Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

Tree Species as Tools for Biomonitoring and Phytoremediation in Urban Environments: A Review with Special Regard to Heavy Metals

Claudia Dadea, Alessio Russo, Massimo Tagliavini, Tanja Mimmo and Stefan Zerbe
Arboriculture & Urban Forestry (AUF) July 2017, 43 (4) 155-167; DOI: https://doi.org/10.48044/jauf.2017.014
Claudia Dadea
Claudia Dadea, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
Alessio Russo
Alessio Russo, Laboratory of Urban and Landscape Design, School of Arts, Culture and Sports, Far Eastern Federal University, 690922, Vladivostok, Russia
  • Find this author on Google Scholar
  • Search for this author on this site
Massimo Tagliavini
Massimo Tagliavini, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
Tanja Mimmo
Tanja Mimmo, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy
  • Find this author on Google Scholar
  • Search for this author on this site
Stefan Zerbe
Stefan Zerbe (corresponding author), Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bolzano, Italy,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

LITERATURE CITED

    1. Aasamaa, K.,
    2. A. Sober,
    3. W. Hartung, and
    4. Ü. Niinemets
    . 2002. Rate of stomatal opening, shoot hydraulic conductance, and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees. Tree Physiology 22(4):267–276.
    OpenUrlCrossRefPubMedWeb of Science
    1. Aboal, J.R.,
    2. J.A. Fernández, and
    3. A. Carballeira
    . 2004. Oak leaves and pine needles as biomonitors of airborne trace elements pollution. Environmental and Experimental Botany 51:215–225.
    OpenUrl
    1. Allen, C.D.,
    2. A.K. Macalady,
    3. H. Chenchouni,
    4. D. Bchelet,
    5. N. McDowell,
    6. M. Vennetier,
    7. T. Kitzberger, et al.
    2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660–684.
    OpenUrlCrossRefWeb of Science
  1. ↵
    1. Amato, F.,
    2. M. Pandolfi,
    3. M. Viana,
    4. X. Querol,
    5. A. Alastuey, and
    6. T. Moreno
    . 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43:1650–1659.
    OpenUrlCrossRefWeb of Science
    1. André,
    2. O.,
    3. P.S. Vollenweider, and
    4. M. Günthardt-Goerg
    . 2006. Foliar response to heavy metals in sycamore maple (Acer pseudoplatanus L.). Forest Snow and Landscape Research 80(3):275–288.
    OpenUrl
    1. Aničić,
    2. M.,
    3. T. Spasić,
    4. M. Tomašević,
    5. S. Rajšić, and
    6. M. Tasić
    . 2011. Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators 11:824–830.
    OpenUrl
    1. Antonellini, M., and
    2. P.N. Mollema
    . 2010. Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. Ecological Engineering 36(9):1201–1211.
    OpenUrl
  2. ↵
    1. Baker, A.J.M.
    1981. Accumulators and excluders strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3(1–4):643–654.
    OpenUrlCrossRefWeb of Science
  3. ↵
    1. Baker, A.J.M.,
    2. S.P. McGrath,
    3. C.M.D. Sidoli, and
    4. R.D. Reeves
    . 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation, and Recycling 11(1–4):41–49.
    OpenUrl
  4. ↵
    1. N. Terry and
    2. G.S. Banuelos
    1. Baker, A.J.M.,
    2. S.P. McGrath,
    3. R.D. Reeves, and
    4. J.A.C. Smith
    . 2000. Metal accumulators plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. pp. 85–107. In: N. Terry and G.S. Banuelos (Eds.). Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, Florida, U.S.
  5. ↵
    1. Baumann, A.
    1885. Das verhalten von zinksalzen gegen pflanzen und im boden. Landwirtsch. Vers 31:1–53.
    OpenUrl
  6. ↵
    1. Baycu, G.,
    2. D. Tolunay,
    3. H. Özden, and
    4. S. Günebakan
    . 2006. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution 143:545–554.
    OpenUrlCrossRefPubMed
  7. ↵
    1. Beckett, K.P.,
    2. P. Freer-Smith, and
    3. G. Taylor
    . 2000. Effective tree species for local air quality management. Journal of Arboriculture 26(1):12–19.
    OpenUrl
  8. ↵
    1. Beckett, K.P.,
    2. P.H. Freer-Smith, and
    3. G. Taylor
    . 1998. Urban woodlands: Their role in reducing the effects of particulate pollution. Environmental Pollution 99:347–360.
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Bell, J.N.B.,
    2. S.L. Honour, and
    3. S.A. Power
    . 2011. Effects of vehicle exhaust emissions on urban wild plant species. Environmental Pollution 159:1984–1990.
    OpenUrlPubMed
    1. Benjamin, M.T., and
    2. A.M. Winer
    . 1998. Estimating the ozone-forming potential of urban trees and shrubs. Atmospheric Environment 32(1):53–68
    OpenUrl
  10. ↵
    1. I. Sherameti and
    2. A. Varma
    1. Bothe, H.
    2011. Plants in Heavy Metal Soils. pp. 35–57. In: I. Sherameti and A. Varma (Eds.). Detoxification of Heavy Metals. Springer, Berlin, Heidelberg, Germany.
