
©2019 International Society of Arboriculture

54 Sasaki et al: Estimation of Individual Tree Health Condition Using Airborne LiDAR

by observers have been reported (Mizoue and Dob-
bertin 2003; Nakajima et al. 2011). Passive optical 
remote sensing data from satellites or aerial images 
can provide an objective evaluation of tree condition 
for a large area by calculating vegetation indices, 
such as the normalized difference vegetation index, 
although the estimation accuracies are lower than 
visual assessments (Michez et al. 2016). The passive 
optical sensors cannot penetrate canopies and there-
fore fail to acquire precise 3-D (three-dimensional) 
information, and many of the vegetation indices 
become saturated at high levels of leaf densities 
(Chen and Cihlar 1996; Sasaki et al. 2016b).

Light detection and ranging (LiDAR) is an active 
remote sensing technology which can directly acquire 
3-D structure information (Lefsky et al. 2002; Grif-
fith et al. 2015; Sasaki et al. 2016a). The LiDAR sys-
tem emits numerous laser pulses (tens of thousands of 
pulses per second) and records one or more discrete 

INTRODUCTION
Tree health condition is one of the most important 
parameters for monitoring and proper management 
of trees and forests which provide various ecosystem 
services (Ferretti 1997; Nielsen et al. 2014). Evalua-
tion procedures of the tree crown health based on 
visual observations have been developed at the indi-
vidual tree level, which are provided by the United 
States Department of Agriculture (Schomaker et al. 
2007). Many studies have also evaluated the condi-
tion of crowns using visual procedures (Long et al. 
1997; Schaberg et al. 2006; Scowcroft et al. 2007; 
Pontius and Hallett 2014). Similarly, in Japan a visual 
tree health evaluation method based on several indi-
cators, including the tree form, crown dieback, and 
crown density, is used widely (Hasegawa et al. 1984; 
Kozawa and Kobayashi 1999; Imanishi et al. 2011; 
Iida et al. 2013). These visual methods are often sub-
jective and differences between the evaluations made 
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area is about 50 hectares (0.5 km2). The four main 
planted areas are known as Shimosenbon, Nakasen-
bon, Kamisenbon, and Okusenbon, in order from the 
lowest elevation (Figure 1). Recently, local residents 
have become concerned about declined tree health 
condition, which is inferred to be caused by multiple 
factors, including soil water retention ability deter-
mined by the topography, infection of fungus, and 
barkfeeding damage by animals (Imanishi et al. 2012).

Field Survey
We selected 11 clusters comprising a total of 324 cherry 
trees (Figure 1). We aimed to include trees in various 
health conditions throughout the entire area of Yoshi-
noyama. In August 2011, each tree was visually clas-
sified by two experts according to one of four health 
ranks (1 = good to 4 = poor) taking into account the 
following eight indicators: tree vigor, tree form, 
branch growth, crown dieback, crown density, leaf 
shape and size, leaf color, and bark condition, in 
accordance with the Japanese traditional method (Shi-
bata 2007; Table 1).

For each tree, the stem location was measured 
using differential GPS and total station; the crown 
projection area was depicted using total station by 
finding the apexes of branches and connecting them. 
Each crown projection area on the ground was trans-
formed into a polygon with ArcGIS and its area was 
calculated. We excluded five trees with excessively 
small crowns that did not produce any meshes when 

returns or a continuous waveform for each laser emis-
sion (Lim et al., 2003). LiDAR is less susceptible to 
weather conditions compared to optical sensors and it 
is effective for measuring objects with complex 3-D 
structures such as trees and forests (Wulder et al. 
2008). Information about the objects hit by the lasers 
is converted into a large number of point cloud data, 
which all have x-, y-, and z-coordinate values, as well 
as attributes such as the intensity and return number. 
At the forest stand level, the canopy coverage and 
porosity have been estimated with high accuracies 
using variables based on the laser canopy hits and 
laser penetration rate derived from LiDAR data (Sasaki 
et al. 2008; Hopkinson and Chasmer 2009; Korhonen 
et al. 2011; Sasaki et al. 2016b). Thus, physical prop-
erties of trees such as their crown density and porosity 
may be estimated by applying these estimation meth-
ods at the individual tree level. Furthermore, the health 
condition of a tree can be estimated if it correlates 
with these physical indicators. Although many past 
studies identified individual trees in forests and esti-
mated tree characteristics using LiDAR data (Popescu 
et al. 2003; Holmgren et al. 2008; Ørka et al. 2009), 
relatively few studies monitored trees outside forests 
(Schell et al. 2015), and none have associated the 
LiDAR variables with field-based visual tree health 
evaluations.

