Skip to main content

Main menu

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts

User menu

  • Log in

Search

  • Advanced search
Arboriculture & Urban Forestry
  • Log in
Arboriculture & Urban Forestry

Advanced Search

  • Home
  • Content
    • Ahead of Print
    • Current Issue
    • Special Issues
    • All Issues
  • Contribute
    • Submit to AUF
    • Author Guidelines
    • Reviewer Guidelines
  • About
    • Overview
    • Editorial Board
    • Journal Metrics
    • International Society of Arboriculture
  • More
    • Contact
    • Feedback
  • Alerts
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
Research ArticleArticles

A Hedonic Analysis of the Impact of Tree Shade on Summertime Residential Energy Consumption

Ram Pandit and David N. Laband
Arboriculture & Urban Forestry (AUF) March 2010, 36 (2) 73-80; DOI: https://doi.org/10.48044/jauf.2010.010
Ram Pandit
Ram Pandit (corresponding author), Assistant Professor, School of Agricultural and Resource Economics, University of Western Australia, Crawley WA 6009, Australia,
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
David N. Laband
David N. Laband, Professor, Economics and Policy, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849-5418, U.S.
  • Find this author on Google Scholar
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    Summertime average daily electricity use and desired cooling.

Tables

  • Figures
    • View popup
    Table 1a.

    Sample statistics for time-invariant attributes

    AttributesMeanStd. Dev.Min.Max.
    Living area (ft2)2,700.15854.931,170       6,100       
                            (m2)(251.18)(79.53)  (108.84)  (567.45)
    Number of floors    1.52  0.51 1 3
    Family size   2.5  1.13 1 7
    Family size by gender
                            Male    1.25  0.87 0 5
                            Female    1.25  0.60 0 3
    Family size by age group
                            ≤12 years    0.45  0.90 0 5
                            13 to 24 years    0.19  0.50 0 3
                            25 to 60 years    1.25  0.88 0 3
                            >60 years    0.62  0.85 0 2
    Age of the house (Yr) 14.4912.36 157  
    Age of air conditioner (Yr)    7.52  5.85 132  
    Age of heating unit (Yr)    7.94  5.95 132  
    Age of water heater (Yr)    7.21  5.20 128  
    No. of laundry/week    5.53  3.08 121  
    • View popup
    Table 1b.

    Sample statistics for time-variant attributes.

    AttributesMeanStd. Dev.Min.Max.
    kWh/day58.5027.59    0.02192.97
    Daytime inside temp. °F (°C)76.35 (24.64)  2.74  70.00 (21.11)  85.00 (29.44)
    Nighttime inside temp. °F (°C)75.65 (24.25)  3.16  65.00 (18.33)  85.00 (29.44)
    Outside high temp. °F (°C)88.00 (31.11)  5.27  73.53 (23.07)  95.61 (35.34)
    Outside mean temp. °F (°C)77.84 (25.47)  5.54  62.31 (16.84)  85.03 (29.46)
    Outside min. temp. °F (°C)67.22 (19.57)  5.89  50.53 (10.29)  73.94 (23.30)
    Average humidity (%)73.72  4.06  64.02  81.20
    Daytime mean temp. diff.  1.49  6.16−16.41  15.03
    Nighttime mean temp. diff.  2.19  6.35−18.45  18.79
    Percentage of house area under tree shade17.4619.44    0.00  88.00
    Late a.m. (9–11 a.m.) percent house area under tree shade20.9325.30    0.00100.00
    Early p.m. (12–2 p.m.) percent house area under tree shade10.2314.93    0.00  90.00
    Late p.m. (3–5 p.m.) percent house area under tree shade29.8631.19    0.00100.00
    • View popup
    Table 1c.

    Sample statistics for categorical variables by utility or structural types.

    VariablesUtility / structural type# of sample households
    Air conditionerCentral air electric156
    Central air electric with window unit    4
    HeatingPartially or fully electric107
    Others (natural gas, propane, etc.)  53
    CookingPartially or fully electric129
    Natural gas  31
    Water heaterPartially or fully electric  84
    Natural gas  76
    House floorsSingle  77
    Multiple  83
    Swimming poolYes  12
    No148
    Second freezerYes  83
    No  77
    • View popup
    Table 2.

    Regression results (family size and composition). Dependent variable = kWh/day.

