Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Urban Tree Growth Characteristics of Four Common Species in South Germany

Astrid Moser-Reischl, Thomas Rötzer, Stephan Pauleit and Hans Pretzsch
Arboriculture & Urban Forestry (AUF) July 2021, 47 (4) 150-169; DOI: https://doi.org/10.48044/jauf.2021.015
Astrid Moser-Reischl
Dr. Astrid Moser-Reischl (corresponding author), Chair of Forest Growth and Yield Science, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany, +49-8161-715409,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Thomas Rötzer
Prof. Dr. Thomas Rötzer, Chair of Forest Growth and Yield Science, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany, +49-8161-714667,
Roles: Chair
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Stephan Pauleit
Prof. Dr. Stephan Pauleit, Chair for Strategic Landscape Planning and Management, Technical University of Munich, Emil-Ramann-Str. 6, 85354 Freising, Germany, +49-8161-714780
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Hans Pretzsch
Prof. Dr. Dr. Hans Pretzsch, Chair of Forest Growth and Yield Science, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany, +49-8161-714711,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Akbari H,
    2. Pomerantz M,
    3. Taha H
    . 2001. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy. 70(3):295–310. https://doi.org/10.1016/S0038-092X(00)00089-X
    OpenUrlCrossRefWeb of Science
  2. ↵
    1. Bates D,
    2. Mächler M,
    3. Bolker B,
    4. Walker S
    . 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software. 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
    OpenUrlCrossRefPubMed
  3. ↵
    1. Bayer D,
    2. Reischl A,
    3. Rötzer T,
    4. Pretzsch H
    . 2018. Structural response of black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata Mill.) to varying urban environments analyzed by terrestrial laser scanning: Implications for ecological functions and services. Urban Forestry & Urban Greening. 35:129–138. https://doi.org/10.1016/j.ufug.2018.08.011
    OpenUrl
  4. ↵
    1. Berland A,
    2. Shiflett SA,
    3. Shuster WD,
    4. Garmestani AS,
    5. Goddard HC,
    6. Herrmann DL,
    7. Hopton ME
    . 2017. The role of trees in urban stormwater management. Landscape and Urban Planning. 162:167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017
    OpenUrl
  5. ↵
    1. Bühler O,
    2. Kristoffersen P,
    3. Larsen SU
    . 2006. Growth of street trees in Copenhagen with emphasis on the effect of different establishment concepts. Arboriculture & Urban Forestry. 5(33):330–337.
    OpenUrl
  6. ↵
    1. Cekstere G,
    2. Nikodemus O,
    3. Osvalde A
    . 2008. Toxic impact of the de-icing material to street greenery in Riga, Latvia. Urban Forestry & Urban Greening. 7(3):207–217. https://doi.org/10.1016/j.ufug.2008.02.004
    OpenUrl
  7. ↵
    1. Dahlhausen J,
    2. Biber P,
    3. Rötzer T,
    4. Uhl E,
    5. Pretzsch H
    . 2016. Tree species and their space requirements in six urban environments worldwide. Forests. 7(6):111. https://doi.org/10.3390/f7060111
    OpenUrl
  8. ↵
    1. Davies ZG,
    2. Edmondson JL,
    3. Heinemeyer A,
    4. Leake JR,
    5. Gaston KJ
    . 2011. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a citywide scale. Journal of Applied Ecology. 48(5):1125–1134. https://doi.org/10.1111/j.1365-2664.2011.02021.x
    OpenUrlCrossRef
  9. ↵
    1. Day SD,
    2. Bassuk NL,
    3. van Es H
    . 1995. Effects of four compaction remediation methods for landscape trees on soil aeration, mechanical impedance and tree establishment. Journal of Arboriculture. 22:144–150.
    OpenUrl
  10. ↵
    1. Day SD,
    2. Wiseman PE,
    3. Dickinson SB,
    4. Harris JR
    . 2010. Contemporary concepts of root system architecture of urban trees. Arboriculture & Urban Forestry. 4(36):149–157.
    OpenUrl
  11. ↵
    1. DWD
    . 2018. Deutscher Wetterdienst (German Weather Service). https://www.dwd.de/EN/Home/home_node.html
  12. ↵
    1. Dwyer JF
    . 2009. How old is that tree? Illinois Trees. 24(6):13.
