Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Using Artificial Intelligence to Assist Tree Risk Assessment

Steffen Rust and Bernhard Stoinski
Arboriculture & Urban Forestry (AUF) March 2022, 48 (2) 138-146; DOI: https://doi.org/10.48044/jauf.2022.011
Steffen Rust
Steffen Rust (corresponding author), HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Göttingen, Germany, +49(0)-551-5032173,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Bernhard Stoinski
Bernhard Stoinski, Private Institute for Dynamic Logic, Herforder Straße 15, Köln, Germany
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Bond J
    . 2011a. Tree load basic field analysis. Arborist News. 20(2):24–26.
    OpenUrl
  2. ↵
    1. Bond J
    . 2011b. Tree load: Concept. Arborist News. 20(1):12–17.
    OpenUrl
  3. ↵
    1. Bond J
    . 2012. Production use of the BMP tree risk assessment method. Arborist News. 21(4):20–21.
    OpenUrl
  4. ↵
    1. Bothe HH
    . 1993. Fuzzy logic: Einführung in Theorie und Anwendungen. Berlin (Germany): Springer. 228 p.
  5. ↵
    1. Dujesiefken D
    1. Böttcher J,
    2. Weihs U,
    3. Rust S
    . 2016. Untersuchungen zum Schlankheitsgrad (l/d-Verhältnis) von Rosskastanienästen (Aesculus spp.). In: Dujesiefken D, editor. Jahrbuch der Baumpflege 2016. Braunschweig (Germany): Haymarket Media Group. p. 236–244.
  6. ↵
    1. Cannell MGR,
    2. Morgan J
    . 1989. Branch breakage under snow and ice loads. Tree Physiology. 5(3):307–317. https://doi.org/10.1093/treephys/5.3.307
    OpenUrlCrossRefPubMedWeb of Science
  7. ↵
    1. Ciftci C,
    2. Arwade SR,
    3. Kane B,
    4. Brena SF
    . 2014. Analysis of the probability of failure for open-grown trees during wind storms. Probabilistic Engineering Mechanics. 37:41–50. https://doi.org/10.1016/j.probengmech.2014.04.002
    OpenUrl
  8. ↵
    1. Ciftci C,
    2. Kane B,
    3. Brena SF,
    4. Arwade SR
    . 2014. Loss in moment capacity of tree stems induced by decay. Trees. 28(2):517–529. https://doi.org/10.1107/s00468-013-0968-8
    OpenUrl
  9. ↵
    1. Dahle GA,
    2. James KR,
    3. Kane B,
    4. Grabosky JC,
    5. Detter A
    . 2017. A review of factors that affect the static load-bearing capacity of urban trees. Arboriculture & Urban Forestry. 43(3):89–106. https://doi.org/10.48044/jauf.2017.009
    OpenUrl
  10. ↵
    1. Dubois DJ,
    2. Prade H
    . 1980. Fuzzy sets and systems: Theory and applications. 1st Ed. London (UK): Academic Press. 393 p.
  11. ↵
    1. Dunster JA
    . 2014. Fatalities and injuries caused by trees: Do we have a problem? Arboriculture & Urban Forestry. 40(6):352–354. https://doi.org/10.48044/jauf.2014.034
    OpenUrl
  12. ↵
    1. Dunster JA,
    2. Smiley ET,
    3. Matheny N,
    4. Lilly S
    . 2013. Tree risk assessment manual. 1st Ed. Champaign (IL, USA): International Society of Arboriculture. 194 p.
  13. ↵
    1. Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. (FLL)
    . 2004. Richtlinie zur Überprüfung der Verkehrssicherheit von Bäumen. Bonn (Germany): FLL.
    1. Gladwell M
    . 2005. Blink: The power of thinking without thinking. 1st Ed. Boston (MA, USA): Little, Brown and Company. 320 p.
  14. ↵
    1. Hartley MA,
    2. Chalk JJ
    . 2019. A review of deaths in Australia from accidental tree failures. Melbourne (VIC, Australia): Arboriculture Australia. 18 p.