In this study, we aimed to verify the effectiveness 
of using airborne LiDAR data for estimating the indi-
vidual tree health condition of Japanese mountain 
cherry (Cerasus jamasakura) planted in Yoshinoyama, 
Japan. In particular, we focused on the crown density, 
which is a visual health indicator, and used the crown 
porosity data obtained from hemispherical photo-
graphs to support the objectivity of the visual health 
assessment. 

METHODS
Study Site
Yoshinoyama (34° 22' N, 135° 52' E), located in Nara 
Prefecture, Japan, is known for its cultural landscape 
containing flowering cherry trees. It has been desig-
nated as a UNESCO World Heritage Site because of 
the Sacred Sites and Pilgrimage Routes in the Kii 
Mountain Range. It has an elevation range of ca. 200 
to 850 m above sea level, where cherry trees (mostly 
Japanese mountain cherry [Cerasus jamasakura]) 
have traditionally been planted for about 1,300 years 
(Imanishi et al. 2016). At present, the total planted 

Figure 1. Location of the study site and distribution of C. jamasakura 
trees tested in the present study. The black border and dots represent 
the LiDAR data collection area and tested trees, respectively.



©2019 International Society of Arboriculture

56 Sasaki et al: Estimation of Individual Tree Health Condition Using Airborne LiDAR

following analyses (Figure 2). The photographs were 
taken using a fish-eye lens (Sigma Circular Fisheye 
4.5-mm F2.8 EX DC) attached to a digital camera 
(Canon EOS 60D), which was leveled on a tripod 1.3 
m above the ground, under overcast sky conditions or 
immediately after sunset in August 2011.

LiDAR Data
The airborne LiDAR data were collected over the 
study area using a RIEGL LMS-Q560 sensor (Riegl 
Laser Measurement Systems GmbH, Horn, Austria) 
mounted on a helicopter platform on August 4, 2011, 
which was during the leaf-on season. This system 
projects near-infrared laser beams (1,550 nm) and 
records the full waveform of the reflection. The pulse 
frequency was 240 kHz and the scanning angle was 
±30°. The flying height was 300 m above ground-
level and the beam divergence was 0.5 mrad, thereby 
yielding a ground footprint measuring approximately 
0.15 m in diameter. The flight speed was around 80 
km/h–1. A back-and-forth flight pattern was used to 
survey the entire area. The full-waveform data from 
the entire area were converted into discrete points by 
detecting the local amplitude maxima of the 

the polygons were converted into 0.5-m meshes in 
the later processing step, as well as 31 cherry trees 
other than C. jamasakura, and we used 288 individ-
ual trees in the following analyses (35 in Shimosen-
bon, 163 in Nakasenbon, 60 in Kamisenbon, and 30 
in Okusenbon). The means and standard deviations 
for height and diameter at breast height (dbh) in the 
selected 288 individuals were 11.4 m ± 2.8 m and 
36.8 cm ± 16.7 cm, respectively. The means and stan-
dard deviations for height and dbh in the excluded 
five small individuals were 5.7 m ± 0.9 m and 8.9 cm 
± 3.5 cm, respectively.

Among the 288 C. jamasakura trees, we took 
hemispherical photographs of 96 individuals (15 in 
Shimosenbon, 40 in Nakasenbon, 27 in Kamisenbon, 
and 14 in Okusenbon) and calculated the individual-
level crown porosities. The trees with relatively 
upright stems and evenly distributed branches around 
the trunks were selected to minimize noises when 
comparing the field and the LiDAR data. Because the 
hemispherical photograph taken under the crown 
includes the trunk considerably, we took two photo-
graphs on opposite sides of the trunk for each tree and 
integrated each half not blocked by the trunk in the 

Table 1. Tree health indicators used for visual rank assessment (Shibata 2007).