    OpenUrl
  13. ↵
    1. Escobedo FJ,
    2. Kroeger T,
    3. Wagner JE
    . 2011. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution. 159(8-9):2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. ESRI
    . 2019. ArcGIS Desktop. Release 10.7.1. Redlands (CA, USA): Environmental Systems Research Institute.
  15. ↵
    1. Gómez-Baggethun E,
    2. Barton DN
    . 2013. Classifying and valuing ecosystem services for urban planning. Ecological Economics. 86:235–245. https://doi.org/10.1016/j.ecolecon.2012.08.019
    OpenUrlCrossRef
  16. ↵
    1. Grabosky J,
    2. Bassuk NL
    . 1995. A new urban tree soil to safely increase rooting volumes under sidewalks. Journal of Arboriculture. 21:187–201.
    OpenUrl
  17. ↵
    1. i-Tree
    . 2019. [Accessed 2019 July]. https://www.itreetools.org
  18. ↵
    1. Jiddu A
    . 2016. Circle plots with GGPLOT2. http://www.jiddualexander.com/blog/circle-plot
  19. ↵
    1. Kjelgren RK,
    2. Clark J
    . 1992. Microclimates and tree growth in tree urban spaces. Journal of Environmental Horticulture. 10(3):139–145. https://doi.org/10.24266/0738-2898-10.3.139
    OpenUrl
  20. ↵
    1. Kolokotsa D,
    2. Psomas A,
    3. Karapidakis E
    . 2009. Urban heat island in southern Europe: The case study of Hania, Crete. Solar Energy. 83(10):1871–1883. https://doi.org/10.1016/j.solener.2009.06.018
    OpenUrl
  21. ↵
    1. Konarska J,
    2. Uddling J,
    3. Holmer B,
    4. Lutz M,
    5. Lindberg F,
    6. Pleijel H,
    7. Thorsson S
    . 2016. Transpiration of urban trees and its cooling effect in a high latitude city. International Journal of Biometeorology. 60(1):159–172. https://doi.org/10.1007/s00484-015-1014-x
    OpenUrl
  22. ↵
    1. Larsen FK,
    2. Kristoffersen P
    . 2002. Tilia’s physical dimensions over time. Journal of Arboriculture. 28(5):209–214.
    OpenUrl
  23. ↵
    1. Liu C,
    2. Li X
    . 2012. Carbon storage and sequestration by urban forests in Shenyang, China. Urban Forestry & Urban Greening. 11(2):121–128. https://doi.org/10.1016/j.ufug.2011.03.002
    OpenUrl
  24. ↵
    1. Lukaszkiewicz J,
    2. Kosmala M
    . 2008. Determining the age of streetside trees with diameter at breast height-based multifactorial model. Arboriculture & Urban Forestry. 34(3):137–143.
    OpenUrl
  25. ↵
    1. McHale MR,
    2. Burke IC,
    3. Lefsky MA,
    4. Peper PJ,
    5. McPherson EG
    . 2009. Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems. 12(1):95–113. https://doi.org/10.1007/s11252-009-0081-3
    OpenUrlCrossRef
  26. ↵
    1. McPherson EG,
    2. van Doorn NS,
    3. Peper PJ
    . 2016. Urban tree database and allometric equations. Albany (CA, USA): USDA Forest Service, Pacific Southwest Research Station. General Technical Report PSW-GTR-253. 86 p. https://doi.org/10.2737/PSW-GTR-253
  27. ↵
    1. Millennium Ecosystem Assessment
    . 2005. Ecosystems and human well-being: Synthesis. Washington (DC, USA): Island Press. 137 p. http://www.millenniumassessment.org/documents/document.356.aspx.pdf
  28. ↵
    1. Morgenroth J,
    2. Buchan GD
    . 2009. Soil moisture and aeration beneath pervious and impervious pavements. Arboriculture & Urban Forestry. 35(3):135–141.
