Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Plant and Wood Area Index of Solitary Trees for Urban Contexts in Nordic Cities

Johanna Deak Sjöman, Andrew Hirons, Nina Bassuk and Henrik Sjöman
Arboriculture & Urban Forestry (AUF) November 2021, 47 (6) 252-266; DOI: https://doi.org/10.48044/jauf.2021.022
Johanna Deak Sjöman
Johanna Deak Sjöman (corresponding author), Swedish University of Agricultural Sciences, Department of Landscape Architecture, Planning and, Management, Faculty of Landscape Planning, Horticulture and Agricultural, Science, Box 190, SE 234 22, Lomma, Sweden, +46 70696505
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Andrew Hirons
Andrew Hirons, University Centre Myerscough, Bilsborrow, Preston, Lancashire, UK
  • Find this author on Google Scholar
  • Search for this author on this site
Nina Bassuk
Nina Bassuk, Cornell University, Department of Horticulture, 134A Plant Science, Ithaca, NY, USA
  • Find this author on Google Scholar
  • Search for this author on this site
Henrik Sjöman
Henrik Sjöman, Swedish University of Agricultural Sciences, Department of Landscape Architecture, Planning and, Management, Faculty of Landscape Planning, Horticulture and Agricultural, Science, Box 190, SE 234 22
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Jørgensen SE,
    2. Fath BD
    1. Bréda NJJ
    . 2008. Leafchapterndex. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology. Cambridge (MA, USA): Academic Press. p. 2148-2154. https://doi.org/10.1016/B978-008045405-4.00849-1
  2. ↵
    1. Breuer L,
    2. Eckhardt K,
    3. Frede HG
    . 2003. Plant parameter values for models in temperate climates. Ecological Modelling. 169(2-3):237-293. https://doi.org/10.1016/S0304-3800(03)00274-6
    OpenUrlCrossRefWeb of Science
  3. ↵
    1. Buermann W,
    2. Dong J,
    3. Zeng X,
    4. Myneni RB,
    5. Dickinson RE
    . 2001. Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. Journal of Climate. 14(17):3536-3550. https://doi.org/10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2
    OpenUrl
  4. ↵
    1. Bühler O,
    2. Kristoffersen P
    . 2009. The urban tree arboretum in Hørsholm, Denmark: A new tool towards an improved education of arborists and tree managers. Urban Forestry & Urban Greening. 8(1):55-61. https://doi.org/10.1016/j.ufug.2008.10.001
    OpenUrl
  5. ↵
    1. Bukowski E
    . 2018. Using the commons to understand the Dutch elm disease epidemic in Syracuse, NY. Geographical Review. 109(2):180-198. https://doi.org/10.1111/gere.12314
    OpenUrl
  6. ↵
    1. Chianucci F,
    2. Pulettia N,
    3. Giacomello E,
    4. Cutini A,
    5. Corona P
    . 2015. Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening. 14(2):377-382. https://doi.org/10.1016/j.ufug.2015.04.001
    OpenUrl
  7. ↵
    1. Choat B,
    2. Brodribb TJ,
    3. Brodersen CR,
    4. Duursma RA,
    5. López R,
    6. Medlyn BE
    . 2018. Triggers of tree mortality under drought. Nature. 558:531-539. https://doi.org/10.1038/s41586-018-0240-x
    OpenUrlCrossRefPubMed
  8. ↵
    1. CID Bio-Science
    . 2021. CI-110: Plant Canopy Imager. Camas (WA, USA): CID Bio-Science, Inc. [Accessed 2020 December 9]. https://cid-inc.com/plant-science-tools/leaf-area-measurement/ci-110-plant-canopy-imager
  9. ↵
    1. Coutts AM,
    2. White EC,
    3. Tapper NJ,
    4. Beringer J,
    5. Livesley SJ
    . 2016. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology. 124:55-68. https://doi.org/10.1007/s00704-015-1409-y
    OpenUrl
  10. ↵
    1. Erell E,
    2. Pearlmutter D,
    3. Williamson T
    . 2010. Urban microclimate: Designing the spaces between buildings. Abingdon-on-Thames (UK): Routledge. 288 p.