Indicators	 Abbreviation	 Rank 1	 Rank 2	 Rank 3	 Rank 4

Tree vigor	 Tvg	 vigorous growth	 slight decline in vigor	 clear decline in vigor	 clearly poor growth state
			   (not conspicuous)		  and no prospect of
					     recovery

Tree form	 Tfm	 maintenance of the	 slight loss of the natural	 conspicuous loss of the	 complete loss of the	
		  natural tree form	 tree form (not conspicuous)	 natural tree form	 natural tree form	

Branch growth	 Bgr	 normal	 slightly less than rank 1	 new branches are	 new branches are
		  (≥ 30 cm at the top)		  short and thin	 extremely short

Crown dieback	 Cdb	 no dieback	 slight dieback	 conspicuous dieback	 severe dieback or
			   (not conspicuous)	 or cuttings	 cutting

Crown density	 Crd	 closed crown and high	 slightly less than rank 1	 distinct porosity with	 many dead branches, 	
		  density of branches		  sparse branches and	 poor leaf development, 
		  and leaves		  leaves	 and very sparse crown

Leaf shape and size	 Lsh	 normal	 few deformed or	 deformed leaves or 	 many deformed leaves or
			   small leaves	 generally small leaves	 conspicuously small
					     leaves

Leaf color	 Lcl	 normal	 few pale leaves or	 abnormal (many pale	 conspicuously abnormal
			   diseased leaves	 leaves or diseased leaves)	 leaves

Bark condition	 Brk	 active thickening growth	 normal	 old bark, no bark	 very old bark, distinct
		  and active bark		  regeneration, or damage	 damage, or decay
		  regeneration
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photographs per tree, we selected the zenith angle to 
completely cover the crown on the opposite side from 
the trunk (Figure 2), with the exception of abnor-
mally long branches and overlaps with adjacent trees. 
The porosity value was calculated by integrating two 
hemicycles per tree, which we defined as the crown 
porosity.

LiDAR Data Processing
A 0.5-m mesh digital elevation model (DEM) was 
created by building a triangulated irregular network 
according to the public manual (Geospatial Informa-
tion Authority of Japan 2006). For all the LiDAR 
points, we derived their height above the ground using 
the DEM data, and the points with height ≥ 1.3 m 
were classified as ‘‘vegetation’’ points and the remain-
ing as ‘‘ground’’ points. The numbers of the “vegeta-
tion” points and “ground” points were exported with 
0.5-m meshes. The numbers of the points with each 
return type, i.e., first, intermediate, last, and only 
returns, were also exported with 0.5-m meshes. 

The numbers of points in each class and each 
return type within each crown polygon were calcu-
lated. The meshes on the polygon border line were 

waveforms (by Nakanihon Air Service Co. Ltd., 
Japan). All of the points obtained had x-, y-, and 
z-coordinate values and any of following attributes: 
first, intermediate, last, or only returns. First, inter-
mediate, and last refer to the order in which the pro-
jected laser hit the tree components while passing 
through the crown. If all of the energy from a pro-
jected laser was returned at the same time, it was 
recorded as an only return.

Data Processing
Calculation of Crown Porosity
The individual-level crown porosity was calculated 
based on the hemispherical photographs of each of 
the 96 trees using CanopOn 2 software (Takenaka 
2009), which binarized all the pixels in a hemispheri-
cal photograph to classify them as either sky or vege-
tation, where the hemispherical photograph was 
divided into 11 annulus rings split at zenith angles of 
8.6°, 16.0°, 24.3°, 32.4°, 40.9°, 49.9°, 57.8°, 65.0°, 
73.2°, 81.7°, and 90.0°. Thus, 11 gap fraction values 
were calculated according to the integrated annuli 
from 0–8.6° to 0–90.0°. For each of the two 

Figure 2. Calculation of the individual-level crown porosity based on a hemispherical photograph. The two 
hemicycles framed by the solid lines were integrated and the porosity was calculated.
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were averaged for each tree and used in the following 
analyses (hereinafter, referred to as “DCA axis 1 
score”). Relationships between the DCA axis 1 score 
and the ten LiDAR variables (Table 2) were investi-
gated using Pearson’s correlation coefficient.

For the 96 individuals with hemispherical photo-
graphs, relationships between the crown porosities in 
the photographs and the ten LiDAR variables were 
assessed using Pearson’s correlation coefficients. 
Correlation between the DCA axis 1 score and the 
crown porosity was also calculated.

