Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Intelligent Survey Technologies and Applications for Urban Forests in Taiwan

Jan-Chang Chen, Chun-Hung Wei, Yi-Ta Hsieh, Shang-Chuan Huang and Ping-Hsun Peng
Arboriculture & Urban Forestry (AUF) March 2022, 48 (2) 49-59; DOI: https://doi.org/10.48044/jauf.2022.005
Jan-Chang Chen
Jan-Chang Chen (corresponding author), Department of Forestry, National Pingtung University of Science and Technology, Shuefu Road, Neipu, Pingtung, Taiwan, +886-87703202-7147,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Chun-Hung Wei
Chun-Hung Wei, Department of Forestry, National Pingtung University of Science and Technology
  • Find this author on Google Scholar
  • Search for this author on this site
Yi-Ta Hsieh
Yi-Ta Hsieh, General Research Service Center, National Pingtung University of Science and Technology
  • Find this author on Google Scholar
  • Search for this author on this site
Shang-Chuan Huang
Shang-Chuan Huang, Graduate Institute of Bioresources, National Pingtung University of Science and Technology
  • Find this author on Google Scholar
  • Search for this author on this site
Ping-Hsun Peng
Ping-Hsun Peng, Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Taiwan Forestry Research Institute
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Alonzo M,
    2. McFadden JP,
    3. Nowak DJ,
    4. Roberts DA
    . 2016. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban Forestry & Urban Greening. 17:135–147. https://doi.org/10.1016/j.ufug.2016.04.003
    OpenUrl
    1. American Public Works Association (APWA)
    . [date unknown]. Urban forestry best management practices for public works managers: Urban forest management plan. Kansas City (MO, USA): APWA Press. https://www2.apwa.net/Documents/About/CoopAgreements/UrbanForestry/UrbanForestry-4.pdf
  2. ↵
    1. Bjork A,
    2. Erlandsson M,
    3. Hakli J,
    4. Jaakkola K,
    5. Nilsson A,
    6. Nummila K,
    7. Puntanen V,
    8. Sirkka A
    . 2010. Monitoring environmental performance of the forestry supply chain using RFID. Computers in Industry. 62:830–841. https://doi.org/10.1016/j.compind.2011.08.001
    OpenUrl
  3. ↵
    1. Blum J
    . 2016. Urban forests: Ecosystem services and management. New York (NY, USA): Apple Academic Press. 316 p.
  4. ↵
    1. Calders K,
    2. Adams J,
    3. Armston J,
    4. Bartholomeus H,
    5. Bauwens S,
    6. Bentley LP,
    7. Chave J,
    8. Danson FM,
    9. Demol M,
    10. Disney M,
    11. Gaulton R,
    12. Moorthy SMK,
    13. Levick SR,
    14. Saarinen N,
    15. Schaaf C,
    16. Stovall A,
    17. Terryn L,
    18. Wilkes P,
    19. Verbeeck H
    . 2020. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment. 251:112102. https://doi.org/10.1016/j.rse.2020.112102
  5. ↵
    1. Ciesielski M,
    2. Sterenczak K
    . 2019. Accuracy of determining specific parameters of the urban forest using remote sensing. iForest-Biogeosciences and Forestry. 12(6):498–510. https://doi.org/10.3832/ifor3024-012
    OpenUrl
  6. ↵
    1. City of Kirkland
    . 2013. Urban forestry strategic management plan. Kirkland (WA, USA): City of Kirkland. R-4986. https://www.kirklandwa.gov/files/sharedassets/public/planning-amp-building/urban-forest-management-plan.pdf
  7. ↵
    1. Climate Action Reserve
    . 2019. Urban forest management project protocol. Version 1.1. Los Angeles (CA, USA): Climate Action Reserve. https://www.climateactionreserve.org/wp-content/uploads/2019/04/Urban_Forest_Management_Project_Protocol_V1.1.pdf
  8. ↵
    1. Coelho-Duarte AP,
    2. Daniluk-Mosquera G,
    3. Gravina V,
    4. Vallejos-Barra O,
    5. Ponce-Donoso M
    . 2021. Tree risk assessment: Component analysis of six visual methods applied in an urban park, Montevideo, Uruguay. Urban Forestry & Urban Greening. 59:1–9. https://doi.org/10.1016/j.ufug.2021.127005
    OpenUrl
  9. ↵
    1. Estornell J,
    2. Velázquez-Martí B,
    3. Fernández-Sarría A,
    4. Martí J
    . 2018. Lidar methods for measurement of trees in urban forests. Journal of Applied Remote Sensing. 12(4):046009. https://doi.org/10.1117/1.JRS.12.046009
    OpenUrl
  10. ↵
    1. Farve R
    . 2014. Using radio frequency identification (RFID) for monitoring trees in the forest: State-of-the-technology investigation. Washington (DC, USA): USDA Forest Service, National Technology & Development Center, Inventory and Monitoring Program. https://www.fs.fed.us/t-d/pubs/pdfpubs/pdf14191805/pdf14191805dpi100.pdf
