Managing Diplodia Tip Blight of Landscape Austrian Pines

John R. Hartman, Lisa J. Vaillancourt, Jennifer L. Flowers, and Amy M. Bateman

Abstract. A long-term survey of 449 Austrian pines growing on the University of Kentucky campus revealed that Diplodia tip blight disease killed 84% of the trees during a 15-year period and that the pines developed increasing levels of disease as they aged. Treatments consisting of the fungicides oxycarboxin, debacarb, or tebuconazole or water were injected into the lower trunk and root flare of individual trees in a block of mature, diseased pines for 4 years. The fungicide treatments did not significantly affect disease levels. The causal fungus could be isolated readily from diseased and symptomless shoots regardless of the treatment. Diplodia pinea was very sensitive to tebuconazole and debacarb in in vitro fungicide tests. Basal drenches with paclobutrazol affected shoot growth but did not significantly reduce tip blight disease levels or tree mortality. Under midsouth United States climate conditions, Diplodia tip blight of Austrian pines is destructive and very difficult to manage.

Key Words. Diplodia pinea; fungicide basal drench; fungicide injection; Pinus nigra; Sphaeropsis sapinea; Sphaeropsis tip blight.

Austrian pine (Pinus nigra) is widely planted in landscapes throughout the central and eastern United States. Introduced from Europe almost 250 years ago, the tree is valued for its ability to withstand urban growing conditions while providing a pleasing dark green appearance whether used as a specimen plant or as part of a landscape screen. Austrian pines typically grow to a height of 10.6 m (35 ft) to 15.2 m (50 ft) within 20 or 30 years, but can attain twice that height during their lifetime (Dirr 1998). Of the 3,000 to 4,000 trees growing on the University of Kentucky campus in recent decades, at least 10% have been Austrian pines.

Diplodia tip blight, also known as pine tip blight or Sphaeropsis tip blight, is a serious disease of conifers worldwide. The fungal pathogen, Diplodia pinea (syn. Sphaeropsis sapinea), causes Diplodia tip or shoot blight (previously known as Sphaeropsis tip blight), which is especially devastating to two-needled pines such as Austrian pine (Sinclair and Lyon 2005). Exotic pines such as Austrian, Mugo, and Scots pines were found to be more susceptible to tip blight than from the xylem and pith. A polymerase chain reaction (PCR) test was developed to detect D. pinea in pine tissues (Flowers et al. 2003) to eliminate the requirement for destructive sampling needed to grow the pathogen in culture.

Success in management of Diplodia tip blight with chemical applications of fungicides to the foliage has been inconsistent. Disease was reduced significantly with Bordeaux mixture applied early in the growing season (Peterson 1977). In that study, trees were found to be most susceptible during the early part of shoot (candle) elongation before needles began to elongate. Based on these findings, a standard recommendation suggesting three springtime applications of fungicide, the first at bud swell, the second as the candles are elongating but just before needle emergence, and the third as needles are emerging from the needle sheaths, was developed. This protocol is generally indicated on the labels for fungicides containing thiophanate methyl such as Topsin-M 70 WP (Cerexagon-Nisso, King of Prussia, PA) or 3336 WP (Cleary Chemical Co., Dayton, NJ). A fungicide application schedule consisting of only two early spring sprays has also been advocated (Tisserat 1993). However, grounds managers reported that a protocol involving foliar application of fungicides was not working on the University of Kentucky (UK) campus and elsewhere (Hartman et al. 1995), possibly as a result of inadequate spray coverage for large trees or imprecise timing resulting from needing to spray large numbers of individual trees over a large landscape during a narrow application window. Furthermore, on institutional landscapes such as the UK campus, application of foliar fungicides is complicated by concerns about human and environmental exposure.

To minimize these chemical exposure concerns, systemic fungicides can be delivered throughout trees by injecting the chemicals directly into small, shallow holes in the outer xylem of the root flare. This provides uniform chemical distribution while minimizing wounding effects and promotes wound closure after injection (Stipes 1988). Fungicide injections have been used for management of canker diseases (Helton and French 1962; Helton and Harvey 1963; Elliott and Edmonds 2008). Oxycarboxin, a phenylamide (Carboject, no longer available), debacarb, a benzimidazole (Fungisol), and tebuconazole, a sterol biosynthesis inhibitor (Tebuject) (Mauget, Inc.) are examples of fungicides that can be injected into trees.