Estimating the Tree Health Condition and 
Crown Porosity Using LiDAR Variables
We verified whether the DCA axis 1 score could be 
estimated using the LiDAR variables. A generalized 
linear model (GLM) was produced using a Gaussian 
distribution as an error distribution. To eliminate multi-
collinearity, if the correlation coefficients among the 
explanatory variables exceeded 0.5, that with a lower 
correlation with the response variable was eliminated 
in order. The conceivable regression models were 
arranged in the ascending order of Akaike’s informa-
tion criterion (AIC), and the model with the lowest 
AIC was selected as the best model. The effective-
ness of the models was verified using the root mean 
squared error (RMSE) and the Pearson’s correlation 
between the estimated values and the measured 
values.

dealt with as the meshes in the polygon if the center 
of the mesh was included in the polygon. Thus, the 
mean and standard deviation of the point density 
inside the crown were 167.0 and 81.4 points/m2 or 
m–2, respectively (n = 288). We calculated ten LiDAR 
variables based on previous studies (Morsdorf et al. 
2006; Sasaki et al. 2008; Korhonen et al. 2011; Sasaki 
et al. 2016b) for each tree crown (Table 2), all of 
which represented the proportion of laser hits within 
the crowns using the information obtained from the 
point classes (vegetation or ground) and attributes 
(first, intermediate, last, or only).

Ordination and Correlation Analysis
For the 288 C. jamasakura trees, each 4-rank health 
indicator (Table 1) was converted into binary value: 
for example, if the “Tree vigor (Tvg)” for a tree is 
rank 3, the rank value is expressed by four binary val-
ues; Tvg1: 0, Tvg2: 0, Tvg3: 1, Tvg4: 0. This conver-
sion was conducted for the data of the two experts 
respectively. Using the produced binary data, 
detrended correspondence analysis (DCA) was con-
ducted using the vegan package in R version 3.4.1. (R 
Development Core Team). DCA is an improved 
method of correspondence analysis (CA) and corrects 
“arch effect” inherent to CA when using unimodal 
data (Hill and Gauch 1980). By this method, the 
health indicators for each rank were ordinated along 
the axes. The scores of the first axis by the two experts 

Table 2. LiDAR indices used in the present study.

Abbreviation	 Calculation Method	 Reference

VALL	 NVegetation/NAll	 Maltamo et al. 2004; Sasaki et al. 2008; 2016b
VFO	 NVegetation/(NFirst + NOnly)	 Sasaki et al. 2008
VFFO	 NVegetationFirst/(NFirst + NOnly)	 Sasaki et al. 2016b
VLLO 	 NVegetationLast/(NLast + NOnly)	 Sasaki et al. 2016b
VOFO 	 NVegetationOnly/(NFirst + NOnly)
VFVOFO 	 (NVegetationFirst + NVegetationOnly)/(NFirst + NOnly)	 Korhonen et al. 2011
VLVOLO 	 (NVegetationLast + NVegetationOnly)/(NLast + NOnly)	 Korhonen et al. 2011
VOALL	 NVegetationOnly/NAll

VOO	 NVegetationOnly/NOnly	 Sasaki et al. 2008
VOVFVO	 NVegetationOnly/(NVegetationFirst + NVegetationOnly)	 Sasaki et al. 2016b

NAll	 Number of all the returns
NFirst	 Number of the “first” returns
NLast	 Number of the “last” returns
NOnly	 Number of the “only” returns
NVegetation	 Number of the vegetation returns
NVegetationFirst	 Number of the “first” returns within the vegetation returns
NVegetationLast	 Number of the “last” returns within the vegetation returns
NVegetationOnly	 Number of the “only” returns within the vegetation returns
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Relationships Between the Estimation 
Accuracy and Crown Area
We analyzed whether the difference between estimated 
and measured values of the DCA axis 1 score and the 
crown porosity were influenced by the crown area 
(Figure 5). The individuals with larger crowns tended 

The crown porosity in the hemispherical photo-
graphs was also estimated by the GLM using the 
LiDAR variables. The binomial distribution and logit 
were used as an error distribution and a link function, 
respectively. The relationships between the estimated 
and measured values ​​were verified using Pearson’s 
correlation coefficient.

We analyzed influences of tree size on estimation 
accuracies by comparing the crown areas with the 
differences between estimated and measured values.