  11. ↵
    1. Fang H,
    2. Baret F,
    3. Plummer S,
    4. Schaepman-Strub G
    . 2019. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics. 57(3): 739-799. https://doi.org/10.1029/2018RG000608
    OpenUrl
  12. ↵
    1. Gill SE,
    2. Handley JF,
    3. Ennos AR,
    4. Pauleit S
    . 2007. Adapting cities for climate change: The role of the green infrastructure. Built Environment. 33(1):115-133. https://doi.org/10.2148/benv.33.1.115
    OpenUrlCrossRef
  13. ↵
    1. Gower ST,
    2. Kucharik CJ,
    3. Norman JM
    . 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment. 70(1):29-51. https://doi.org/10.1016/S0034-4257(99)00056-5
    OpenUrlCrossRef
  14. ↵
    1. Hannus S,
    2. Hirons AD,
    3. Baxter T,
    4. McAllister HA,
    5. Wiström B,
    6. Sjöman H
    . 2020. Intraspecific drought tolerance of Betula pendula genotypes: An evaluation using leaf turgor loss in a botanical collection. Trees. 35: 569-581. https://doi.org/10.1007/s00468-020-02059-7
    OpenUrl
  15. ↵
    1. Hardin PJ,
    2. Jensen RR
    . 2007. The effect of urban leaf area on summertime urban surface kinetic temperatures: A Terre Haute case study. Urban Forestry & Urban Greening. 6(2): 63-72. https://doi.org/10.1016/j.ufug.2007.01.005
    OpenUrlCrossRef
  16. ↵
    1. Hirons AD,
    2. Watkins JHR,
    3. Baxter TJ,
    4. Miesbauer JW,
    5. Male-Muñoz A,
    6. Martin KWE,
    7. Bassuk NL,
    8. Sjöman H
    . 2021. Using botanic gardens and arboreta to help identify urban trees for the future. Plants, People, Planet. 3(2):182-193. https://doi.org/10.1002/ppp3.10162
    OpenUrl
  17. ↵
    1. Horikoshi M,
    2. Tang Y
    . 2018. ggfortify: Data visualization tools for statistical analysis results. https://CRAN.R-project.org/package=ggfortify
  18. ↵
    1. Jensen RR,
    2. Hardin PJ,
    3. Hardin AJ
    . 2012. Estimating urban leaf area index (LAI) of individual trees with hyperspectral data. Photogrammetric Engineering & Remote Sensing. 78(5):495-504. https://doi.org/10.14358/PERS.78.5.495
    OpenUrl
  19. ↵
    1. Jiapaer G,
    2. Liang S,
    3. Yi Q,
    4. Liu J
    . 2015. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecological Indicators. 58:64-76. https://doi.org/10.1016/j.ecolind.2015.05.036
    OpenUrl
  20. ↵
    1. Jonckheere I,
    2. Fleck S,
    3. Nackaerts K,
    4. Muys B,
    5. Coppin P,
    6. Weiss M,
    7. Baret F
    . 2004. Review of methods for in situ leaf area index determination: Part 1. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology. 121(1-2): 19-35.
    OpenUrlCrossRefWeb of Science
  21. ↵
    1. Klingberg J,
    2. Konarska J,
    3. Lindberg F,
    4. Johansson L,
    5. Thorsson S
    . 2017. Mapping leaf area of urban greenery using aerial LiDAR and ground-based measurements in Gothenburg, Sweden. Urban Forestry & Urban Greening. 26:31-40. https://doi.org/10.1016/j.ufug.2017.05.011
    OpenUrl
  22. ↵
    1. Konarska J,
    2. Lindberg F,
    3. Larsson A,
    4. Thorsson S,
    5. Holmer B
    . 2014. Transmissivity of solar radiation through crowns of single urban trees: Application for outdoor thermal comfort modelling. Theoretical and Applied Climatology. 117:363-376. https://doi.org/10.1007/s00704-013-1000-3
    OpenUrl
  23. ↵
    1. Kucharik CJ,
    2. Norman JM,
    3. Gower ST
    . 1998. Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology. 91(1-2):69-88. https://doi.org/10.1016/S0168-1923(98)00064-1
    OpenUrlCrossRefWeb of Science
  24. ↵
    1. Kumagai T,
    2. Tateishi M,
    3. Miyazawa Y,
    4. Kobayashi M,
    5. Yoshifuji N,
    6. Komatsu H,
    7. Shimizu T
    . 2014. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (1): Water use components in Japanese cedar stands. Journal of Hydrology. 508:66-76. https://doi.org/10.1016/j.jhydrol.2013.10.047
    OpenUrl
  25. ↵
    1. Bodart M,
    2. Evrard A
    1. Kumakura E,
    2. Nakaohkubo K,
    3. Hoyano A
    . 2011. Numerical analysis of solar shading of a deciduous tree for seasonal change. In: Bodart M, Evrard A, editors. PLEA 2011 architecture & sustainable development, Vol. 2. 27th International Conference on Passive and Low Energy Architecture; 2011 July 13–15; Lovain-la-Neuve (Belgium). Lovain-la-Neuve (Belgium): UCL Presses Universitaires de Louvain. p. 113-117.
