Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Estimation of Individual Tree Health Condition for Japanese Mountain Cherry (Cerasus jamasakura) Using Airborne LiDAR

Takeshi Sasaki, Junichi Imanishi, Yoshihiko Iida, Youngkeun Song, Yukihiro Morimoto and Tamao Kojima
Arboriculture & Urban Forestry (AUF) March 2019, 45 (2) 54-64; DOI: https://doi.org/10.48044/jauf.2019.005
Takeshi Sasaki
Takeshi Sasaki (corresponding author), Tokushima University—Graduate School of Technology, Industrial and Social Sciences, Tokushima, Tokushima, Japan
  • Find this author on Google Scholar
  • Search for this author on this site
Junichi Imanishi
Junichi Imanishi, Kyoto University—Graduate School of Global Environment Studies, Kyoto, Kyoto, Japan
  • Find this author on Google Scholar
  • Search for this author on this site
Yoshihiko Iida
Yoshihiko Iida, United Nations University—Institute for the Advanced Study of Sustainability, Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Search for this author on this site
Youngkeun Song
Youngkeun Song, Seoul National University—Graduate School of Environmental Studies, Seoul, Korea (the Republic of)
  • Find this author on Google Scholar
  • Search for this author on this site
Yukihiro Morimoto
Yukihiro Morimoto, Kyoto Gakuen University—Faculty of Bioenvironmental Science, Kameoka, Kyoto, Japan
  • Find this author on Google Scholar
  • Search for this author on this site
Tamao Kojima
Tamao Kojima, Sun Act Co. Ltd., Kyoto, Kyoto
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