  15. ↵
    1. Dujesiefken D
    1. Jillich S,
    2. Köhler J,
    3. Rust S,
    4. Rust C,
    5. Detter A
    . 2013. Zum Tusammenhang zwischen Schlankheitsgrad und Bruchversagen. In: Dujesiefken D, editor. Jahrbuch der Baumpflege. Braunschweig (Germany): Haymarket Media Group. p. 267–273.
  16. ↵
    1. Kane B,
    2. Ryan D,
    3. Bloniarz DV
    . 2001. Comparing formulae that assess strength loss due to decay in trees. Journal of Arboriculture. 27(2):78–87.
    OpenUrl
  17. ↵
    1. Kane BCP,
    2. Ryan HDPI
    . 2003. Examining formulas that assess strength loss due to decay in trees: Woundwood toughness improvement in red maple (Acer rubrum). Journal of Arboriculture. 29(4):209–217.
    OpenUrl
  18. ↵
    1. Kane BCP,
    2. Ryan HDPI
    . 2004. The accuracy of formulas used to assess strength loss due to decay in trees. Journal of Arboriculture. 30(6):347–356.
    OpenUrl
  19. ↵
    1. Koeser AK,
    2. Smiley ET
    . 2017. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban Forestry & Urban Greening. 24:109–115. https://doi.org/10.1016/j.ufug.2017.03.027
    OpenUrl
  20. ↵
    1. Kosko B,
    2. Toms M
    . 1993. Fuzzy thinking: The new science of fuzzy logic. 1st Ed. New York (NY, USA): Hyperion. 336 p.
  21. ↵
    1. Lonsdale D
    . 1999. Principles of tree hazard assessment and management. London (UK): The Stationery Office. 388 p.
  22. ↵
    1. MacLane S
    . 1978. Categories for the working mathematician. 2nd Ed. New York (NY, USA): Springer. 329 p. https://doi.org/10.1007/978-1-4757-4721-8
  23. ↵
    1. Mamdani E,
    2. Gaines BR
    . 1981. Fuzzy reasoning and its applications. New York (NY, USA): Academic Press. 381 p.
  24. ↵
    1. Matheny N,
    2. Clark J
    . 2009. Tree risk assessment: What we know (and what we don’t know). Arborist News. 18(1):28–33.
    OpenUrl
  25. ↵
    1. Matheny N,
    2. Clark J,
    3. Smiley ET
    . 2006. International Tree Failure Database—User Manual. Version 1.1. Washington (DC, USA): USDA Forest Service. https://ucanr.edu/sites/treefail/files/4358.pdf
  26. ↵
    1. Mattheck C,
    2. Bethge K,
    3. Tesari I,
    4. Kappel R
    . 2002. A new failure criterion for non decayed solitary trees. Arboricultural Journal. 26(1):43–54. https://doi.org/10.1080/03071375.2002.9747317
    OpenUrlCrossRef
  27. ↵
    1. Mattheck C,
    2. Bethge K,
    3. West PW
    . 1994. Breakage of hollow tree stems. Trees. 9(1):47–50. https://doi.org/10.1007/BF00197869
    OpenUrl
  28. ↵
    1. Morgan J,
    2. Cannell MGR
    . 1987. Structural analysis of tree trunks and branches: Tapered cantilever beams subject to large deflections under complex loading. Tree Physiology. 3(4):365–374. https://doi.org/10.1093/treephys/3.4.365
    OpenUrlCrossRefPubMedWeb of Science
  29. ↵
    1. Niklas KJ,
    2. Spatz HC
    . 2000. Wind-induced stresses in cherry trees: Evidence against the hypothesis of constant stress levels. Trees. 14(4):230–237. https://doi.org/10.1007/s004680050008
    OpenUrl
  30. ↵
    1. Norris M
    . 2007. Tree risk assessments—what works—what does not—can we tell? A review of a range of existing tree risk assessment methods. ISAAC Conference Perth 2007. p. 1–31.