    1. Bradshaw, A.,
    2. B. Hunt, and
    3. T. Walmsley
    . 1995. Trees in the Urban Landscape. Principles and Practice. E. & F.N. Spon, London, UK. 272 pp.
  11. ↵
    1. Brooks, R.R,
    2. J. Lee,
    3. R.D. Reeves, and
    4. T. Jaffre
    . 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7:49–57.
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. M.E. Farago
    1. Brooks, R.R.
    1994. Plants that hyperaccumulate heavy metals. pp. 88–102. In: M.E. Farago (Ed.). Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance, and Toxicity. VCH, Weinheim, Germany.
  13. ↵
    1. Brunner, I.,
    2. J. Luster,
    3. M.S. Günthardt-Goerg, and
    4. B. Frey
    . 2008. Heavy metal accumulation and phytostabilization potential of tree fine roots in a contaminated soil. Environmental Pollution 152:559–568.
    OpenUrlCrossRefPubMed
  14. ↵
    1. Buccolieri, R.,
    2. S.M. Salim,
    3. L.S. Leo, and
    4. S. Di Sabatino
    . 2011. Analysis of local scale tree atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction. Atmospheric Environment 45:1702–1713.
    OpenUrlCrossRefWeb of Science
  15. ↵
    1. Burger, J.
    2006. Bioindicators: A review of their use in the environmental literature: 1970–2005. Environmental Bioindicators 1(2):136–144.
    OpenUrl
    1. Calfapietra, C.,
    2. S. Fares, and
    3. F. Loreto
    . 2009. Volatile organic compounds from Italian vegetation and their interaction with ozone. Environmental Pollution 157:1478–1486.
    OpenUrlPubMed
  16. ↵
    1. Calfapietra, C.,
    2. S. Fares,
    3. F. Manes,
    4. A. Morani,
    5. G. Sgrigna, and
    6. F. Loreto
    . 2013. Role of biogenic volatile organic compounds (BVOCs) emitted by urban trees on ozone concentration in cities: A review. Environmental Pollution 183:71–80.
    OpenUrl
  17. ↵
    1. Calvo, A.I.,
    2. C. Alves,
    3. A. Castro,
    4. V. Pont,
    5. A.M. Vicente, and
    6. R. Fraile
    . 2013. Research on aerosol sources and chemical composition: Past, current, and emerging issues. Atmospheric Research 120–121:1–28.
    OpenUrl
  18. ↵
    1. Carinanos, P., and
    2. M. Casares-Porcel
    . 2011. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning 101:205–214.
    OpenUrl
    1. Çelik,
    2. A.,
    3. A.A. Kartal,
    4. A. Akdoğan, and
    5. Y. Kafka
    . 2005. Determining the heavy metal pollution in Denizli (Turkey) by using Robinia pseudoacacia L. Environment International 31(1):105–112.
    OpenUrlPubMed
    1. Pirani, A
    1. Chiusoli, A.
    2004. Il verde nelle aree urbane. In: Pirani, A. Il verde in città, La progettazione del verde negli spazi urbani. Edagricole, Bologna, Italy. 525 pp.
    1. Cicek, A., and
    2. A.S. Koparal
    . 2004. Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere 57:1031–1036.
    OpenUrl
  19. ↵
    1. Città di Torino
    . 2006. Regolamento del verde pubblico e privato della Città di Torino. Allegato VII (Cap III). <www.comune.torino.it/regolamenti/317/317_all2.htm#all07>
  20. ↵
    1. Comune di Bolzano
    . 2010. Catasto degli alberi. Servizio Giardineria Comunale. Ufficio Tutela dell’Ambiente e del Territorio.
  21. ↵
    1. Comune di Merano
    . 2012. Catasto degli alberi. <www.ambiente.comune.merano.bz.it/alberi/search>
    1. Comune di Padova
    . 2013. Gli alberi di Padova. Alberi stradali. <www.padovanet.it/dettaglio.jsp?tasstipo=C&tassid=2288&id=16753#.UbbvOBVBvIW>
    1. Constán-Nava,
    2. S.,
    3. A. Bonet,
    4. E. Pastor, and
    5. M.J. Lledó
    . 2010. Long-term control of the invasive tree Ailanthus altissima: insights from Mediterranean protected forests. Forest Ecology and Management 260(6):1058–1064.
    OpenUrl
  22. ↵
    1. Daily, G.C.
    1995. Restoring Value to the World’s Degraded Lands. Science 269(5222):350–354.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. de Kok, T.M.C.M.,
    2. H.A.L. Driece,
    3. J.G.F. Hogervorst, and
    4. J.J. Briede
    . 2006. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutation Research 613:103–122.
    OpenUrlCrossRefPubMedWeb of Science
    1. De La Torre, J.R.
    2001. Árboles y arbustos de la España peninsular. Ediciones Mundi-Prensa. 512 pp.
  24. ↵
    1. de Sousa, C.A.
    2003. Turning brownfields into green space in the City of Toronto. Landscape and Urban Planning 62(4):181–198.
    OpenUrlCrossRefWeb of Science
  25. ↵
    1. J.-L. Morel,
    2. G. Echevarria, and
    3. N. Goncharova
    1. Dickinson, N.M.
    2002. Phytoremediation of industrially contaminated sites using trees. In: J.-L. Morel, G. Echevarria, and N. Goncharova (Eds.). Phytoremediation of Metal-Contaminated Soils. Nato Science Series. IV. Earth and Environmental Sciences—Vol. 68. Springer, Germany. 346 pp.