RESULTS
Results of Field Survey and Ordination
The result of DCA ordination was shown in Figure 3. 
All of the health indicators were arranged from 1 
(good) to 4 (poor) in the ascending order of the DCA 
axis 1 score.

The median, maximum, and minimum values of 
the DCA axis 1 score for the trees were −0.12, 3.03, 
and −1.70, respectively (Figure 4). For the crown 
porosity values obtained from the hemispherical photo-
graphs, the median, maximum, and minimum values 
were 0.174, 0.533, and 0.082, respectively (Figure 4).

Correlation Analyses
The correlation between the DCA axis 1 score and the 
crown porosity was 0.704 (p < 0.001). Table 3 shows 
the correlations of the LiDAR variables with DCA 
axis 1 score and with crown porosity. Many of the 
LiDAR variables had significant coefficients with 
each variable. VOVFVO had the strongest correlations 
with both DCA axis 1 score and crown porosity 
(–0.600 and –0.617, respectively; p < 0.001).

Estimating Health Condition and Crown 
Porosity Using LiDAR Variables

Table 4 shows selected explanatory variables and 
the results obtained by the GLM. VOVFVO and VFO 
were selected to estimate the DCA axis 1 score. We 
only used VOVFVO for the GLM because it had the 
lowest AIC value. The RMSE value was 0.803, and 
the correlation coefficients between the estimated and 
measured values was 0.600 (p < 0.001).

VOVFVO and VLLO were selected to estimate the 
crown porosity. We only used VOVFVO for the GLM 
because it had the lowest AIC value. The RMSE value 
was 0.060 and the correlation coefficient between the 
estimated and measured values was 0.643 (p < 0.001).

Figure 3. DCA results for 4-rank assessment items.

Figure 4. Ranges of DCA axis 1 scores (n = 288, means of the values 
given by the two experts) and crown porosity determined from 
hemispherical photograph (n = 96).
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to have smaller errors. For the DCA axis 1 score, the 
individuals with crown areas larger than 100 m2 had 
errors smaller than 1. For the crown porosity, this ten-
dency was similar, but one individual with a crown area 
of 90.3 m2 had by far the largest error (0.265). This tree, 
which had the largest crown porosity, was the outlier 
of the data (0.533, Figure 4). Another outlier individual 
with the second largest crown porosity (0.509, Figure 
4) had the second largest error (0.187, Figure 5).

DISCUSSION

Possibility of Using Crown Density/
Porosity to Estimate Tree Health
The DCA result indicated that all the health indicators 
showed similar arrangement along axis 1 (Figure 3), 

Sasaki et al: Estimation of Individual Tree Health Condition Using Airborne LiDAR

thereby suggesting that estimating some health indi-
cators with high accuracy could facilitate the estimation 
of the total tree health condition. In addition, the DCA 
axis 1 score appeared to indicate the total health con-
dition of the trees. The correlation coefficient between 
the DCA axis 1 score and the crown porosity was 
high (r = 0.704, p < 0.001), indicating objectivity of 
the traditional visual assessment made by experts. 
This result suggested that it is possible to estimate the 
total health condition by estimating the crown density/
porosity using LiDAR data. 

Relationships Between LiDAR Variables 
and Indicators Obtained in the Field
Of the LiDAR variables, VOVFVO, representing the 
ratio of “only” returns among the “vegetation” 
returns, had the strongest negative correlations with 
both the DCA axis 1 score and crown porosity (Table 
3). It was presumed because healthy trees have closed 
crowns, thereby increasing the likelihood of lasers 
being reflected from the crown surfaces. According 
to a previous study, VOVFVO was effective for estimat-
ing the canopy porosity in a forest with simple struc-
ture, similar-aged trees, less canopy surface roughness, 
and few understory trees (Sasaki et al. 2016b). In this 
study site, only cherry trees have been planted, and 
there are very few other trees and shrubs under the 
crowns of the cherry trees, resulting in a simple 
woodland structure. In addition, we did not need to 
consider the gaps between tree crowns and the differ-
ences of forms and heights among adjacent trees 
because we calculated the porosity within the crown 
at the individual tree level. These conditions seemed 
to lead to results similar to a forest with a simple 
structure. 

Table 3. Correlations between the LiDAR indices and 
DCA axis 1 scores (n = 288) and crown porosity from 
hemispherical photographs (n = 96).