  26. ↵
    1. Masson V,
    2. Lemonsu A,
    3. Hidalgo J,
    4. Voogt J
    . 2020. Urban climates and climate change. Annual Review of Environment and Resources. 45:411-444. https://doi.org/10.1146/annurev-environ-012320-083623
    OpenUrl
  27. ↵
    1. Nikoofard S,
    2. Ugursal VI,
    3. Beausoleil-Morrison I
    . 2011. Effect of external shading on household energy requirement for heating and cooling in Canada. Energy and Buildings. 43(7):1627-1635. https://doi.org/10.1016/j.enbuild.2011.03.003
    OpenUrl
  28. ↵
    1. Nock CA,
    2. Caspersen JP,
    3. Thomas SC
    . 2008. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species. Ecology. 89(3):744-753. https://doi.org/10.1890/07-0531.1
    OpenUrlCrossRefPubMedWeb of Science
  29. ↵
    1. Nowak DJ
    . 1996. Estimating leaf area and leaf biomass of open-grown deciduous urban trees. Forest Science. 42(4):504-507.
    OpenUrlWeb of Science
  30. ↵
    1. Nowak DJ,
    2. Crane DE,
    3. Stevens JC,
    4. Hoehn RE,
    5. Walton JT,
    6. Bond J
    . 2008. A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture & Urban Forestry. 34(6):347-358.
    OpenUrl
  31. ↵
    1. Olivas PC,
    2. Oberbauer SF,
    3. Clark DB,
    4. Clark DA,
    5. Ryand MG,
    6. O’Brien JJ,
    7. Ordonez H
    . 2013. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agricultural and Forest Meteorology. 177:110-116. https://doi.org/10.1016/j.agrformet.2013.04.010
    OpenUrl
  32. ↵
    1. Otsu N
    . 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics. 9(1):62-66. https://doi.org/10.1109/TSMC.1979.4310076
    OpenUrlCrossRefPubMedWeb of Science
  33. ↵
    1. Kabisch N,
    2. Korn H,
    3. Stadler J,
    4. Bonn A
    1. Pauleit S,
    2. Zölch T,
    3. Hansen R,
    4. Randrup TB,
    5. Konijnendijk CC
    . 2017. Nature-based solutions and climate change—Four shades of green. In: Kabisch N, Korn H, Stadler J, Bonn A, editors. Nature-based solutions to climate change adaptation in urban areas—Linkages of science, society and policy. Berlin (Germany): Springer Verlag. https://doi.org/10.1007/978-3-319-56091-5
  34. ↵
    1. Peper PJ,
    2. McPherson EG
    . 2003. Evaluation of four methods for estimating leaf area of isolated trees. Urban Forestry & Urban Greening. 2(1):19-29. https://doi.org/10.1078/1618-8667-00020
    OpenUrl
  35. ↵
    1. R Core Team
    . 2020. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.r-project.org
  36. ↵
    1. Rahman MA,
    2. Stratopoulos LMF,
    3. Moser-Reischl A,
    4. Zölch T,
    5. Häberle KH,
    6. Rötzer T,
    7. Pretzsch H,
    8. Pauleit S
    . 2020. Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment. 170:106606. https://doi.org/10.1016/j.buildenv.2019.106606
  37. ↵
    1. Sawka M,
    2. Millward AA,
    3. McKay J,
    4. Sarkovich M