    Explanatory VariablesModelModel 2Model 3
    Intercept−10.450  −12.520  −9.491 
    (9.622)(9.608)(9.747)
    Family size3.390z
    (0.474)
    # Females5.250z
    (0.786)
    # Males2.394z
    (0.607)
    12 or under4.014z
    (0.616)
    13–240.640
    (1.081)
    25–601.716
    (1.153)
    Over 600.847
    (1.196)
    Living area0.013z0.013z0.013z
    (0.001)(0.001)(0.001)
    House age0.103y0.108y0.145z
    (0.046)(0.046)(0.047)
    # floors1.974x2.231y2.099y
    (1.066)(1.063)(1.063)
    Elec. Cooking−1.172 −1.421 −1.025 
    (1.285)(1.283)(1.299)
    Elec. H2O heat4.547z4.569z4.007z
    (0.979)(0.976)(0.999)
    Window AC4.1154.375x5.437y
    (2.675)(2.660)(2.727)
    Laundry loads/wk1.076z1.085z1.142z
    (0.169)(0.168)(0.169)
    Second Freezer2.475z2.807z2.945z
    (0.959)(0.959)(0.980)
    Swimming pool21.010z20.84z21.179z
    (1.761)(1.757)(1.763)
    Average humidity0.1330.1380.150
    (0.127)(0.126)(0.126)
    Daytime temp. diff. (mean)2.233z2.224z2.208z
    (0.085)(0.085)(0.085)
    Percent shade−0.159z −0.163z −0.164z 
    (0.029)(0.029)(0.029)
    Adj. r2:0.59320.59620.5964
    F-statistic:170.3  160.1  140.4  
    Nw:1510  1510  1510  
    • ↵zsignificant at 0.01 level

    • ↵ysignificant at 0.05 level

    • ↵xsignificant at 0.10 level

    • ↵wThe total number of observations for five summer months during two years was 1,510. A number of participants, out of 160, reported only one year worth of electricity data because they occupied the house only during the study year. Due to differences in monthly observations between the two years, the total number of observations is 1,510 not 1,600.

    • View popup
    Table 3.

    Regression results (shade conditions). Dependent variable = kWh/day.

    Explanatory VariablesModel 1Model 2Model 3
    Intercept−1.543  −3.504  −10.750  
    (9.556)(9.575)(9.592)
    Family size3.594z3.427z3.620z
    (0.463)(0.467)(0.477)
    Living area0.013z0.013z0.013z
    (0.001)(0.001)(0.001)
    House age0.0570.101y0.092y
    (0.042)(0.045)(0.047)
    # floors1.4161.793x1.828x
    (1.042)(1.051)(1.072)
    Elec. Cooking−0.912  −0.761  −0.609  
    (1.271)(1.270)(1.291)
    Elec. H2O heat4.443z4.456z4.177z
    (0.969)(0.967)(0.981)
    Window AC4.530x4.428x4.648x
    (2.642)(2.638)(2.670)
    Laundry loads/wk1.009z1.009z1.103z
    (0.168)(0.167)(0.168)
    Second Freezer2.519z2.602z2.573z
    (0.947)(0.946)(0.957)
    Swimming pool22.223z21.539z20.470z
    (1.719)(1.739)(1.765)
    Average humidity0.0130.0370.127
    (0.125)(0.126)(0.126)
    Daytime temp. diff. (mean)2.155z2.192z2.218z
    (0.083)(0.084)(0.085)
    Percent shade−0.088y  
    (0.036)
    Light shade−0.254  0.43  
    (1.431)(1.457)
    Moderate shade−0.507  1.197
    (1.289(1.469)
    Heavy shade−9.174z  −6.884z  
    (1.356)(1.655)
    Late a.m. shade percent0.020
    (0.028)
    Early p.m. shade percent−0.005  
    (0.047)
    Late p.m. shade percent−0.117z  
    (0.022)
    Adj. r2:0.60300.60430.5957
    F-statistic:153.8  145.0  149.2  
    N:1510  1510  1510  
    • ↵zsignificant at 0.01 level

    • ↵ysignificant at 0.05 level

    • ↵xsignificant at 0.10 level

PreviousNext
Back to top

In this issue

Arboriculture & Urban Forestry (AUF): 36 (2)
Arboriculture & Urban Forestry (AUF)
Vol. 36, Issue 2
March 2010
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Arboriculture & Urban Forestry.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Hedonic Analysis of the Impact of Tree Shade on Summertime Residential Energy Consumption
(Your Name) has sent you a message from Arboriculture & Urban Forestry
(Your Name) thought you would like to see the Arboriculture & Urban Forestry web site.
Citation Tools
A Hedonic Analysis of the Impact of Tree Shade on Summertime Residential Energy Consumption
Ram Pandit, David N. Laband
Arboriculture & Urban Forestry (AUF) Mar 2010, 36 (2) 73-80; DOI: 10.48044/jauf.2010.010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Hedonic Analysis of the Impact of Tree Shade on Summertime Residential Energy Consumption
Ram Pandit, David N. Laband
Arboriculture & Urban Forestry (AUF) Mar 2010, 36 (2) 73-80; DOI: 10.48044/jauf.2010.010
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • METHODOLOGY
    • MODEL AND ANALYSIS
    • RESULTS
    • CONCLUSION
    • Acknowledgments
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Contribution of Urban Trees to Ecosystem Services in Lisbon: A Comparative Study Between Gardens and Street Trees
  • Unmanned Aerial Vehicle (UAV) in Tree Risk Assessment (TRA): A Systematic Review
  • Assessing Biodiversity Associated with Four Monumental Trees in Madrid Region (Spain)
Show more Articles

Similar Articles

Keywords

  • Electricity Usage
  • Economic Value
  • Shade Density
  • Shading Time
  • Tree Shade

© 2025 International Society of Arboriculture

Powered by HighWire