	 DCA axis 1 score	 Crown porosity

VALL	 −0.390	 **	 −0.459	 **
VFO	 0.075		  0.001
VFFO	 0.510	 **	 0.456	 **
VLLO	 −0.048		  −0.192
VOFO	 −0.578	 **	 −0.615	 **
VFVOFO	 −0.262	 **	 −0.360	 *
VLVOLO	 −0.495	 **	 −0.579	 **
VOALL	 −0.459	 **	 −0.581	 **
VOO	 −0.574	 **	 −0.552	 **
VOVFVO	 −0.600	 **	 −0.617	 **

Pearson's correlation coefficient was used.
*: p < 0.01; **: p < 0.001

Table 4. The explanatory variables selected and the results of GLM (DCA axis 1 value: n = 288; crown porosity from 
hemispherical photographs: n = 96).

					     Pearson’s correlation
Response	 Order	 Regression coefficients	 AIC	 RMSE	 coefficients between estimated
variables	 	 Intercept	 VFO	 VLLO	 VOVFVO	 	 	 and measured values

	 1	 1.443			   –3.804	 696.66	 0.803	 r = 0.600 (p < 0.001)
	 2	 1.916	 –0.307		  –3.904	 696.68
	 3	 –0.477	 0.337			   823.82

	 1	 –0.618			   –2.128	 48.53	 0.060	 r = 0.643 (p < 0.001)
	 2	 –1.254		  –0.775		  50.08
	 3	 –0.435	 –0.743		  –2.126	 50.19

DCA axis 1
score

Crown
porosity
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On the other hand, VALL, the complement of which 
has been verified as an effective variable for estimat-
ing the leaf area and canopy porosity in various types 
of forests (Riaño et al. 2004; Sasaki et al. 2008; Rich-
ardson et al. 2009; Sasaki et al. 2016b), had smaller 
correlation coefficients than VOVFVO with both of the 
two variables (Table 3), although they were significant. 
VALL counts all the points that hit the forest vegetation 
components above 1.3 m, including the sub-canopy 
and shrub layers, so it will increase the stability when 
measuring complex structures in forests (Sasaki et al. 
2016b). However, in this study, it was hardly neces-
sary to consider the vegetation components under the 
crown, which appeared to increase the noise caused 
by the lasers hitting the trunk.

GLM Results and Estimation Accuracy
The GLM estimates of the DCA axis 1 score and the 
crown porosity demonstrated the effectiveness of 
VOVFVO because for both of the two variables, the 
AIC values were the lowest, and there were significant 
correlations between the estimated and measured values 
when using only VOVFVO as an explanatory variable 
(Table 4). 

According to the estimate of the DCA axis 1 score, 
the individuals with large crown areas (> 100 m2) had 
small errors (< 1) between the estimated and mea-
sured values (Figure 5). For the crown porosity, this 
tendency was similar except for the outlier individu-
als (Figure 5). In previous LiDAR studies, small trees 
were more difficult to measure compared to large 
trees when monitoring forest canopies (Zimble et al. 
2003; Maltamo et al. 2004). The results of the present 
study are consistent with those of previous studies, 
thereby suggesting that airborne LiDAR is effective 
for individual tree health estimation, but a large crown 
size is necessary to obtain more accurate estimates.

CONCLUSION
The results of this study suggest that the total tree 
health condition can be estimated by the crown den-
sity or porosity because the DCA axis 1 score from 
the visually assessed health indicators had a strong 
correlation with the crown porosity determined from 
hemispherical photographs. Furthermore, the LiDAR 
variables had significant relationships with the tree 
health indicator; in particular, VOVFVO, which rep-
resents the proportion of the lasers reflected from the 
crown surface, seemed to be the most effective. These 