  11. ↵
    1. Goh CL,
    2. Rahim RA,
    3. Rahiman MHF,
    4. Talib MTM,
    5. Tee ZC
    . 2018. Sensing wood decay in standing trees: A review. Sensors and Actuators A: Physical. 269:276–282. https://doi.org/10.1016/j.sna.2017.11.038
    OpenUrl
  12. ↵
    1. Hakli J,
    2. Jaakkola K,
    3. Pursula P,
    4. Huusko M,
    5. Nummila K
    . 2010. UHF RFID based tracking of logs in the forest industry. In: Proceedings of the IEEE International Conference on RFID (IEEE RFID 2010). IEEE RFID 2010; 2010 April 14–16; Orlando, FL, USA. Piscataway (NJ, USA): IEEE Institute of Electrical and Electronics Engineers. p. 245–251. https://doi.org/10.1109/RFID.2010.5467272
  13. ↵
    1. Iqbal SPA,
    2. Adi W,
    3. Eko K,
    4. Satria I,
    5. Ronni A,
    6. Budi PN
    . 2017. Urban forest topographical mapping using UAV LIDAR. IOP Conference Series: Earth and Environmental Science. 98(1):012034. https://doi.org/10.1088/1755-1315/98/1/012034
    OpenUrl
  14. ↵
    1. Johnstone D,
    2. Moore G,
    3. Tausz M,
    4. Nicolas M
    . 2010. The measurement of wood decay in landscape trees. Arboriculture & Urban Forestry. 36(3):121–127. https://doi.org/10.48044/jauf.2010.016
    OpenUrl
  15. ↵
    1. Johnstone DM,
    2. Ades PK,
    3. Moore GM,
    4. Smith IW
    . 2007. Predicting wood decay in eucalypts using an expert system and the IML-Resistograph drill. Arboriculture & Urban Forestry. 33(2):76–80. https://doi.org/10.1080/00049158.2018.1500676
    OpenUrl
  16. ↵
    1. Kamaguchi A,
    2. Nakao T,
    3. Nakai T
    . 2001. Non-destructive diagnosis of internal defects of the living trees by the lateral impact vibration method. Tree and Forest Health. 5(2):59–63. https://doi.org/10.18938/treeforesthealth.5.2_59
    OpenUrl
  17. ↵
    1. Kwong IHY,
    2. Fung T
    . 2019. Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest. International Journal of Remote Sensing. 41(14):5228–5256. https://doi.org/10.1080/01431161.2020.1731002
    OpenUrl
  18. ↵
    1. Li GH,
    2. Wang XP,
    3. Feng HL,
    4. Wiedenbeck J,
    5. Ross RJ
    . 2014. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection. Computers and Electronics in Agriculture. 104:32–39. https://doi.org/10.1016/j.compag.2014.03.008
    OpenUrl
  19. ↵
    1. Lilly SJ
    . 2010. Arborists’ certification study guide. Champaign (IL, USA): International Society of Arboriculture. 362 p.
  20. ↵
    1. Luvisi A,
    2. Lorenzini G
    . 2014. RFID-plants in the smart city: Applications and outlook for urban green management. Urban Forestry & Urban Greening. 13(4):630–637. https://doi.org/10.1016/j.ufug.2014.07.003
    OpenUrl
  21. ↵
    1. Mattheck C,
    2. Breloer H
    . 1996. The body language of trees: A handbook for failure analysis. London (UK): Stationery Office Books. 320 p.
  22. ↵
    1. Ordóñez C,
    2. Kendal D,
    3. Threlfall CG,
    4. Hochuli DF,
    5. Davern M,
    6. Fuller RA,
    7. Livesley SJ
    . 2020. How urban forest managers evaluate management and governance challenges in their decision-making. Forests. 11(9):963. https://doi.org/10.3390/f11090963
    OpenUrl
  23. ↵
    1. Pirti A
    . 2007. Performance analysis of the real time kinematic GPS (RTK GPS) technique in a highway project (stake-out). Survey Review. 39(303):43–53. https://doi.org/10.1179/003962607X164989
    OpenUrlWeb of Science
  24. ↵
    1. Ponneth D,
    2. Vasu AE,
    3. Easwaran JC,
    4. Mohandass A,
    5. Chauhan SS
    . 2014. Destructive and non-destructive evaluation of seven hardwoods and analysis of data correlation. Holzforschung. 68(8):951–956. https://doi.org/10.1515/hf-2013-0193
    OpenUrl
  25. ↵
    1. Konijnendijk C,
    2. Nilsson K,
    3. Randrup T,
    4. Schipperijn J
    1. Schipperijn J,
    2. Pillmann W,
    3. Tyrväinen L,
    4. Mäkinen K,
    5. O’Sullivan K
    . 2005. Information for urban forest planning and management. In: Konijnendijk C, Nilsson K, Randrup T, Schipperijn J, editors. Urban forest trees. Berlin/Heidelberg (Germany): Springer. p. 399–417. https://doi.org/10.1007/3-540-27684-X_15
  26. ↵
    1. Shortle WC,
    2. Dudzik KR
    . 2012. Wood decay in living and dead trees: A pictorial overview. Newtown Square (PA, USA): USDA Forest Service, Northern Research Station. General Technical Report NRS-97. https://doi.org/10.2737/NRS-GTR-97
  27. ↵