    OpenUrl
  29. ↵
    1. Moser A,
    2. Rahman MA,
    3. Pauleit S,
    4. Pretzsch H,
    5. Rötzer T
    . 2016. Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. International Journal of Biometeorology. 61(6):1095–1107. https://doi.org/10.1007/s00484-016-1290-0
    OpenUrl
  30. ↵
    1. Moser A,
    2. Rötzer T,
    3. Pauleit S,
    4. Pretzsch H
    . 2015. Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban Forestry & Urban Greening. 14(4):1110–1121. https://doi.org/10.1016/j.ufug.2015.10.005
    OpenUrl
  31. ↵
    1. Moser A,
    2. Rötzer T,
    3. Pauleit S,
    4. Pretzsch H
    . 2018. Stadtbäume: Wachstum, Funktionen und Leistungen-Risiken und Forschungsperspektiven. Allgemeine Forst- und Jagdzeitung. 188(5/6):94–111. https://doi.org/10.23765/afjz0002006
    OpenUrl
  32. ↵
    1. Neal BA,
    2. Whitlow TH
    . 1997. Using tree growth rates to evaluate urban tree planting specifications. Journal of Environmental Horticulture. 15(2):115–118. https://doi.org/10.24266/0738-2898-15.2.115
    OpenUrl
  33. ↵
    1. Nowak DJ,
    2. Greenfield EJ,
    3. Hoehn RE,
    4. Lapoint E
    . 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution. 178: 229–236. https://doi.org/10.1016/j.envpol.2013.03.019
    OpenUrlCrossRef
  34. ↵
    1. Oke T
    . 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society. 108(455):1–24. https://doi.org/10.1002/qj.49710845502
    OpenUrlCrossRefWeb of Science
  35. ↵
    1. Oliveira S,
    2. Andrade H,
    3. Vaz T
    . 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment. 46(11):2186–2194. https://doi.org/10.1016/j.buildenv.2011.04.034
    OpenUrl
  36. ↵
    1. Peng S,
    2. Piao S,
    3. Ciais P,
    4. Friedlingstein P,
    5. Ottle C,
    6. Bréon FM,
    7. Nan H,
    8. Zhou L,
    9. Myneni RB
    . 2012. Surface urban heat island across 419 global big cities. Environmental Science & Technology. 46(2):696–703. https://doi.org/10.1021/es2030438
    OpenUrl
  37. ↵
    1. Peper PJ,
    2. McPherson EG,
    3. Mori S
    . 2001. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. Journal of Arboriculture. 27(1):306–317.
    OpenUrl
  38. ↵
    1. Petersen A,
    2. Eckstein D
    . 1988. Roadside trees in Hamburg—Their present situation of environmental stress and their future chance for recovery. Arboricultural Journal. 12(1):109–117. https://doi.org/10.1080/03071375.1988.9756382
    OpenUrl
  39. ↵
    1. Pretzsch H,
    2. Biber P,
    3. Uhl E,
    4. Dahlhausen J,
    5. Rötzer T,
    6. Caldentey J,
    7. Koike T,
    8. van Con T,
    9. Chavanne A,
    10. Seifert T,
    11. du Toit B,
    12. Farnden C,
    13. Pauleit S
    . 2015. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry & Urban Greening. 14(3):466–479. https://doi.org/10.1016/j.ufug.2015.04.006
    OpenUrl
  40. ↵
    1. Pretzsch H,
    2. Biber P,
    3. Uhl E,
    4. Dahlhausen J,
    5. Schütze G,
    6. Perkins D,
    7. Rötzer T,
    8. Caldentey J,
    9. Koike T,
    10. van Con T,
    11. Chavanne A,
    12. du Toit B,
    13. Foster K,
    14. Lefer B
    . 2017. Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports. 7:15403. https://doi.org/10.1038/s41598-017-14831-w
  41. ↵
    1. Matyssek R,
    2. Schnyder H,
    3. Oßwald W,
    4. Ernst D,
    5. Munch JC,
    6. Pretzsch H
    1. Pretzsch H,
    2. Matthew C,
    3. Dieler J
    . 2012. Allometry of tree crown structure. Relevance for space occupation at the individual plant level and for self-thinning at the stand level. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H, editors. Growth and defence in plants. Berlin, Heidelberg (Germany): Springer Verlag. 474 p. https://doi.org/10.1007/978-3-642-30645-7
  42. ↵
    1. R Core Team
    . 2020. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. http://www.r-project.org/index.html
  43. ↵
    1. Radoglou K,
    2. Dobrowolska D,
    3. Spyroglou G,
    4. Nicolescu VN
    . 2009. A review on the ecology and silviculture of limes (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia tormentosa Moench.) in Europe. Die Bodenkultur. 60(3):9–19.