  26. ↵
    1. Dickinson, N.M.,
    2. A.P. Turner, and
    3. N.W. Lepp
    . 1991. How do trees and other long-lived plants survive in polluted environments? Functional Ecology 5:5–11.
    OpenUrl
    1. Dirr, M.A.
    1976. Selection of trees for tolerance to salt injury. Journal of Arboriculture 2(11):209–216.
    OpenUrl
    1. Dmuchowski, W.,
    2. D. Gozdowski, and
    3. A.H. Baczewska
    . 2011. Comparison of four bioindication methods for assessing the degree of environmental lead and cadmium pollution. Journal of Hazardous Materials 197:109–118.
    OpenUrlPubMed
  27. ↵
    1. Dobbs, C.,
    2. F. Escobedo, and
    3. W. Zipperer
    . 2011. A framework for developing urban forest ecosystem services and goods indicators. Landscape and Urban Planning 99(3–4):196–206.
    OpenUrlCrossRefWeb of Science
  28. ↵
    1. Domínguez,
    2. M.T.,
    3. P. Madejon,
    4. T. Maranon, and
    5. J.M. Murillo
    . 2008. Afforestation of a trace element pollution area in SW Spain: Woody plants performance and trace element accumulation. European Journal of Forest Research 129:47–59.
    OpenUrl
  29. ↵
    1. Duong, T.T.T., and
    2. B.-K. Lee
    . 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management 92(3):554–62.
    OpenUrlCrossRefPubMedWeb of Science
    1. Dzierżanowski,
    2. K.,
    3. R. Popek,
    4. H. Gawrońska,
    5. A. Sæbø, and
    6. S.W. Gawroński
    . 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation 13(10):1037–1046.
    OpenUrlPubMed
  30. ↵
    1. Escobedo, F.J.,
    2. T. Kroeger, and
    3. J.E. Wagner
    . 2011. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution 159:2078–2087.
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Evangelou, M.W.H.,
    2. A. Deram,
    3. A. Gogos,
    4. B. Studer, and
    5. R. Schulin
    . 2012. Assessment of suitability of tree species for the production of biomass on trace element contaminated soils. Journal of Hazardous Materials 209–210:233–239.
    OpenUrl
  32. ↵
    1. Fehsenfeld, F.,
    2. J. Calvert,
    3. R. Fall,
    4. P. Goldan,
    5. A.B. Guenther,
    6. C.N. Hewitt,
    7. B. Lamb, et al.
    1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles 6(4):389–430.
    OpenUrlCrossRefGeoRef
  33. ↵
    1. Felson, A.J., and
    2. S.T.A. Pickett
    . 2005. Designed experiments: New approaches to studying urban ecosystems. Frontiers in Ecology and the Environment 3(10):549.
    OpenUrlCrossRefWeb of Science
    1. Ferrari, M., and
    2. D. Medici
    . 1998. Alberi e arbusti in Italia. Manuale di Riconoscimento. Edagricole, Bologna, Italy. 967 pp.
  34. ↵
    1. Fuentes, J.D.,
    2. B.P. Hayden,
    3. M. Garstang,
    4. M. Lerdau,
    5. D. Fitzjarrald,
    6. D.D. Baldocchi,
    7. R. Monson, et al.
    2001. New Directions? VOCs and biosphere–atmosphere feedbacks. Atmospheric Environment 35:189–191.
    OpenUrlCrossRefWeb of Science
  35. ↵
    1. Fujiwara, F.,
    2. R. Jiménez Rebagliati,
    3. L. Dawidowski,
    4. D. Gómez,
    5. G. Polla,
    6. V. Pereyra, and
    7. P. Smichowski
    . 2011. Spatial and chemical patterns of size fractionated road dust collected in a megacity. Atmospheric Environment 45(8):1497–1505.
    OpenUrl
    1. Fujiwara, F.G.,
    2. D.R. Gómez,
    3. L. Dawidowski,
    4. P. Perelman, and
    5. A. Faggi
    . 2011. Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecological Indicators 11:240–247.
    OpenUrl
  36. ↵
    1. Gardea-Torresdey,
    2. J.,
    3. J. Peraltavidea,
    4. G. Delarosa, and
    5. J. Parsons
    . 2005. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews 249(17–18):1797–1810.
    OpenUrl
  37. ↵
    1. Gatti, E.
    2008. Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance. Biologia Plantarum 52(1):146–148.
    OpenUrl
  38. ↵
    1. Georgi, J.N., and
    2. D. Dimitriou
    . 2010. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Building and Environment 45:1401–1414.
    OpenUrl
  39. ↵
    1. Gómez-Baggethun,
    2. E., and
    3. D.N. Barton
    . 2013. Classifying and valuing ecosystem services for urban planning. Ecological Economics 86:235–245.
    OpenUrlCrossRef
  40. ↵
    1. Gunawardena, J.,
    2. P. Egodawatta,
    3. G.A. Ayoko, and
    4. A. Goonetilleke
    . 2013. Atmospheric deposition as a source of heavy metals in urban storm water. Atmospheric Environment 68:235–242.
