Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Using Artificial Intelligence to Assist Tree Risk Assessment

Steffen Rust and Bernhard Stoinski
Arboriculture & Urban Forestry (AUF) March 2022, 48 (2) 138-146; DOI: https://doi.org/10.48044/jauf.2022.011
Steffen Rust
Steffen Rust (corresponding author), HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Göttingen, Germany, +49(0)-551-5032173,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Bernhard Stoinski
Bernhard Stoinski, Private Institute for Dynamic Logic, Herforder Straße 15, Köln, Germany
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    Set formation of lever arm.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    Creation of the variable “wind exposure.”

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    Assessment of tree load with trackbars, based on Bond 2011b.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    Learning mode.

Tables

  • Figures
    • View popup
    Table 1.

    Example of a logical axiom with n parameters and m rules.

    If Parameter 1Parameter 2Parameter 3Parameter nConclusion
    Rule 1Wind exposure (protected)ANDSurface area (normal)ANDLever arm (short/pruned)AND…THENLoad (low)
    Rule 2Wind exposure (partial)ANDSurface area (low)ANDLever arm (normal)AND…THENLoad (medium)
    Rule 3Wind exposure (full)ANDSurface area (high)ANDLever arm (long)AND…THENLoad (extreme)
    Rule 4 to m…AND…AND…AND…THENLoad …
    ……………
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 48 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 48, Issue 2
March 2022
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Using Artificial Intelligence to Assist Tree Risk Assessment
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Using Artificial Intelligence to Assist Tree Risk Assessment
Steffen Rust, Bernhard Stoinski
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 138-146; DOI: 10.48044/jauf.2022.011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Using Artificial Intelligence to Assist Tree Risk Assessment
Steffen Rust, Bernhard Stoinski
Arboriculture & Urban Forestry (AUF) Mar 2022, 48 (2) 138-146; DOI: 10.48044/jauf.2022.011
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • THE GENERAL DYNAMIC LOGIC
    • MODELLING TREE ASSESSMENT IN THE GENERAL DYNAMIC LOGIC
    • LEARNING FROM PLAUSIBILITY/METASYSTEM
    • CONCLUSIONS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Thiabendazole as a Therapeutic Root Flare Injection for Beech Leaf Disease Management
Show more Articles

Similar Articles

Keywords

  • Artificial Intelligence
  • Fuzzy Logic
  • Tree inventory
  • tree risk assessment

© 2025 International Society of Arboriculture

Powered by HighWire