  1. ↵
    1. Chen, J.M., and
    2. J. Cihlar
    . 1996. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote sensing of Environment 55: 153–162.
    OpenUrlCrossRef
  2. ↵
    1. Ferretti, M.
    1997. Forest health assessment and monitoring—issues for consideration. Environmental monitoring and assessment 48: 45–72.
    OpenUrlCrossRefWeb of Science
  3. ↵
    1. Geospatial Information Authority of Japan
    . 2006. Digital elevation model (DEM) creating manual from airborne laser data (draft). Geospatial Information Authority A1, No. 310. Accessed 03/10/2017. <http://psgsv2.gsi.go.jp/koukyou/download/re-za/310kouku.pdf> (in Japanese).
  4. ↵
    1. Griffith, K.T.,
    2. A.G. Ponette-González,
    3. L.M. Curran, and
    4. K.C. Weathers
    . 2015. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA. Environmental Monitoring and Assessment 187: 1–13.
    OpenUrlCrossRef
  5. ↵
    1. Hasegawa, S.,
    2. M. Tabata,
    3. T. Kozawa, and
    4. Y. Sato
    . 1984. Relationship between physicality of soil and tree vigour in planting area marked by heavy construction machine. An example of high way planting area. Journal of the Japanese Institute of Landscape Architects 48: 104–122 (In Japanese with English abstract).
    OpenUrl
  6. ↵
    1. Maarel,
    2. E. van der
    1. Hill, M.O., and
    2. H.G. Gauch
    . 1980. Detrended correspondence analysis: an improved ordination technique. pp. 47–58. In: Maarel, E. van der (Ed.). Classification and ordination. Springer, Dordrecht, Netherlands.
  7. ↵
    1. Holmgren, J.,
    2. Å. Persson, and
    3. U. Söderman
    . 2008. Species identification of individual trees by combining high resolution LiDAR data with multispectral images. International Journal of Remote Sensing 29: 1537–1552.
    OpenUrl
  8. ↵
    1. Hopkinson, C. and
    2. L. Chasmer
    . 2009. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment 113: 275–288.
    OpenUrl
  9. ↵
    1. Iida, Y.,
    2. J. Imanishi, and
    3. Y. Morimoto
    . 2013. Variation distribution of budburst phenology of Japanese mountain cherry (Cerasus jamasakura [Siebold ex Koidz.] H. Ohba var. jamasakura) and its applicability. Journal of the Japanese Society of Revegetation Technology 39: 98–102 (In Japanese with English abstract).
    OpenUrl
  10. ↵
    1. Imanishi, J.,
    2. H. Kim,
    3. Y. Iida,
    4. H. Okugawa,
    5. Y. Morimoto,
    6. K. Yamanaka, and
    7. T. Kojima
    . 2012. Effect of sunlight condition determined by terrain on tree health of Japanese mountain cherry (Cerasus jamasakura [Siebold ex Koidz.] H. Ohba var. jamasakura) in Yoshinoyama, Nara Prefecture, Japan. Journal of the Japanese Society of Revegetation Technology 38: 15–20 (In Japanese with English abstract).
    OpenUrl
  11. ↵
    1. Imanishi, J.,
    2. H. Okugawa,
    3. K. Hyunjun,
    4. Y. Iida,
    5. Y. Morimoto,
    6. K. Yamanaka, and
    7. T. Kojima
    . 2011. Tree health assessment of Cerasus species during the flowering season: a case study of Japanese mountain cherry (Cerasus jamasakura [Siebold ex Koidz.] H. Ohba var. jamasakura) in Yoshinoyama, Nara Prefecture, Japan. Journal of the Japanese Society of Revegetation Technology 37: 9–14 (In Japanese with English abstract).
    OpenUrl
  12. ↵
    1. Imanishi, J.,
    2. Y. Song,
    3. T. Sasaki,
    4. Y. Iida,
    5. Y. Morimoto, and
    6. T. Kojima
    . 2016. Large-scale survey of flowering cherry trees using airborne LiDAR. Proceedings of Archi–Cultural Interactions through the Silk Road 4th International Conference, 149–152.
  13. ↵
    1. Korhonen, L.,
    2. I. Korpela,
    3. J. Heiskanen, and
    4. M. Maltamo
    . 2011. Airborne discrete-return LiDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment 115: 1065–1080.
    OpenUrl
    1. Kozawa, T., and
    2. T. Kobayashi
    . 1998. The objective evaluation method of the tree vigor with the stem temperature.—The development of a plant vigor measuring instrument—. Journal of Japan Society of Civil Engineers. 622: 81–86 (In Japanese with English abstract).
    OpenUrl
  14. ↵
    1. Lefsky, M.A.,
    2. W.B. Cohen,
    3. G.G. Parker, and
    4. D.J. Harding
    . 2002. LiDAR remote sensing for ecosystem studies. BioScience 52: 19–30.
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Lim, K.,
    2. P. Treitz,
    3. M. Wulder,
    4. B. St-Onge, and
    5. M. Flood
    . 2003. LiDAR remote sensing of forest structure. Progress in Physical Geography 27: 88–106.
    OpenUrlCrossRefWeb of Science
  16. ↵
    1. Long, R. P.,
    2. S.B. Horsley, and
    3. P.R. Lilja
    . 1997. Impact of forest liming on growth and crown vigor of sugar maple and associated hardwoods. Canadian Journal of Forest Research 27: 1560–1573.
    OpenUrl
  17. ↵
    1. Maltamo, M.,
    2. K. Eerikäinen,
    3. J. Pitkänen,
    4. J. Hyyppä, and
    5. M. Vehmas
    . 2004. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment 90: 319–330.
    OpenUrl
  18. ↵
    1. Michez, A.,
    2. H. Piégay,
    3. J. Lisein,
    4. H. Claessens, and
    5. P. Lejeune
    . 2016. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment 188: 1–19.
    OpenUrlCrossRef
  19. ↵
    1. Mizoue, N., and
    2. M. Dobbertin
    . 2003. Detecting differences in crown transparency assessments between countries using the image analysis system CROCO. Environmental Monitoring and Assessment 89: 179–195.
    OpenUrlPubMed
  20. ↵
    1. Morsdorf, F.,
    2. B. Kötz,
    3. E. Meier,
    4. K.I. Itten, and
    5. B. Allgöwer
    . 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sensing of Environment 104: 50–61.
    OpenUrlCrossRef
  21. ↵
    1. Nakajima, H.,
    2. A. Kume,
    3. M. Ishida,
    4. T. Ohmiya, and
    5. N. Mizoue
    . 2011. Evaluation of estimates of crown condition in forest monitoring: comparison between visual estimation and automated crown image analysis. Annals of Forest Science 68: 1333–1340.