Paclobutrazol is a plant growth regulator chemical that inhibits synthesis of the plant hormone gibberellin. For the arboricultural industry, paclobutrazol is sold under the trade name Cambistat.
Austrian Pine Tip Blight Survey

©2009 International Society of Arboriculture

located around the perimeter of a UK campus parking lot nearby

29–30 May 2002; capsules were removed 4 to 12 days after injec-

partly elongated on 8 May 1999, 6–9 May 2000, 5 May 2001, and

into basal root flares were started when the pine shoot candles were

trol. Fungicides were used at labeled rates, approximately 14 mg

carboxin; 2) debacarb; 3) tebuconazole; and 4) water used as a con-

replicated on four individual trees, consisted of injections of 1) oxy-

treatment was applied to trees with a similar range of symptoms.

One objective of this research was to document the decline of a

population of Austrian pines over a 15-year period resulting from

Diplodia tip blight. Another objective was to test other chemical

approaches as an alternative to spraying the foliage with fungi-

icides for reduction of disease levels and/or latent infections.

MATERIALS AND METHODS

Austrian Pine Tip Blight Survey

Austrian pines growing in landscape groupings on the UK cam-

pus (38.0° north, 84.5° west), located in Lexington, Kentucky,

U.S., were surveyed for tip blight disease during the month of July

eight times over 15 years from 1992 to 2007. The first year, each

tree was identified according to location and position near campus

buildings so that subsequent surveys could be correlated. For each

tree, the age was estimated by counting the number of whorls of

branches along the main trunk, and an estimate of whole-tree per-

cent tip blight (number of dead shoots versus number of total [dead

plus live] shoots) was made. In cases where lower branches had

been removed as a result of tip blight, age and disease estimates

were adjusted accordingly. The presence of D. pinea-infected

cones, insect infestations, and abiotic disorders was also recorded.

Fungicide Injection for Tip Blight Management

Two distinct groups of UK campus Austrian pines were selected

for injection treatments. The first experiment was done in a

mature (20 to 22 years old) stand of diseased (1% to 50% tip

branches along the main trunk, and an estimate of whole-tree per-

cent tip blight (number of dead shoots versus number of total [dead

plus live] shoots) was made. In cases where lower branches had

been removed as a result of tip blight, age and disease estimates

were adjusted accordingly. The presence of D. pinea-infected

cones, insect infestations, and abiotic disorders was also recorded.

Expt. 1.

Sixteen pines located on traffic islands on the UK campus received

one of four treatments. Trees were assigned to groups so that each

treatment was applied to trees with a similar range of symptoms.

Treatments, arranged in a randomized complete block design and

replicated on four individual trees, consisted of injections of 1) oxy-

carboxin; 2) debacarb; 3) tebuconazole; and 4) water used as a con-

rol. Fungicides were used at labeled rates, approximately 14 mg

active ingredient per inch tree diameter at breast height. Injections

into basal root flares were started when the pine shoot candles were

partly elongated on 8 May 1999, 6–9 May 2000, 5 May 2001, and

29–30 May 2002; capsules were removed 4 to 12 days after injec-

tion. As a result of the demise and removal of several of the traf-

fic island trees in the first year, eight additional 20-year-old trees

located around the perimeter of a UK campus parking lot nearby

were injected in May 2000, 2001, and 2002. Trees were grouped

into randomized complete blocks, and each treatment was repli-

cated five or six times with each replicate being an individual tree.

Expt. 2.

Forty pines comprising a screen planting on the UK campus were

The experiment was designed as a randomized complete block

experiment with ten replicates.

Recovery of D. pinea from Shoots of Treated Trees

In July of 2000, 2001, and 2002, shoot, bud, and needle samples

two each from asymptomatic and diseased shoots were collected

from each treated tree, and the pathogen was cultured on acidified

potato dextrose agar (APDA) using standard microbiologic tech-

niques. The fungal cultures were identified and confirmed micro-

scopically after inoculation of autoclaved pine needles using the

method described in Flowers et al. (2001).

