . 2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings. 114:265–274. https://doi.org/10.1016/j.enbuild.2015.06.031
    OpenUrl
  58. ↵
    1. Tooke TR,
    2. Coops NC,
    3. Christen A,
    4. Gurtuna O,
    5. Prévot A
    . 2012. Integrated irradiance modelling in the urban environment based on remotely sensed data. Solar Energy. 86(10):2923–2934. https://doi.org/10.1016/j.solener.2012.06.026
    OpenUrl
  59. ↵
    1. Torrie R
    . 2015. Low carbon futures in Canada—The role of urban climate change mitigation: Briefing on urban energy use and greenhouse gas emissions. Seattle (WA, USA): Stockholm Environment Institute. www.sei-international.org
  60. ↵
    1. Vancouver Board of Parks and Recreation
    . 2020. Park Board Meeting: December 7, 2020. Vancouver (BC, Canada). https://parkboardmeetings.vancouver.ca/2020/20201207/REPORT-UrbanForestStrategyUpdate-20201207.pdf
  61. ↵
    1. Ward GJ
    . 1994. The RADIANCE lighting simulation and rendering system. In: SIGGRAPH 94: Proceedings of the 21st annual conference on computer graphics and interactive techniques. SIGGRAPH 94; 1994 July 24–29; Orlando, Florida. New York (NY, USA): Association for Computing Machinery, Inc. p. 459–472. https://doi.org/10.1145/192161.192286
  62. ↵
    1. Wong NH,
    2. Kwang Tan AY,
    3. Chen Y,
    4. Sekar K,
    5. Tan PY,
    6. Chan D,
    7. Chiang K,
    8. Wong NC
    . 2010. Thermal evaluation of vertical greenery systems for building walls. Building and Environment. 45(3):663–672. https://doi.org/10.1016/j.buildenv.2009.08.005
    OpenUrl
  63. ↵
    1. Yu Q,
    2. Ji W,
    3. Pu R,
    4. Landry S,
    5. Acheampong M,
    6. O’Neil-Dunne J,
    7. Ren Z,
    8. Tanim SH
    . 2020. A preliminary exploration of the cooling effect of tree shade in urban landscapes. International Journal of Applied Earth Observation and Geoinformation. 92:102161. https://doi.org/10.1016/j.jag.2020.102161
  64. ↵
    1. Yu X,
    2. Wu Z,
    3. Zheng H,
    4. Li M,
    5. Tan T
    . 2020. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. Journal of Environmental Management. 260:110061. https://doi.org/10.1016/j.jenvman.2019.110061
  65. ↵
    1. Ziter CD,
    2. Pedersen EJ,
    3. Kucharik CJ,
    4. Turner MG
    . 2019. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences of the United States of America. 116(15):7575–7580. https://doi.org/10.1073/pnas.1817561116
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 48 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 48, Issue 2
March 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Modeling the Shading Effect of Vancouver’s Urban Tree Canopy in Relation to Neighborhood Variations
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Modeling the Shading Effect of Vancouver’s Urban Tree Canopy in Relation to Neighborhood Variations
Yuhao Lu, Justin McCarty, Jeri Sezto, Zhaohua Cheng, Nicholas Martino, Cynthia Girling, Adam Rysanek, Sara Barron, Giona Matasci
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 95-112; DOI: 10.48044/jauf.2022.008

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Modeling the Shading Effect of Vancouver’s Urban Tree Canopy in Relation to Neighborhood Variations
Yuhao Lu, Justin McCarty, Jeri Sezto, Zhaohua Cheng, Nicholas Martino, Cynthia Girling, Adam Rysanek, Sara Barron, Giona Matasci
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 95-112; DOI: 10.48044/jauf.2022.008
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • 3D Tree Canopy Mode
  • Aerial Laser Scanning
  • Canopy Shading
  • Radiance Model
  • street trees
  • Urban Forestry

© 2025 International Society of Arboriculture

Powered by HighWire