    OpenUrl
  41. ↵
    1. N. Terry and
    2. G.S. Bañuelos
    1. Gupta, S.K.,
    2. T. Herren,
    3. K. Wenger,
    4. R. Krebs, and
    5. T. Hari
    . 2000. In situ gentle remediation measures for heavy metals-polluted soils. In: N. Terry and G.S. Bañuelos (Eds.). Phytoremediation of Contaminated Soil and Water. CRC Press LLC, Boca Raton, Florida, U.S. 380 pp.
    1. Harris, R.W.,
    2. J.R. Clark, and
    3. N.P. Matheny
    . 1999. Arboriculture, Integrated Management of Landscape Trees, Shrubs, and Vines, third edition. Prentice Hall, Upper Saddle River, New Jersey, U.S. 687 pp.
    1. Hartikainena, K.,
    2. J. Riikonena,
    3. A.-M. Nerga,
    4. M. Kivimäenpääa,
    5. V. Ahonenb,
    6. A. Tervahautab,
    7. S. Kärenlampib, et al.
    2012. Impact of elevated temperature and ozone on the emission of volatile organic compounds and gas exchange of silver birch (Betula pendula Roth). Environmental and Experimental Botany 84:33–43.
    OpenUrlCrossRef
    1. Hermle, S.,
    2. M.S. Günthardt-Goerg, and
    3. R. Schulin
    . 2006. Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Environmental Pollution 144:703–714.
    OpenUrlGeoRefPubMed
    1. Ji, J.,
    2. N. Kokutse,
    3. M. Genet,
    4. T. Fourcaud, and
    5. Z. Zhang
    . 2012. Effect of spatial variation of tree root characteristics on slope stability. A case study on black locust (Robinia pseudoacacia) and arborvitae (Platycladus orientalis) stands on the Loess Plateau, China. Catena 92:139–154.
    OpenUrlGeoRef
  42. ↵
    1. Kardel, F.,
    2. K. Wuyts,
    3. B.A. Maher,
    4. R. Hansard, and
    5. R. Samson
    . 2011. Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Inter-species differences and in-season variation. Atmospheric Environment 45:5164–5171.
    OpenUrlCrossRef
    1. Kardel, F.,
    2. K. Wuyts,
    3. M. Babanezhad,
    4. T. Wuytack,
    5. S. Adriaenssens, and
    6. R. Samson
    . 2012. Tree leaf wettability as passive bio-indicator of urban habitat quality. Environmental and Experimental Botany 75:277–285.
    OpenUrl
    1. Karl, M.,
    2. A. Guenther,
    3. R. Köble,
    4. A. Leip, and
    5. G. Seufert
    . 2009. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences 6:1059–1087.
    OpenUrl
    1. Karlik, J.F., and
    2. D.R. Pittenger
    . 2012. Urban trees and ozone formation: A consideration for large-scale plantings. University of California. Agriculture and Natural Resources. Publication 8484. <http://anrcatalog.ucdavis.edu/pdf/8484.pdf>
    1. Kesselmeier, J., and
    2. M. Staudt
    . 1999. Biogenic Volatile Organic Compounds (VOCs): An overview on emission, physiology, and ecology. Journal of Atmospheric Chemistry 33(1):23–88.
    OpenUrlCrossRefWeb of Science
    1. Khavanin Zadeh, A.R.,
    2. F. Veroustraete,
    3. K. Wuyts,
    4. F. Kardel, and
    5. R. Samson
    . 2012. Dorsi-ventral leaf reflectance properties of Carpinus betulus L.: An indicator of urban habitat quality. Environmental Pollution 162:332–337.
    OpenUrlPubMed
  43. ↵
    1. Kirkwood, N.
    2011. Manufactured Sites: Rethinking the Post-Industrial Landscape, reprint edition. Taylor & Francis, London UK. 272 pp.
  44. ↵
    1. Konijnendijk, C.,
    2. M. Annerstedt,
    3. A.B. Nielsen, and
    4. S. Maruthaveeran
    . 2013. Benefits of Urban Parks. A systematic review. A Report for IFPRA. Copenhagen & Alnarp, Sweden. 70 pp.
    1. Kowarik, I., and
    2. I. Säumel
    . 2007. Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspectives in Plant Ecology, Evolution, and Systematics 8:207–237.
    OpenUrl
    1. Ü. Mander,
    2. H. Wiggering, and
    3. K. Helming
    1. Lõhmus,
    2. K.,
    3. A. Kull,
    4. J. Truu,
    5. M. Truu,
    6. E. Kaar,
    7. I. Ostonen,
    8. S. Meel, et al.
    2007. The reclamation of the North Estonian oil shale mining area. In: Ü. Mander, H. Wiggering, and K. Helming (Eds.). Multifunctional Land Use, Meeting Future Demands for Landscape Goods and Services. Springer, Berlin, Heidelberg, New York. 403 pp.
  45. ↵
    1. Loreto, F., and
    2. J.-P. Schnitzler
    . 2010. Abiotic stresses and induced BVOCs. Trends in Plant Science 15(3):154–166.