In Vitro Test of Injected Fungicides

Oxycarboxin, debacarb, and tebuconazole were each tested in the

laboratory for fungicidal activity against D. pinea and compared

with water controls. Fungicides were incorporated into APDA in

Petri plates at the following rates: 1, 2, 3, 4, 5, 6, and 1000 ppm.

Plugs (4 mm [0.16 in] diameter) of mycelium from actively grow-

ing cultures of D. pinea were transferred to the plates. Radial

growth from the original plug was measured after 4 days. The

test was replicated four times, and the lowest fungicide concen-

trations that prevented fungal growth in the experiment were cal-

culated as effective doses.

Paclobutrazol Basal Drench for Tip Blight

Management

Suspensions of paclobutrazol were applied at label rates (3.7 g

[a.i.]/2.5 cm diameter at breast height) to the bases of 20 mature

(17 to 19 years old) Austrian pines growing in a screen planting

on the UK campus in July 2003. A shallow encircling trench was

carved into the soil adjacent to the trunk and buttress roots of each

tree and the paclobutrazol suspension was distributed uniformly

into the trench. After the suspension had soaked in, trenches were

covered with soil. The experiment, established in a randomized

complete block arrangement, was replicated five times with each

replicate consisting of four trees per treatment. The pines selected

for this experiment had varying levels of tip blight disease rang-

ing from 1% to 30% dead tips, and each block of trees contained

trees with a similar range of symptoms. An equivalent number of

experimental controls were treated with water.

Pines were evaluated in July of 2004, 2005, and 2006 for lev-

els of tip blight disease, detection of latent infections using PCR

assays (Flowers et al. 2003), tree survival, and treatment effects

on tree shoot length and trunk diameter.

RESULTS

Austrian Pine Tip Blight Survey

In 1992, the survey identified 486 Austrian pines on the UK cam-

pus, with an average age of 15.1 years, distributed among 47

landscape groupings. Of these, 37 trees were lost to construction

in subsequent years, leaving 449 trees to be monitored for the

entire 15-year period. From the original 449 trees, 377 (84%)
died or were removed as a result of excessive tip blight disease until only 72 remained in 2007. Mature pine cones with *D. pinea* pycnidia embedded in the cone scales were usually observed on trees that were 13 years old or older. Tip blight symptoms in the lower branches typically occurred in subsequent years. Pine tip blight incidence increased as trees aged (Figure 1).

Fungicide Injection for Tip Blight Management

Expt. 1.

After 3 years of fungicide injections, trees in Expt. 1 continued to die until 2002, when no new trees died. Tip blight disease in these mature trees in 2002 increased 121% to 245% over levels in 1999 (Figure 2). The increase in disease was slowest in debacarb-treated trees, in which 2002 disease levels were 121% of 1999 disease levels. Disease severities for other treatments in 2002 were approximately double the levels seen in 1999.

Expt. 2.

For Expt. 2 using the younger, less diseased trees, tip blight levels gradually increased (Figure 3). In 1999, there was no noticeable disease in this plot; by 2002, disease ratings ranged from 13% to 23% but showed no noticeable treatment effect.

Isolation of *D. pinea* from Shoots of Treated Trees

In Expt. 1, *S. sapinea* was isolated from most of the diseased and symptomless shoots from 2000 to 2002 and there were no significant differences between treatments (Table 1). In Expt. 2, the pathogen was isolated significantly more frequently from diseased shoots than from asymptomatic shoots from the same trees (Table 1). *Sphaeropsis sapinea* recovery increased over the 3-year period reflecting the increase in disease over the same time period. Diseased shoots in Expt. 2 showed significant differences in the frequency of *S. sapinea* isolations between tebuconazole and oxycarboxin treatments in 2000. Significant treatment differences were not observed in 2001 and 2002.

In Vitro Test of Injected Fungicides

The effective dose for complete inhibition of *D. pinea* hyphal growth on PDA amended with fungicides can be determined from the data presented in Table 2. Based on this test, tebuconazole completely inhibited fungal growth at a rate of only 1 ppm. The effective dose may be even lower, but this concentration was the lowest used. The effective dose of debacarb needed to stop fungal growth occurred at 6 ppm, which is still good for most fungicidal applications. However, for oxycarboxin, inhibition did not occur until fungicide concentrations reached 1000 ppm.