    OpenUrl
  44. ↵
    1. Rahman MA,
    2. Hartmann C,
    3. Moser-Reischl A,
    4. Freifrau von Strachwitz M,
    5. Paeth H,
    6. Pretzsch H,
    7. Pauleit S,
    8. Rötzer T
    . 2020a. Tree cooling effects and human thermal comfort under contrasting species and sites. Agricultural and Forest Meteorology. 287:107947. https://doi.org/10.1016/j.agrformet.2020.107947
  45. ↵
    1. Rahman MA,
    2. Stratopoulos LMF,
    3. Moser-Reischl A,
    4. Zölch T,
    5. Häberle KH,
    6. Rötzer T,
    7. Pretzsch H,
    8. Pauleit S
    . 2020b. Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment. 170:106606. https://doi.org/10.1016/j.buildenv.2019.106606
  46. ↵
    1. Rahman MA,
    2. Stringer P,
    3. Ennos AR
    . 2013. Effect of pit design and soil composition on performance of Pyrus calleryana street trees in the establishment period. Arboriculture & Urban Forestry. 39(6):256–266.
    OpenUrl
  47. ↵
    1. Monteith JL
    1. Rauner JL
    . 1976. Deciduchapterests. In: Monteith JL, editor. Vegetation and the atmosphere, volume 2: Case studies. London (UK): Academic Press. 241 p.
  48. ↵
    1. Rhoades RW,
    2. Stipes RJ
    . 1999. Growth of trees on Virginia Tech campus in response to various factors. Journal of Arboriculture. 25(4):211–217.
    OpenUrl
  49. ↵
    1. Rijal B,
    2. Weiskittel AR,
    3. Kershaw JA
    . 2012. Development of height to crown base models for thirteen tree species of the North American Acadian Region. The Forestry Chronicle. 88(1): 60–73. https://doi.org/10.5558/tfc2012-011
    OpenUrl
  50. ↵
    1. Roloff A
    . 2013. Bäume in der Stadt: Besonderheiten, Funktion, Nutzen, Arten, Risiken. Stuttgart (Germany): Ulmer Eugen Verlag. 256 p.
  51. ↵
    1. Roman DT,
    2. Novick KA,
    3. Brzostek ER,
    4. Dragoni D,
    5. Rahman F,
    6. Phillips RP
    . 2015. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia. 179:641–654. https://doi.org/10.1007/s00442-015-3380-9
    OpenUrlCrossRefPubMed
  52. ↵
    1. Roman LA,
    2. Scatena FN
    . 2011. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban Forestry & Urban Greening. 10(4):269–274. https://doi.org/10.1016/j.ufug.2011.05.008
    OpenUrl
  53. ↵
    1. Rötzer T,
    2. Biber P,
    3. Moser A,
    4. Schäfer C,
    5. Pretzsch H
    . 2017. Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management. 406:184–195. https://doi.org/10.1016/j.foreco.2017.09.070
    OpenUrl
  54. ↵
    1. Rötzer T,
    2. Häckel H,
    3. Würländer R
    . 1997. Agrar- und Umweltklimatologischer Atlas von Bayern (1961-1990): 1 CD-ROM, Datenverzeichnis (13 S.), Zolling: Deutscher Wetterdienst, Weihenstephan. ISBN 3-88148-334-9.
  55. ↵
    1. Rötzer T,
    2. Rahman MA,
    3. Moser-Reischl A,
    4. Pauleit S,
    5. Pretzsch H
    . 2019. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Science of the Total Environment. 676:651–664. https://doi.org/10.1016/j.scitotenv.2019.04.235
    OpenUrl
  56. ↵
    1. Rötzer T,
    2. Seifert T,
    3. Pretzsch H
    . 2009. Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. European Journal of Forestry Research. 128:171–182. https://doi.org/10.1007/s10342-008-0213-y
    OpenUrl
  57. ↵
    1. Roy S,
    2. Byrne JA,
    3. Pickering C
    . 2012. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening. 11(4):351–363. https://doi.org/10.1016/j.ufug.2012.06.006
    OpenUrl
  58. ↵
    1. Rust S
    . 2014. Analysis of regional variation of height growth and slenderness in populations of six urban tree species using a quantile regression approach. Urban Forestry & Urban Greening. 13(2):336–343. https://doi.org/10.1016/j.ufug.2013.12.003
    OpenUrlCrossRef
  59. ↵
    1. Sæbø A,
    2. Popek R,
    3. Nawrot B,
    4. Hanslin HM,
    5. Gawronska H,
    6. Gawronski SW
    . 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment. 427-428:347–354. https://doi.org/10.1016/j.scitotenv.2012.03.084
    OpenUrl
  60. ↵
    1. Sanders J,
    2. Grabosky J,
    3. Cowie P
    . 2013. Establishing maximum size expectations for urban trees with regard to designed space. Arboriculture & Urban Forestry. 39(2):68–73.