  31. ↵
    1. Norris MB,
    2. Moore GM
    . 2020. How tree risk assessment methods work: Sensitivity analyses of sixteen methods reveal the value of quantification and the impact of inputs on risk ratings. Arboriculture & Urban Forestry. 46(6):402–431. https://doi.org/10.48044/jauf.2020.030
    OpenUrl
  32. ↵
    1. Rust S
    . 2012. Zur fachlichen Belastbarkeit monokausaler Regeln (h/d, l/d, t/r) und horizontaler Bohrungen zur Beurteilung der Verkehrssicherheit von Bäumen. In: SVK-Gehölzseminar. 35th SVK-Gehölzseminar; 2012 February 6–8; Hannover, Germany.
  33. ↵
    1. Rust S,
    2. Roloff A,
    3. Sommer U
    . 2011. Zur Eignung des h/d- Verhältnisses als Versagenskriterium. AFZ-Der Wald. 66(24):32–34.
    OpenUrl
  34. ↵
    1. Slater D
    . 2016. An argument against the axiom of uniform stress being applicable to trees. Arboricultural Journal. 38(3):143–164. https://doi.org/10/1080/03071375.2016.1202699
    OpenUrl
  35. ↵
    1. Slater D
    . 2021. The mechanical effects of bulges developed around bark-included branch junctions of hazel (Corylus avellana L.) and other trees. Trees. 35(5):513–516. https://doi.org/10.1007/s00468-020-02053-z
    OpenUrl
  36. ↵
    1. Smiley ET,
    2. Fraedrich BR
    . 1992. Determining strength loss from decay. Journal of Arboriculture. 18(4):201–204.
    OpenUrl
  37. ↵
    1. Spatz H-C,
    2. Niklas KJ
    . 2013. Modes of failure in tubular plant organs. American Journal of Botany. 100(2):332–336. https://doi.org.10.3732/ajb.1200454
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Stewart MG,
    2. O’Callaghan D,
    3. Hartley M
    . 2013. Review of QTRA and risk-based cost-benefit assessment of tree management. Arboriculture & Urban Forestry. 39(4):165–172. https://doi.org/10.48044/jauf.2013.022
    OpenUrl
  39. ↵
    1. Wagener WW
    . 1963. Judging hazard from native trees in California recreational areas: A guide for professional foresters. Berkeley (CA, USA): USDA Forest Service, Pacific Southwest Forest and Range Experiment Station. Research Paper PSW-RP-1. 29 p.
  40. ↵
    1. Watt J,
    2. Ball DJ
    . 2009. Report for the National Tree Safety Group: Trees and the risk of harm. London (UK): Centre for Decision Analysis and Risk Management, Middlesex University. 12 p. https://ntsgroup.org.uk/wp-content/uploads/2016/06/NTSG-Report-1_Trees-and-the-Risk-of-Harm.pdf
  41. ↵
    1. Wessolly L,
    2. Erb M
    . 1998. Handbuch der baumstatik und baumkontrolle. 1st Ed. Berlin (Germany): Patzer. 272 p.
  42. ↵
    1. Zadeh LA
    . 1965. Fuzzy sets. Information and Control. 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    OpenUrlCrossRefWeb of Science
  43. ↵
    1. Zadeh LA
    . 1971. Similarity relations and fuzzy orderings. Information Sciences. 3(2):177–200. https://doi.org/10.1016/S0020-0255(71)80005-1
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 48 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 48, Issue 2
March 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Using Artificial Intelligence to Assist Tree Risk Assessment
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Using Artificial Intelligence to Assist Tree Risk Assessment
Steffen Rust, Bernhard Stoinski
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 138-146; DOI: 10.48044/jauf.2022.011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Using Artificial Intelligence to Assist Tree Risk Assessment
Steffen Rust, Bernhard Stoinski
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 138-146; DOI: 10.48044/jauf.2022.011
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THE GENERAL DYNAMIC LOGIC
    • MODELLING TREE ASSESSMENT IN THE GENERAL DYNAMIC LOGIC
    • LEARNING FROM PLAUSIBILITY/METASYSTEM
    • CONCLUSIONS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • Artificial Intelligence
  • Fuzzy Logic
  • Tree inventory
  • tree risk assessment

© 2025 International Society of Arboriculture

Powered by HighWire