    OpenUrl
  22. ↵
    1. Nielsen, A.B.,
    2. J. Östberg, and
    3. T. Delshammar
    . 2014. Review of urban tree inventory methods used to collect data at single-tree level. Arboriculture & Urban Forestry 40: 96–111.
    OpenUrl
  23. ↵
    1. Ørka,
    2. H.O.,
    3. E. Næsset, and
    4. O.M. Bollandsås
    . 2009. Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sensing of Environment 113: 1163–1174.
    OpenUrlCrossRef
  24. ↵
    1. Pontius, J. and
    2. R. Hallett
    . 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60: 1156–1163.
    OpenUrlCrossRef
  25. ↵
    1. Popescu, S.C.,
    2. R.H. Wynne, and
    3. R.F. Nelson
    . 2003. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing 29: 564–577.
    OpenUrl
    1. R Development Core Team
    . 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN3-900051-07-0, URL http://www.R-project.org
  26. ↵
    1. Riaño,
    2. D.,
    3. F. Valladares,
    4. S. Condés, and
    5. E. Chuvieco
    . 2004. Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology 124: 269–275.
    OpenUrlCrossRefWeb of Science
  27. ↵
    1. Richardson, J.J.,
    2. L.M. Moskal, and
    3. S.H. Kim
    . 2009. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology 149: 1152–1160.
    OpenUrl
  28. ↵
    1. Sasaki, T.,
    2. J. Imanishi,
    3. K. Ioki,
    4. Y. Morimoto, and
    5. K. Kitada
    . 2008. Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landscape and Ecological Engineering 4: 47–55.
    OpenUrl
  29. ↵
    1. Sasaki, T.,
    2. J. Imanishi,
    3. W. Fukui, and
    4. Y. Morimoto
    . 2016a. Fine-scale characterization of bird habitat using airborne LiDAR in an urban park in Japan. Urban Forestry & Urban Greening 17: 16–22.
    OpenUrl
  30. ↵
    1. Sasaki, T.,
    2. J. Imanishi,
    3. K. Ioki,
    4. Y. Song, and
    5. Y. Morimoto
    . 2016b. Estimation of leaf area index and gap fraction in two broad-leaved forests by using small-footprint airborne LiDAR. Landscape and Ecological Engineering 12: 117–127.
    OpenUrl
  31. ↵
    1. Schaberg, P.G.,
    2. J.W. Tilley,
    3. G.J. Hawley,
    4. D.H. DeHayes, and
    5. S.W. Bailey
    . 2006. Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. Forest Ecology and Management 223: 159–169.
    OpenUrl
  32. ↵
    1. Schnell, S.,
    2. C. Kleinn, and
    3. G. Ståhl
    . 2015. Monitoring trees outside forests: a review. Environmental Monitoring and Assessment 187. doi: 10.1007/s10661-015-4817-7
    OpenUrlCrossRef
  33. ↵
    1. Schomaker, M.E.,
    2. S.J. Zarnoch,
    3. W.A. Bechtold,
    4. D.J. Latelle,
    5. W.G. Burkman, and
    6. S.M. Cox
    . 2007. Crown-condition classification: a guide to data collection and analysis. General Technical Report SRS-102. USDA Forest Service Southern Research Station, Asheville, North Carolina, U.S.
  34. ↵
    1. Scowcroft, P. G.,
    2. J.B. Friday,
    3. T. Idol,
    4. N. Dudley,
    5. J. Haraguchi, and
    6. D. Meason
    . 2007. Growth response of Acacia koa trees to thinning, grass control, and phosphorus fertilization in a secondary forest in Hawai’i. Forest Ecology and Management 239: 69–80.
    OpenUrl
  35. ↵
    1. Y. Morimoto and
    2. Y. Shirahata
    1. Shibata, S.
    2007. Revegetation Technology. pp. 123–135. In: Y. Morimoto and Y. Shirahata (Eds.). Environmental Design: Conservation and Creation of the Landscapes. Asakura Publishing, Tokyo, Japan (in Japanese).
  36. ↵
    1. Takenaka, A.
    2009. CanopOn2 hemispherical photograph analysis program. Accessed 09/18/2016. <http://takenaka-akio.org/etc/canopon2/>
  37. ↵
    1. Wulder, M.A.,
    2. C.W. Bater,
    3. N.C. Coops,
    4. T. Hilker, and
    5. J.C. White
    . 2008. The role of LiDAR in sustainable forest management. The Forestry Chronicle 84: 807–826.
    OpenUrl
  38. ↵
    1. Zimble, D.A.,
    2. D.L. Evans,
    3. G.C. Carlson,
    4. R.C. Parker,
    5. S.C. Grado, and
    6. P.D. Gerard
    . 2003. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment 87: 171–182.
    OpenUrl
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 45 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 45, Issue 2
March 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Estimation of Individual Tree Health Condition for Japanese Mountain Cherry (Cerasus jamasakura) Using Airborne LiDAR
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Estimation of Individual Tree Health Condition for Japanese Mountain Cherry (Cerasus jamasakura) Using Airborne LiDAR
Takeshi Sasaki, Junichi Imanishi, Yoshihiko Iida, Youngkeun Song, Yukihiro Morimoto, Tamao Kojima
Arboriculture & Urban Forestry (AUF) Mar 2019, 45 (2) 54-64; DOI: 10.48044/jauf.2019.005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Estimation of Individual Tree Health Condition for Japanese Mountain Cherry (Cerasus jamasakura) Using Airborne LiDAR
Takeshi Sasaki, Junichi Imanishi, Yoshihiko Iida, Youngkeun Song, Yukihiro Morimoto, Tamao Kojima
Arboriculture & Urban Forestry (AUF) Mar 2019, 45 (2) 54-64; DOI: 10.48044/jauf.2019.005
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • Acknowledgments
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Using the CSR Theory when Selecting Woody Plants for Urban Forests: Evaluation of 342 Trees and Shrubs
  • Right Appraisal for the Right Purpose: Comparing Techniques for Appraising Heritage Trees in Australia and Canada
  • Urban Tree Mortality: The Purposes and Methods for (Secretly) Killing Trees Suggested in Online How-To Videos and Their Diagnoses
Show more Articles

Similar Articles

Keywords

  • Airborne Laser Scanning
  • Detrended Correspondence Analysis
  • Hemispherical Photography
  • Single Tree Level
  • Tree Crown Density
  • Tree Health Assessment

© 2025 International Society of Arboriculture

Powered by HighWire