    OpenUrlCrossRefPubMedWeb of Science
  46. ↵
    1. Loreto, F.,
    2. S. Pollastri,
    3. S. Fineschi, and
    4. V. Velikova
    . 2014. Volatile isoprenoids and their importance for protection against environmental constraints in the Mediterranean area. Environmental and Experimental Botany 103:99–106.
    OpenUrl
  47. ↵
    1. Lyytimäki,
    2. J.
    2014. Bad nature: Newspaper representations of ecosystem disservices. Urban Forestry & Urban Greening 13(3):418–424.
    OpenUrlCrossRef
  48. ↵
    1. Lyytimäki,
    2. J., and
    3. M. Sipilä
    . 2009. Hopping on one leg—The challenge of ecosystem disservices for urban green management. Urban Forestry & Urban Greening 8:309–315.
    OpenUrl
    1. Malek, von J., and
    2. H. Wawrik
    . 1985. Baumpflege. Pflanzung und Pflege von Strassenbäumen. Landschafts- und Grünplanung. Ulmer Verlag, Stuttgart, Germany.
  49. ↵
    1. Manousaki, E., and
    2. N. Kalogerakis
    . 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemical Research 50:656–660.
    OpenUrl
    1. M.N.V. Prasad
    1. Markert, B.
    2008. Bioindication and biomonitoring as innovative biotechniques for controlling trace metal influence to the environment. pp. 743–760. In: M.N.V. Prasad (Ed.). Trace elements as contaminants and nutrients. Consequences in ecosystems and human health. Wiley, Hoboken, New Jersey, U.S.
  50. ↵
    1. Marziliano, P.A.,
    2. R. Lafortezza,
    3. G. Colangelo,
    4. D. Clive, and
    5. G. Sanesi
    . 2013. Structural diversity and height growth models in urban forest plantations: A case study in northern Italy. Urban Forestry & Urban Greening 12:246–254.
    OpenUrl
  51. ↵
    1. McBride, J.R., and
    2. V. Douhovnikoff
    . 2012. Characteristics of the urban forests in arctic and near-arctic cities. Urban Forestry & Urban Greening 11:113–119.
    OpenUrl
  52. ↵
    1. Meers, E.,
    2. B. Vandecasteele,
    3. A. Ruttensc,
    4. J. Vangronsveld, and
    5. F.M.G. Tack
    . 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany 60:57–68.
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. Monaci, F.,
    2. E.O. Leidi,
    3. M.D. Mingorance,
    4. B. Valdes,
    5. S.R. Oliva, and
    6. R. Bargagli
    . 2011. Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. Journal of Environmental Sciences 23(3):444–452.
    OpenUrl
  54. ↵
    1. Mulligan, C.N.,
    2. R.N. Yong, and
    3. B.F. Gibbs
    . 2001. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology 60:193–207.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Murakami, M.,
    2. M. Abe,
    3. Y. Kakumoto,
    4. H. Kawano,
    5. H. Fukasawa,
    6. M. Saha, and
    7. H. Takada
    . 2012. Evaluation of Ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons. Atmospheric Environment 54:9–17.
    OpenUrl
    1. Neinhuis, C., and
    2. W. Barthlott
    . 1998. Characterization and distribution of water repellent, self-cleaning plant surface. Annals of Botany 79:667–677.
    OpenUrl
  55. ↵
    1. J.E. Kuser
    1. Nowak, D. J., and
    2. J.F. Dwyer
    . 2007. Understanding the benefits and costs of urban forest ecosystems. pp. 25–46. In: J.E. Kuser (Ed.). Urban and Community Forestry in the Northeast. Springer, Dordrecht, Netherlands.
  56. ↵
    1. Nowak, D. J.,
    2. D.E. Crane, and
    3. J.C. Stevens
    . 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening 4:115–123.
    OpenUrlCrossRef
  57. ↵
    1. Nowak, D.J.,
    2. S. Hirabayashi,
    3. A. Bodine, and
    4. E. Greenfield
    . 2014. Tree and forest effects on air quality and human health in the United States. Environmental Pollution 193:119–129.
    OpenUrlCrossRefPubMed
    1. Odone, P.
    1992. Il verde urbano. La Nuova Italia Scientifica. Roma, Italy. 274 pp.
    1. Ogren, T.L.
    2000. Allergy free gardening. Ten Speed Press, Berkeley, California, U.S. 267 pp.
  58. ↵
    1. Oh, K.,
    2. T. Cao,
    3. T. Li, and
    4. H. Cheng
    . 2014. Study on application of phytoremediation technology in management and remediation of contaminated soils. Journal of Clean Energy Technologies 2(3):216–220.
    OpenUrl
  59. ↵
    1. Paludan-Müller,
    2. G.,
    3. H. Saxe,
    4. L.B. Pedersen, and
    5. R.T. Barfoed
    . 2002. Differences in salt sensitivity of four deciduous tree species to soil or airborne salt. Physiologia Plantarum 114:223–230.
    OpenUrlPubMed
  60. ↵
    1. Paoletti, E.
    2009. Ozone and urban forests in Italy. Environmental Pollution 157:1506–1512.
    OpenUrlCrossRefPubMedWeb of Science
  61. ↵
    1. Papa, S.,
    2. G. Bartoli,
    3. F. Nacca,
    4. B. D’Abrosca,
    5. E. Cembrola,
    6. A. Pellegrino, and
    7. A. Fioretto
    . 2012. Trace metals, peroxidase activity, PAHs contents, and ecophysiological changes in Quercus ilex leaves in the urban area of Caserta (Italy). Journal of Environmental Management 113:501–509.