results may be applied to monitoring trees at the indi-
vidual level, including trees other than C. jamasak-
ura, because the LiDAR variables used in this study 
represent physical characteristics. This method has 
challenges if applied to densely forested areas with 
complex structures where individual tree delineation 
is difficult, but it will be acceptable for the diagnosis 
of trees in urban areas, such as parks or roadsides.
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Résumé. Cette recherche examine l’utilité des données de 
détection et télémétrie par la lumière (LiDAR) afin d’établir la 
condition de santé du cerisier de montagne japonais (Cerasus ja-
masakura) à Yoshinoyama, dans la préfecture de Nara au Japon. 
Les variables LiDAR, qui représentent le rapport des lasers at-
teignant les constituantes des arbres furent calculées et leur effi-
cacité relative fut analysée en lien avec les résultats d’évaluations 
conventionnelles de terrain des critères visuels de santé des arbres 
en fonction d’ordonnancement, d’analyses corrélatives et de 
modèles linéaires généralisés. Les résultats montrèrent que plu-
sieurs variables LiDAR avaient des corrélations significatives 
avec les variables découlant de l’observation visuelle de la condi-
tion de santé des arbres. Particulièrement la proportion des seuls 
retours, qui représentent le rapport des lasers réfléchis par la sur-
face du houppier, était la plus efficace pour l’appréciation de la 
condition globale de santé en lien avec la densité du houppier, un 
des indicateurs-clefs de santé représentant les propriétés phy-
siques. Les arbres montrant d’importantes erreurs d’évaluation 
possédaient de plus petits houppiers que les arbres avec peu d’er-
reurs, suggérant que les dimensions suffisamment imposantes de 
houppiers étaient importantes afin d’obtenir des évaluations pré-
cises pour l’utilisation de données LiDAR en vue de l’établissement 
de la condition de santé.

Zusammenfassung. Diese Studie untersucht die Nützlichkeit 
von Daten aus einer optischen Abstands- und Geschwindigkeits-
messung von Licht (LIDAR) für die Einschätzung individueller 
Baumgesundheitskonditionen von japanischen Zierkirschen (Ce-
rasus jamasakura) in Yoshinoyama, Präfektur Nara, Japan. Die 
LIDAR-Variablen, welche das Verhältnis von Laserstrahlen, die 
auf die Baumbestandteile treffen, werden kalkuliert und ihre Ef-
fektivität wird dadurch gemessen, dass sie mit den Ergebnissen 
konventioneller, visueller Baumkontrollen vorort basierend auf  
Ordination, Korrelationsanalysen und generalisierten linearen 
Modellen in Relation gesetzt werden. Die Ergebnisse zeigen, 
dass viele der LIDAR-Variablen signifikante Korrelationen mit 
den Variablen aus der visuellen Baumkontrolle aufwiesen.  Be-
sonders die Proportion von „nur“-Rückmeldungen, welche das 
Verhältnis der reflektierten Laserstrahlen aus der Kronenoberflä-
che repräsentieren, waren sehr effektiv, um den absoluten Ge-
sundheitszustand in Relation zur Kronendichte zu schätzen, einer 
der Schlüsselindikatoren für die physikalischen Gegebenheiten. 
Die Individuen mit großen Schätzungsfehlern hatten schmalere 
Kronen als die Individuen mit kleinen Fehlern, was darauf hin-
deutet, dass ausreichend große Kronengrößen wichtig sind für 
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präzisere Schätzungen der Baumgesundheit, wenn die Daten aus 
der LIDAR-Messung verwendet werden. 

Resumen. Este estudio examinó la utilidad de los datos de 
detección y alcance de la luz aerotransportada (LiDAR) para es-
timar la condición de salud de árboles de cereza de montaña ja-
ponesa (Cerasus jamasakura) en Yoshinoyama, Prefectura de 
Nara, Japón. Se calcularon las variables LiDAR que representa-
ban la proporción de los láseres que golpeaban las partes del árbol 
y se examinó su efectividad relacionándolas con los resultados de 
las evaluaciones visuales de salud de los árboles obtenidos en el 
campo mediante la ordenación, análisis de correlación y modelos 
lineales generalizados. Los resultados mostraron que muchas de 
las variables LiDAR tenían correlaciones significativas con la 
variable derivada de la condición de salud del árbol evaluada vi-
sualmente. En particular, la proporción de “únicamente” retornos, 
lo cual representa la relación de los láseres reflejados desde las 
superficies de la copa, fue la más efectiva para estimar el estado 
de salud total en relación con la densidad de la copa, uno de los 
indicadores clave de salud para representar las propiedades físi-
cas . Los individuos con grandes errores de estimación tenían 
copas más pequeñas que los individuos con pequeños errores, lo 
que sugiere que los tamaños de copa suficientemente grandes son 
importantes para obtener estimaciones más precisas de la condi-
ción de salud del árbol utilizando datos de LiDAR.