Basal Drench for Tip Blight Management

Most of the pines in the test groups continued to deteriorate after treatments in 2003, whether treated with paclobutrazol or not, and by 2006, several had to be removed. Average tip blight levels in the remaining trees (2005) were high and were not significantly different between paclobutrazol and water-treated trees. Using PCR, the causal fungus was very commonly detected in symptomless tissues for both treatments. The levels of latent infections varied greatly from tree to tree within each treatment. By the end of the experiment, nearly half of all the trees in the experiment had died from tip blight or had been removed as a result of excessive disease (Table 3).

Paclobutrazol-treated Austrian pines grew more slowly than water-treated pines, which is an expected effect of this growth regulator chemical (Table 4).
Table 1. Isolation of Diplodia pinea from University of Kentucky campus Austrian pines.a

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Expt. 1</th>
<th>Expt. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000b</td>
<td>2001</td>
</tr>
<tr>
<td>Symptomless shoots with D. pinea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debacarb 55 a 70 a</td>
<td>8 a</td>
<td>17 a</td>
</tr>
<tr>
<td>Tebuconazole 40 a 88 a</td>
<td>18 a</td>
<td>30 a</td>
</tr>
<tr>
<td>Water 67 a 80 a</td>
<td>23 a</td>
<td>25 a</td>
</tr>
<tr>
<td>Oxycarboxin 46 a 75 a</td>
<td>25 a</td>
<td>26 a</td>
</tr>
<tr>
<td>Diseased shoots with D. pinea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tebuconazole 75 a 100 a</td>
<td>69 b</td>
<td>87 b</td>
</tr>
<tr>
<td>Water 79 a 100 a</td>
<td>75 bc</td>
<td>94 b</td>
</tr>
<tr>
<td>Debacarb 80 a 100 a</td>
<td>79 bc</td>
<td>100 b</td>
</tr>
<tr>
<td>Oxycarboxin 67 a 100 a</td>
<td>88 c</td>
<td>93 b</td>
</tr>
</tbody>
</table>

aExpt. 1, mature severely diseased Austrian pines (four to six replicates). Expt. 2, maturing Austrian pines with lower levels of disease (ten replicates). Both treated with fungicides by trunk injections. Percent shoots yielding D. pinea in culture (ten samples per tree).

bMeans in a column followed by the same letter are not significantly different; Waller-Duncan K-ratio t-test (K = 100, P = 0.05).

The in vitro test of the fungicides used for injection against Diplodia pinea suggest that two of the fungicides, debacarb and tebuconazole, might have sufficient activity to manage Diplodia tip blight. Tebuconazole is not labeled for management of pine diseases and although debacarb is labeled for use in managing other tip blight and canker diseases of trees, it is not labeled for Diplodia tip blight of pines.

Fungicide injections neither “cured” pines of Diplodia tip blight disease nor did it prevent symptomless trees from developing tip blight. In the latter case, it is possible that latent infections were already prevalent and that the fungicides were not distributed to these latent infection sites because of blocking by necrophylactic periderm (Flowers et al. 2006). Under stress such as drought, latent infections may be able to convert to pathogenic ones. Injection with debacarb appeared to slow the progress of tip blight in already diseased trees, but this trend was not statistically significant as a result of highly variable disease levels between trees and as a result of loss of some trees to tip blight before the experiment was completed.

In the younger, less diseased pines, disease progress was not affected by debacarb. In both experiments, fungicide injections did not reduce the presence of latent infections. Latent infections in the younger Expt. 2 trees increased over time probably because the pathogen becomes more available on infected cones over time.

During the injection process, some of the capsules quickly filled with pitch from the tree. Thus, it is difficult to know whether all capsules were actually emptied into the injection sites. Our results are not encouraging for arborists who would like to use fungicide injections for Diplodia tip blight management in Austrian pines. Other research trials on injection of systemic fungicides for tip blight management have been inconclusive (Tisserat 2004).