    OpenUrlCrossRefPubMed
  62. ↵
    1. Pataki, D.E.,
    2. M.M. Carreiro,
    3. J. Cherrier,
    4. N.E. Grulke,
    5. V. Jennings,
    6. S. Pincetl,
    7. R.V. Pouyat, et al.
    2011. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment 9(1):27–36.
    OpenUrlCrossRefWeb of Science
  63. ↵
    1. Pauleit, S.,
    2. N. Jones,
    3. G. Garcia-Martin,
    4. J.L. Garcia-Valdecantos,
    5. L.M. Rivière,
    6. L. Vidal-Beaudet, and
    7. T.B. Randrup
    . 2002. Tree establishment practice in towns and cities: Results from a European survey. Urban Forestry & Urban Greening 1(2):83–96.
    OpenUrl
  64. ↵
    1. C.C. Konijnendijk,
    2. J. Schipperijn, and
    3. K. Nilsson
    1. Pauleit, S.,
    2. N. Jones,
    3. S. Nyhuus,
    4. J. Pirnat, and
    5. F. Salbitano
    . 2005. Urban forest resources in European cities. pp. 49–80. In: C.C. Konijnendijk, J. Schipperijn, and K. Nilsson (Eds.). COST Action E12 - Urban forests and trees - Proceedings No 2.
  65. ↵
    1. Pellegrini, E.,
    2. G. Lorenzini,
    3. S. Loppi, and
    4. C. Nali
    . 2014. Evaluation of the suitability of Tillandsia usneoides (L.) L. as biomonitor of airborne elements in an urban area of Italy, Mediterranean basin. Atmospheric Pollution Research 5(2):226–235.
    OpenUrl
  66. ↵
    1. Peuke, A.D., and
    2. H. Rennenberg
    . 2005. Phytoremediation with transgenic trees. Zeitschrift für Naturforschung C 60(3–4):199–207.
    OpenUrl
  67. ↵
    1. Pilon-Smits,
    2. E.A.H., and
    3. J.L. Freeman
    . 2006. Environmental cleanup using Plants: Biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment 4:203–210.
    OpenUrlCrossRefGeoRef
    1. Pourrut, B.,
    2. A. Lopareva-Pohu,
    3. T.C. Pruvo,
    4. G. Garçon,
    5. A. Verdin,
    6. C. Waterlo,
    7. G. Bidar,
    8. P. Shirali, and
    9. F. Douay
    . 2011. Assessment of fly ash-aided phytostabilization of highly contaminated soils after an eight-year field trial. Part 2. Influence on plants. Science of the Total Environment 409(21):4504–4510.
    OpenUrlPubMed
  68. ↵
    1. Pulford, I.D., and
    2. C. Watson
    . 2003. Phytoremediation of heavy–metal-contaminated land by trees: A review. Environment International 29(4):529–540.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
  69. ↵
    1. Punshon, T., and
    2. N.M. Dickinson
    . 1997. Acclimation of Salix to metal stress. New Phytologist 137:303–314.
    OpenUrlCrossRefWeb of Science
  70. ↵
    1. Rajkumar, M.,
    2. S. Sandhya,
    3. M.N.V. Prasad, and
    4. H. Freitas
    . 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances 30(6):1562–1574.
    OpenUrlCrossRefPubMed
  71. ↵
    1. Rascio, N., and
    2. F. Navari-Izzo
    . 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180:169–181.
    OpenUrlCrossRefPubMedWeb of Science
  72. ↵
    1. Raskin, I.,
    2. R.D. Smith, and
    3. D.E. Salt
    . 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinions in Biotechnology 8(2):221–226.
    OpenUrl
    1. Roloff, A.,
    2. S. Korn, and
    3. S. Gillner
    . 2009. The Climate-Species-matrix to select tree species for urban habitats considering climate change. Urban Forestry & Urban Greening 8:295–308.
    OpenUrl
    1. Rose, D., and
    2. J. Webber
    . 2011. De-icing salt damage to trees. Forest Research. Pathology Advisory Note (No. 11). <www.forestry.gov.uk/pdf/pathology_note11.pdf/$file/pathology_note11.pdf>
  73. ↵
    1. Rosenvald, K.,
    2. T. Kuznetsova,
    3. I. Ostonen,
    4. M. Truu,
    5. J. Truu,
    6. V. Uri, and
    7. K. Lohmus
    . 2011. Rhizosphere effect and fine-root morphological adaptations in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecological Engineering 37:1027–1034.
    OpenUrl
  74. ↵
    1. Rosselli, W.,
    2. C. Keller, and
    3. K. Boschi
    . 2003. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil 256(2):265–272.
    OpenUrl
  75. ↵
    1. Roy, S.,
    2. J. Byrne, and
    3. C. Pickering
    . 2012. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening 11(4):351–363.
    OpenUrl
  76. ↵
    1. Russo, A.,
    2. F.J. Escobedo, and
    3. S. Zerbe
    . 2016. Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. AIMS Environmental Science 3(1):58–76.