    1. Suyama H,
    2. Kirita R,
    3. Monobe H
    . 2013. Effect of weight of hammers on detection of resonance frequency by the lateral impact vibration method for large living trees of 9 species. Journal of Wood Society. 59(2):105–111. https://doi.org/10.2488/jwrs.59.105
    OpenUrl
  28. ↵
    1. Suyama H,
    2. Tetsuya N,
    3. Tomimatsu Y
    . 2010. Non-destructive diagnosis of the butt heart rot in Chamaecyparis obtusa by the lateral impact vibration method. Tree and Forest Health. 14(3):83–91. https://doi.org/10.18938/treeforesthealth.14.3_83
    OpenUrl
  29. ↵
    1. Tasoulas E,
    2. Varras G,
    3. Tsirogiannis I,
    4. Myriounis C
    . 2013. Development of a GIS application for urban forestry management planning. Procedia Technology. 8:70–80. https://doi.org/10.1016/j.protcy.2013.11.011
    OpenUrl
  30. ↵
    1. Town of Wake Forest
    . 2013. Urban forest management plan. Wake Forest (NC, USA): Town of Wake Forest. https://www.wakeforestnc.gov/sites/default/files/uploads/urban_forestry/uf-mgt-plan-final.pdf
  31. ↵
    1. von Döhren P,
    2. Haase D
    . 2019. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosystem Services. 40:101031. https://doi.org/10.1016/j.ecoser.2019.101031
  32. ↵
    1. Wang X
    . 2013. Acoustic measurements on trees and logs: A review and analysis. Wood Science and Technology. 47(5):965–975. https://doi.org/10.1007/s00226-013-0552-9
    OpenUrl
  33. ↵
    1. Wang X,
    2. Liu Y,
    3. Guo L
    . 2015. Urban forestry management information system based on GIS—A case of Tangshan City. In: Proceedings of the 2015 2nd International Forum on Electrical Engineering and Automation (IFEEA 2015). IFEEA 2015; 2015 December 26–27; Guangzhou, China. Dordrecht (The Netherlands): Atlantis Press. p. 158–161.
  34. ↵
    1. Yamada T,
    2. Yamashita K,
    3. OtaYuko Y
    . 2019. Comparison between sonic tomography and lateral impact vibration method in detecting cavity using wood disk. The Japanese Forest Society Congress. 130:154–155. https://doi.org/10.11519/jfsc.130.0_457
    OpenUrl
  35. ↵
    1. Zengin H,
    2. Yesil A
    . 2004. Comparing the performances of real-time kinematic GPS and a handheld GPS receiver under forest cover. Turkish Journal of Agriculture and Forestry. 30(2): 101–110. https://www.researchgate.net/publication/273771581_Comparing_the_Performances_of_Real-Time_Kinematic_GPS_and_a_Handheld_GPS_Receiver_under_Forest_Cover
    OpenUrl
  36. ↵
    1. Zhang C,
    2. Qiu F
    . 2012. Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery. American Society for Photogrammetry and Remote Sensing. 78(10):1079–1087. https://doi.org/10.14358/PERS.78.10.1079
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 48 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 48, Issue 2
March 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Intelligent Survey Technologies and Applications for Urban Forests in Taiwan
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Intelligent Survey Technologies and Applications for Urban Forests in Taiwan
Jan-Chang Chen, Chun-Hung Wei, Yi-Ta Hsieh, Shang-Chuan Huang, Ping-Hsun Peng
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 49-59; DOI: 10.48044/jauf.2022.005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Intelligent Survey Technologies and Applications for Urban Forests in Taiwan
Jan-Chang Chen, Chun-Hung Wei, Yi-Ta Hsieh, Shang-Chuan Huang, Ping-Hsun Peng
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 49-59; DOI: 10.48044/jauf.2022.005
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • CONTENTS AND METHODS OF THE URBAN FOREST SURVEY
    • URBAN FOREST INFORMATION MANAGEMENT SYSTEM
    • URBAN FOREST SURVEY AND INTELLIGENT OPERATION AND MANAGEMENT IN TAIWAN IN THE FUTURE
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Hardscape of Soil Surface Surrounding Urban Trees Alters Stem Carbon Dioxide Efflux
  • Literature Review of Unmanned Aerial Systems and LIDAR with Application to Distribution Utility Vegetation Management
  • Borrowed Credentials and Surrogate Professional Societies: A Critical Analysis of the Urban Forestry Profession
Show more Articles

Similar Articles

Keywords

  • Geographic Information System (GIS)
  • In-Vehicle Light Detection and Ranging (LiDAR)
  • Non-Destructive Detection Instruments
  • urban forest
  • Urban Scenes

© 2023 International Society of Arboriculture

Powered by HighWire