DISCUSSION

Austrian Pine Tip Blight Survey

In one study of nine “old” and four “young” open-grown Austrian pines in Illinois, the age of the “old” trees averaged 73 years and the “young” trees averaged 27 years (Minckler 1955). Based on our survey, the Austrian pines on the UK campus do not last nearly as long as this, rarely living more than 30 years.

In Florida, Diplodia tip blight is reported to disfigure Austrian pines at approximately 25 to 30 years of age (Gilman and Watson 2006) and in Kansas, at approximately age 30 years (Tisserat 1993). This is more in line with our observations; during the 15 years of the UK campus survey, Austrian pines were so disfigured or killed by Diplodia tip blight that they generally needed removal by approximately age 25 to 30 years. During the 15-year interval, frequent summer dry periods and drought (1994, 1999, 2002, 2005, and 2007) could have contributed to increased disease susceptibility of landscape Austrian pines. Pine wilt disease caused by the pine wood nematode, Bursaphalenchus xylophylis, was found in one dying tree but was not considered a major cause of Austrian pine death in this survey.

Fungicide Injection for Tip Blight Management

Basal Drench for Tip Blight Management

Tip blight percentages suggest that Diplodia tip blight development was slowing down in paclobutrazol-treated pines at the end

Table 2. Effect of different concentrations (in parts per million) of fungicides on in vitro growth of D. pinea (in millimeters) after 4 days growth on acidified potato dextrose agar amended with fungicide.

<table>
<thead>
<tr>
<th>Fungicide and concentration</th>
<th>1 ppm</th>
<th>2 ppm</th>
<th>3 ppm</th>
<th>4 ppm</th>
<th>5 ppm</th>
<th>6 ppm</th>
<th>1000 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tebuconazole</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debacarb</td>
<td>66 a</td>
<td>64</td>
<td>38</td>
<td>23</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oxycarboxin</td>
<td>68 a</td>
<td>66</td>
<td>63</td>
<td>67</td>
<td>68</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>64 a</td>
<td>63</td>
<td>69</td>
<td>65</td>
<td>64</td>
<td>67</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 3. Effect of paclobutrazol application in 2003 on subsequent Austrian pine tip blight disease incidence, presence of latent Diplodia pinea infections, and tree survival in a landscape screen planting.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2005 results</th>
<th>2006 results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent tip blighta</td>
<td>Percent shoot tips with latent D. pinea infections</td>
</tr>
<tr>
<td>Paclobutrazol</td>
<td>22.1 a</td>
<td>96 a</td>
</tr>
<tr>
<td>Water</td>
<td>33.7 a</td>
<td>59 a</td>
</tr>
</tbody>
</table>

aIn a column, means bearing the same letter are not significantly different (Waller-Duncan K-ratio test, P = 0.05).

Table 4. Effect of paclobutrazol on Austrian pine tree growth in 2005.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1-year trunk diameter increase in cm (in)a</th>
<th>1-year shoot terminal growth in cm (in)</th>
<th>1-year lateral branch growth in cm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclobutrazol 0.7 (0.3) a</td>
<td>12.5 (5.0) a</td>
<td>15.8 (6.3) b</td>
<td>11.3 (4.5) a</td>
</tr>
<tr>
<td>Water 1.0 (0.4) a</td>
<td>15.8 (6.3) b</td>
<td>15.8 (6.3) b</td>
<td>11.3 (4.5) a</td>
</tr>
</tbody>
</table>

aIn a column, means bearing the same letter are not significantly different (Waller-Duncan K-ratio test, P = 0.05).
of our experiment, but these differences were not statistically different. Similarly, latent infections in these trees did not appear to decrease in frequency as quickly as in water-treated trees. However, these trends may indicate that latent infections are converting to active infections more slowly in the paclobutrazol-treated trees. The current study did not provide definitive evidence that paclobutrazol root flare basal treatments will cure pines of tip blight disease or stop disease progress.