    OpenUrl
  77. ↵
    1. Russo, A.,
    2. F.J. Escobedo,
    3. N. Timilsina,
    4. A.O. Schmitt,
    5. S. Varela, and
    6. S. Zerbe
    . 2014. Assessing urban tree carbon storage and sequestration in Bolzano, Italy. International Journal of Biodiversity Science, Ecosystem Services & Management 10(1):54–70.
    OpenUrl
  78. ↵
    1. Sæbø,
    2. A.,
    3. R. Popek,
    4. B. Nawrot, and
    5. H.M. Hanslin
    . 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment 427–428:347–354.
    OpenUrl
  79. ↵
    1. Salt, D.E.,
    2. M. Blaylock,
    3. N.P.B.A. Kumar,
    4. V. Dushenkov,
    5. B.D. Ensley,
    6. I. Chet, and
    7. I. Raskin
    . 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology 13:468–474.
    OpenUrlCrossRef
  80. ↵
    1. Salt, D.E.,
    2. R.D. Smith, and
    3. I. Raskin
    . 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49:643–68.
    OpenUrlCrossRefWeb of Science
    1. Samecka-Cymerman,
    2. A.,
    3. A. Stankiewicza,
    4. K. Kolona, and
    5. A.J. Kempers
    . 2009. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves, or bark of Robinia pseudoacacia L.). Environmental Pollution 157:2061–2065.
    OpenUrlPubMed
  81. ↵
    1. Sarma, H.
    2011. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology 4:118–138.
    OpenUrlCrossRef
  82. ↵
    1. Sawidis, T.,
    2. J. Breuste,
    3. M. Mitrovic,
    4. P. Pavlovic, and
    5. K. Tsigaridas
    . 2011. Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution 159(12):3560–3570.
    OpenUrlCrossRefPubMed
    1. Seco, R.,
    2. J. Peñuelas, and
    3. I. Filella
    . 2007. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmospheric Environment 41:2477–2499.
    OpenUrlCrossRefWeb of Science
    1. Sehmer, L.,
    2. B. Alaoui-Sosse, and
    3. P. Dizengremel
    . 1995. Effect of salt stress on growth and on the detoxifying pathway of pedunculate oak seedlings (Quercus robur L.). Plant Physiology 147:144–151.
    OpenUrl
  83. ↵
    1. Semenzato, P.,
    2. D. Cattaneo, and
    3. M. Dainese
    . 2011. Growth prediction for five tree species in an Italian urban forest. Urban Forestry & Urban Greening 10:169–176.
    OpenUrl
    1. Serbula, S.M.,
    2. D.M. Dusanka,
    3. R.M. Kovacevic, and
    4. A.A. Ilic
    . 2012. Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety 76:209–214.
    OpenUrlCrossRefPubMed
    1. Simon, E.,
    2. B. Mihály,
    3. A. Vidic,
    4. D. Bogyó,
    5. I. Fábián, and
    6. B. Tóthmérés
    . 2011. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution 159:1229–1233.
    OpenUrlPubMed
    1. Sjöman H., and
    2. A.B. Nielsen
    . 2010. Selecting trees for urban paved sites in Scandinavia—A review of information on stress tolerance and its relation to the requirements of tree planners. Urban Forestry & Urban Greening 9:281–293.
    OpenUrl
    1. Sjöman,
    2. H.,
    3. A.D. Hirons, and
    4. N.L. Bassuk
    . 2015. Urban forest resilience through tree selection—Variation in drought tolerance in Acer. Urban Forestry & Urban Greening 14(4):858–865.
    OpenUrl
  84. ↵
    1. Sjöman,
    2. H.,
    3. J. Östberg, and
    4. O. Bühler
    . 2012. Diversity and distribution of the urban tree population in ten major Nordic cities. Urban Forestry & Urban Greening 11(1):31–39.
    OpenUrl
    1. Strohbach, M.W.,
    2. E. Arnold, and
    3. D. Haase
    . 2012. The carbon footprint of urban green space—A life cycle approach. Landscape and Urban Planning 104(2):220–229.
    OpenUrl
    1. Takahashi, M.,
    2. A. Higaki,
    3. M. Nohno,
    4. M. Kamada,
    5. Y. Okamura,
    6. K. Matsui,
    7. S. Kitani, and
    8. H. Morikawa
    . 2005. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 61(5):633–639.
    OpenUrl
  85. ↵
    1. Tattini, M.,
    2. F. Loreto,
    3. A. Fini,
    4. L. Guidi,
    5. C. Brunetti,
    6. V. Velikova,
    7. A. Gori, and
    8. F. Ferrini
    . 2015. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytologist 207(3):613–26.
    OpenUrl
    1. Tomašević,
    2. M.,
    3. D. Antanasijević,
    4. M. Aničić,
    5. I. Deljanin,
    6. A. Perić-Grujić, and
    7. M. Ristić
    . 2013. Lead concentrations and isotope ratios in urban tree leaves. Ecological Indicators 24:504–509.
    OpenUrl
  86. ↵
    1. Tomašević,
    2. M.,
    3. M. Aničić,
    4. L. Jovanovic,
    5. A. Perić-Grujić, and
    6. M. Ristić
    . 2011. Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecological Indicators 11(6):1689–1695.