    . 2013. Growing summer energy conservation through residential tree planting. Landscape and Urban Planning. 113:1-9. https://doi.org/10.1016/j.landurbplan.2013.01.006
    OpenUrl
  38. ↵
    1. Sjöman H,
    2. Hirons AD,
    3. Bassuk NL
    . 2015. Urban forest resilience through tree selection—Variation in drought tolerance in Acer. Urban Forestry & Urban Greening. 14(4):858-865. https://doi.org/10.1016/j.ufug.2015.08.004
    OpenUrl
  39. ↵
    1. Sjöman H,
    2. Hirons AD,
    3. Bassuk NL
    . 2018. Improving confidence in tree species selection for challenging urban sites: A role for leaf turgor loss. Urban Ecosystems. 21:1171-1188. https://doi.org/10.1007/s11252-018-0791-5
    OpenUrl
  40. ↵
    1. Sjöman H,
    2. Nielsen AB,
    3. Pauleit S,
    4. Olsson M
    . 2010. Habitat studies identifying potential trees for urban paved environments: A case study from Qinling Mt., China. Arboriculture & Urban Forestry. 36(6):261-271.
    OpenUrl
  41. ↵
    1. Sjöman H,
    2. Östberg J
    . 2019. Vulnerability of ten major Nordic cities to potential tree losses caused by longhorned beetles. Urban Ecosystems. 22:385-395. https://doi.org/10.1007/s11252-019-0824-8
    OpenUrl
  42. ↵
    1. Sjöman JD,
    2. Hirons A,
    3. Sjöman H
    . 2016. Branch area index of solitary trees: Understanding its significance in regulating ecosystem services. Journal of Environmental Quality. 45(1): 175-187. https://doi.org/10.2134/jeq2015.02.0069
    OpenUrl
  43. ↵
    1. Smith AC,
    2. Harrison PA,
    3. Pérez Soba M,
    4. Archaux F,
    5. Blicharska M,
    6. Egoh BN,
    7. Erős T,
    8. Fabrega Domenech N,
    9. György ÁI,
    10. Haines-Young R,
    11. Li S,
    12. Lommelen E,
    13. Meiresonne L,
    14. Miguel Ayala L,
    15. Mononen L,
    16. Simpson G,
    17. Stange E,
    18. Turkelboom F,
    19. Uiterwijk M,
    20. Veerkamp CJ,
    21. Wyllie de Echeverria V
    . 2017. How natural capital delivers ecosystem services: A typology derived from a systematic review. Ecosystem Services. 26:111-126. https://doi.org/10.1016/j.ecoser.2017.06.006
    OpenUrl
  44. ↵
    1. Takahashi Y,
    2. Saigusa N,
    3. Hirata R,
    4. Ide R,
    5. Fujinuma Y,
    6. Okano T,
    7. Arase T
    . 2015. Characteristics of temporal variations in ecosystem CO2 exchange in a temperate deciduous needle-leaf forest in the foothills of a high mountain. Journal of Agricultural Meteorology. 71(4):302-317. https://doi.org/10.2480/agrmet.D-14-00009
    OpenUrl
  45. ↵
    1. Teskey R,
    2. Wertin T,
    3. Bauweraerts I,
    4. Ameyem M,
    5. McGuire MA,
    6. Steppe K
    . 2014. Responses of tree species to heat waves and extreme heat events. Plant, Cell & Environment. 38(9):1699-1712. https://doi.org/10.1111/pce.12417
    OpenUrl
  46. ↵
    1. Turner DP,
    2. Cohen WB,
    3. Kennedy RE,
    4. Fassnacht KS,
    5. Briggs JM
    . 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment. 70(1):52-68.