    OpenUrl
  61. ↵
    1. Sanders JR,
    2. Grabosky JC
    . 2014. 20 years later: Does reduced soil area change overall tree growth? Urban Forestry & Urban Greening. 13(2):295–303. https://doi.org/10.1016/j.ufug.2013.12.006
    OpenUrl
  62. ↵
    1. Semenzato P,
    2. Cattaneo D,
    3. Dainese M
    . 2011. Growth prediction for five tree species in an Italian urban forest. Urban Forestry & Urban Greening. 10(3):169–176. https://doi.org/10.1016/j.ufug.2011.05.001
    OpenUrl
  63. ↵
    1. Stoffberg GH,
    2. van Rooyen MW,
    3. van der Linde MJ,
    4. Groeneveld HT
    . 2008. Predicting the growth in tree height and crown size of three street tree species in the City of Tshwane, South Africa. Urban Forestry & Urban Greening. 7(4):259–264. https://doi.org/10.1016/j.ufug.2008.05.002
    OpenUrl
  64. ↵
    1. Tran H,
    2. Uchihama D,
    3. Ochi S,
    4. Yasuoka Y
    . 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation. 8(1):34–48. https://doi.org/10.1016/j.jag.2005.05.003
    OpenUrlCrossRefWeb of Science
  65. ↵
    1. Vaz Monteiro M,
    2. Levanic T,
    3. Doick KJ
    . 2017. Growth rates of common urban trees in five cities in Great Britain: A dendrochronological evaluation with an emphasis on the impact of climate. Urban Forestry & Urban Greening. 22:11–23. https://doi.org/10.1016/j.ufug.2017.01.003
    OpenUrl
  66. ↵
    1. Villarreal EL,
    2. Bengtsson L
    . 2005. Response of a Sedum green-roof to individual rain events. Ecological Engineering. 25(1):1–7. https://doi.org/10.1016/j.ecoleng.2004.11.008
    OpenUrlCrossRefWeb of Science
  67. ↵
    1. Ward K,
    2. Lauf S,
    3. Kleinschmit B,
    4. Endlicher W
    . 2016. Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment. 569-570:527–539. https://doi.org/10.1016/j.scitotenv.2016.06.119
    OpenUrl
  68. ↵
    1. Whitlow TH,
    2. Bassuk NL
    . 1986. Trees in difficult sites. Journal of Arboriculture. 13(1):10–17.
    OpenUrl
  69. ↵
    1. Xiao Q,
    2. McPherson EG,
    3. Ustin SL,
    4. Grismer ME
    . 2000. A new approach to modeling tree rainfall interception. Journal of Geophysical Research. 105(D23):29173–29188. https://doi.org/10.1029/2000JD900343
    OpenUrl
  70. ↵
    1. Zhou D,
    2. Zhao S,
    3. Liu S,
    4. Zhang L,
    5. Zhu C
    . 2014. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment. 152:51–61. https://doi.org/10.1016/j.rse.2014.05.017
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 47 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 47, Issue 4
July 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Urban Tree Growth Characteristics of Four Common Species in South Germany
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Urban Tree Growth Characteristics of Four Common Species in South Germany
Astrid Moser-Reischl, Thomas Rötzer, Stephan Pauleit, Hans Pretzsch
Arboriculture & Urban Forestry (AUF) Jul 2021, 47 (4) 150-169; DOI: 10.48044/jauf.2021.015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Urban Tree Growth Characteristics of Four Common Species in South Germany
Astrid Moser-Reischl, Thomas Rötzer, Stephan Pauleit, Hans Pretzsch
Arboriculture & Urban Forestry (AUF) Jul 2021, 47 (4) 150-169; DOI: 10.48044/jauf.2021.015
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Appendix 1.
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Hardscape of Soil Surface Surrounding Urban Trees Alters Stem Carbon Dioxide Efflux
  • Literature Review of Unmanned Aerial Systems and LIDAR with Application to Distribution Utility Vegetation Management
  • Borrowed Credentials and Surrogate Professional Societies: A Critical Analysis of the Urban Forestry Profession
Show more Articles

Similar Articles

Keywords

  • Aesculus
  • Growing Space Requirement
  • Platanus
  • Robinia
  • Tilia
  • Tree Growth Dynamics
  • Urban Tree Allometry

© 2023 International Society of Arboriculture

Powered by HighWire