    OpenUrl
  87. ↵
    1. Traidl-Hoffmann,
    2. C.,
    3. A. Kasche,
    4. A. Menzel,
    5. T. Jakob,
    6. M. Thiel,
    7. J. Ring, and
    8. H. Behrendt
    . 2003. Impact of pollen on human health: More than allergen carriers? International Archives of Allergy and Immunology 131:1–13.
    OpenUrlPubMed
  88. ↵
    1. Trees for Cities
    . 2014. Best practice guidelines how to assess the suitability of a site for street trees planting and what to do next. <www.treesforcities.org/index.php/download_file/372/141>
  89. ↵
    1. Turner, A.P., and
    2. N.M. Dickinson
    . 1993. Survival of Acer pseudoplatanus L. (sycamore) seedlings on metalliferous soils. New Phytologist 123:509–521.
    OpenUrlCrossRefWeb of Science
  90. ↵
    1. Ugolini, F.,
    2. R. Tognetti,
    3. A. Raschi, and
    4. L. Bacci
    . 2013. Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the tree’s distance from traffic. Urban Forestry & Urban Greening 12(4):576–584.
    OpenUrl
    1. United States Department of Agriculture
    . 2012. Field Guide for Managing Tree-of-heaven in the Southwest. <www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5410131.pdf>
  91. ↵
    1. Unterbrunner, R.,
    2. M. Puschenreiter,
    3. P. Sommer,
    4. G. Wieshammer,
    5. P. Tlustoš,
    6. M. Zupan, and
    7. W.W. Wenzel
    . 2007. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution 148:107–114.
    OpenUrlCrossRefPubMedWeb of Science
    1. Van Nevel, L.,
    2. J. Mertens,
    3. J. Staelens,
    4. A. De Schrijver,
    5. F.M.G. Tack,
    6. S. De Neve,
    7. E. Meers, and
    8. K. Verheyen
    . 2011. Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecological Engineering 37:1072–1080.
    OpenUrl
  92. ↵
    1. Vos, P.E.J.,
    2. B. Maiheu,
    3. J. Vankerkom, and
    4. S. Janssen
    . 2013. Improving local air quality in cities: To tree or not to tree? Environmental Pollution 183:113–122.
    OpenUrlPubMed
    1. Wang, L.,
    2. S. Gao,
    3. E. Has, and
    4. Z. Wang
    . 2006. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing. Journal of Environmental Science 18(5):921–926.
    OpenUrl
  93. ↵
    1. Wilschut, M.,
    2. P.A.W. Theuws, and
    3. I. Duchart
    . 2013. Phytoremediative urban design: Transforming a derelict and polluted harbor area into a green and productive neighborhood. Environmental Pollution 183:81–88.
    OpenUrl
    1. Wisniewski, L., and
    2. N.M. Dickinson
    . 2003. Toxicity of copper to Quercus robur (english oak) seedlings from a copper-rich soil. Environmental and Experimental Botany 5:99–107.
    OpenUrl
    1. Xiao, Q., and
    2. E.G. McPherson:
    2011. Rainfall interception of three trees in Oakland, California. Urban Ecosystem 54:755–769.
    OpenUrl
  94. ↵
    1. Yang, J.,
    2. J. McBride,
    3. J. Zhou,
    4. Z. Sun
    . 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening 3:65–78.
    OpenUrlCrossRef
    1. Yang, X.,
    2. Y. Feng,
    3. Z. He, and
    4. P.J. Stoffella
    , 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18:339–353.
    OpenUrlCrossRefPubMedWeb of Science
  95. ↵
    1. Zerbe, S., and
    2. G. Wiegleb
    . 2009. Renaturierung von Ökosystemen in Mitteleuropa. Springer, Spektrum, Heidelberg, Germany. 530 pp.
PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 43 (4)
Arboriculture & Urban Forestry (AUF)
Vol. 43, Issue 4
July 2017
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tree Species as Tools for Biomonitoring and Phytoremediation in Urban Environments: A Review with Special Regard to Heavy Metals
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
Tree Species as Tools for Biomonitoring and Phytoremediation in Urban Environments: A Review with Special Regard to Heavy Metals
Claudia Dadea, Alessio Russo, Massimo Tagliavini, Tanja Mimmo, Stefan Zerbe
Arboriculture & Urban Forestry (AUF) Jul 2017, 43 (4) 155-167; DOI: 10.48044/jauf.2017.014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Tree Species as Tools for Biomonitoring and Phytoremediation in Urban Environments: A Review with Special Regard to Heavy Metals
Claudia Dadea, Alessio Russo, Massimo Tagliavini, Tanja Mimmo, Stefan Zerbe
Arboriculture & Urban Forestry (AUF) Jul 2017, 43 (4) 155-167; DOI: 10.48044/jauf.2017.014
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • REVIEW METHODOLOGY
    • RESULTS AND DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Assessing Biodiversity Associated with Four Monumental Trees in Madrid Region (Spain)
Show more Articles

Similar Articles

Keywords

  • Betula pendula
  • Bioindicators
  • monitoring
  • Phytoremediation
  • Robinia pseudoacacia
  • Traffic Emission
  • Urban Planning
  • Volatile Organic Compounds

© 2025 International Society of Arboriculture

Powered by HighWire