    OpenUrlCrossRef
  47. ↵
    1. Vander Vecht J,
    2. Conway TM
    . 2015. Comparing species composition and planting trends: Exploring pest vulnerability in Toronto’s urban forest. Arboriculture & Urban Forestry. 41(1):26-40. https://doi.org/10.48044/jauf.2015.004
    OpenUrl
  48. ↵
    1. Venkatraman S,
    2. Praveen K,
    3. Long SP
    . 2016. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biology. 23(4):1626-1635. https://doi.org/10.1111/gcb.13526
    OpenUrl
  49. ↵
    1. Vyas D,
    2. Mehta N,
    3. Dinakaran J,
    4. Krishnayya NSR
    . 2010. Allometric equations for estimating leaf area index (LAI) of two important tropical species (Tectona grandis and Dendrocalamus strictus). Journal of Forestry Research. 21(2):197-200. https://doi.org/10.1007/s11676-010-0032-0
    OpenUrl
  50. ↵
    1. Wang J,
    2. Endreny TA,
    3. Nowak DJ
    . 2008. Mechanistic simulation of tree effects in an urban water balance model. Journal of the American Water Resources Association. 44(1):75-85. https://doi.org/10.1111/j.1752-1688.2007.00139.x
    OpenUrl
  51. ↵
    1. Wang Y,
    2. Fang H
    . 2020. Estimation of LAI with LiDAR Technology: A review. Remote Sensing. 12(20):3457. https://doi.org/10.3390/rs12203457
    OpenUrl
  52. ↵
    1. Wei S,
    2. Yin T,
    3. Dissegna MA,
    4. Whittle AJ,
    5. Fern Ow GL,
    6. Mohd. Yusof ML,
    7. Lauret N,
    8. Gastellu-Etchegorry JP
    . 2020. An assessment study of three indirect methods for estimating leaf area density and leaf area index of individual trees. Agricultural and Forest Meteorology. 292-293:108101. https://doi.org/10.1016/j.agrformet.2020.108101
    OpenUrl
  53. ↵
    1. Wickham H
    . 2016. ggplot2: Elegant graphics for data analysis. New York (NY, USA): Springer. 260 p. https://doi.org/10.1007/978-3-319-24277-4
  54. ↵
    1. Wickham H,
    2. François R,
    3. Henry L,
    4. Müller K
    . 2020. dplyr: A grammar of data manipulation (ver. 1.0.1). https://CRAN.R-project.org/package=dplyr
  55. ↵
    1. Winbourne JB,
    2. Jones TS,
    3. Garvey SM,
    4. Harrison JL,
    5. Wang L,
    6. Li D,
    7. Templer PH,
    8. Hutyrah LR
    . 2020. Tree transpiration and urban temperatures: Current understanding, implications, and future research directions. BioScience. 70(7):576-588. https://doi.org/10.1093/biosci/biaa055
    OpenUrl
  56. ↵
    1. Xiao Q,
    2. McPherson EG
    . 2002. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosystems. 6:291-302. https://doi.org/10.1023/B:UECO.0000004828.05143.67
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 47 (6)
Arboriculture & Urban Forestry (AUF)
Vol. 47, Issue 6
November 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Plant and Wood Area Index of Solitary Trees for Urban Contexts in Nordic Cities
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Plant and Wood Area Index of Solitary Trees for Urban Contexts in Nordic Cities
Johanna Deak Sjöman, Andrew Hirons, Nina Bassuk, Henrik Sjöman
Arboriculture & Urban Forestry (AUF) Nov 2021, 47 (6) 252-266; DOI: 10.48044/jauf.2021.022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Plant and Wood Area Index of Solitary Trees for Urban Contexts in Nordic Cities
Johanna Deak Sjöman, Andrew Hirons, Nina Bassuk, Henrik Sjöman
Arboriculture & Urban Forestry (AUF) Nov 2021, 47 (6) 252-266; DOI: 10.48044/jauf.2021.022
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • Appendix
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Identifying Essential Selection Criteria and Program Components to Improve Hawai‘i’s Exceptional Tree Program Based on Expert Consensus
Show more Articles

Similar Articles

Keywords

  • Climate Responsive Design; Leaf Area Index (LAI)
  • Plant Area Index (PAI)
  • Solitary Trees
  • Urban Forest Wood Area Index (WAI)
  • urban trees

© 2025 International Society of Arboriculture

Powered by HighWire