Implications for Arboriculture

Arborists recommending landscape trees will want to be aware that, in some instances, Austrian pines may not be the best choice of tree to plant because of their extreme susceptibility to tip blight disease. Their useful lifetime in the landscape will be less than 25 years in most cases, and after the age of approximately 13 years, they are likely to become disfigured from the disease. Management of Diplodia tip blight in already established pines is difficult. Foliar fungicide sprays are difficult to apply to large trees, especially when there are numerous trees to treat, and they are often ineffective. Based on research reported here, current alternative fungicide treatments are not likely to be any more effective. Replication in tree disease management trials is a necessary step for product testing because what may be effective on one or two individual trees may not work on other trees nearby. Arborists should also appreciate the difficulties of conducting replicated experiments on mature trees because not all trees are uniformly infected at the start of the experiment and each tree is growing in a unique habitat. This can lead to more variable results and difficult statistical analysis.

Acknowledgments. We thank UK Plant Pathology Department technicians Ed Dixon and Etta Nuckles; and summer student interns Myriam Besson, Hugues Chopy, Claudia Cotton, Christelle Drévillon, Natalie Godbert, Valérie Jean, Stephanie Jeandot, Stéfane Kihl, Jean-Bernard Magnin, Fanny Moine, Céline Moser, Florence Nomade, Emmanuelle Paganelli, Sabine Pauly, Bruno Poupard, Maria Schira, and Gilles Vache. We appreciate research support from the Mauget Company, Rainbow Tree Care Scientific Advancements, and the Kentucky Nursery-Landscape Fund.

LITERATURE CITED

John R. Hartman (corresponding author)
Extension Professor Emeritus
Department of Plant Pathology
University of Kentucky
Lexington, KY 40546-0312, U.S.
jhartman@uky.edu

Lisa J. Vaillancourt
Associate Professor
Department of Plant Pathology
University of Kentucky
Lexington, KY 40546-0312, U.S.

Jennifer L. Flowers
Assistant Professor
Spalding University
Louisville, KY 40203, U.S.

Amy M. Bateman
USDA-ARS Small Grains and Potato Research Unit
Aberdeen, ID 83210, U.S.

Résumé. Un suivi à long terme de 449 pins noirs d’Autriche poussant sur le campus de l’Université du Kentucky a révélé que la brûlure des pousses par le Diplodia a tué 84% des arbres sur
une période de 15 ans et que les pins ont développé des niveaux accrus de maladie avec l’âge. Des traitements fongiques avec l’oxycarboxin, le debacarb, le tebucanozole ou l’eau ont été appliqués par injection dans la section inférieure du tronc ou à la souche parmi les sujets d’un bloc d’arbres matures atteints par la maladie durant quatre ans. Les traitements avec les fongicides n’ont pas permis d’influencer significativement le niveau de maladie. Le champignon causal pouvait être isolé rapidement des pousses déjà malades ou encore de celles sans symptômes en dépit du traitement. Diplodia pinea était très sensible au tebuconazole et au debacarb lors de tests in vitro. L’injection à la souche de paclobutrazol a affecté la croissance des pousses mais n’a pas permis de diminuer significativement le niveau de brûlure des pousses ou de mortalité de l’arbre. Sous les conditions climatiques du Centre-Sud des États-Unis, la brûlure des pousses par le Diplodia chez le pin noir d’Autriche s’avère destructrice et très difficile à gérer.

Resumen. Un estudio a largo plazo de 449 pinos australianos creciendo en el campus de la Universidad de Kentucky reveló que la enfermedad del Diplodia mató 84% de los árboles durante un periodo de 15 años y que los pinos desarrollaron altos niveles de la enfermedad a medida que maduraban. Los tratamientos consistentes de fungicidas oxycarboxin, debacarb, tebuconazole o agua fueron inyectados por 4 años en la parte inferior de los troncos y en la corona de las raíces de árboles individuales en un bloque de pinos enfermos. Los tratamientos fungicidas no afectaron significativamente los niveles de la enfermedad. El hongo causal pudo ser aislado fácilmente de brotes enfermos sin importar el tratamiento. Diplodia pinea fue muy sensible a tebuconazole y debacarb en pruebas del fungicida in vitro. Zanjas basales con paclobutrazol afectaron el crecimiento de los brotes pero no redujeron significativamente los niveles de la enfermedad o la mortalidad del árbol. Bajo las condiciones del clima del medio sur de los Estados Unidos, el Diplodia del marchitamiento de los brotes de los pinos australianos es destructivo y muy difícil de manejar.